Information Sciences 608 (2022) 1503-1523

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins e

Preventing proof-of-work mining attacks N

Hamid Azimy **, Ali A. Ghorbani?, Ebrahim Bagheri"” ipaiee

2 Canadian Institute for Cybersecurity, Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada
b Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada

ARTICLE INFO ABSTRACT

Article history: Bitcoin mining is the process of generating new blocks in the Bitcoin blockchain. This pro-
Received 6 May 2021 cess is vulnerable to different types of attacks. One of the most famous attacks in this cat-
Received in revised form 30 June 2022 egory is selfish mining. This attack is essentially a strategy that a sufficiently powerful

Accepted 5 July 2022

Available online 9 July 2022 mining pool can follow to obtain more revenue than its fair share. The reason that selfish

mining is effective is the difficulty adjustment algorithm used in the Bitcoin network. In
this paper, we analyze the profitability of selfish mining with respect to time and propose

Iéftyc V;;’I:‘fétwork an alternative difficulty adjustment algorithm that discourages selfish mining while allow-
Blockchain ing the Bitcoin network to remain scalable. We analyze our proposed solution, present the
Selfish mining results, and discuss its effectiveness. Based on our analysis, our proposed algorithm effec-

Difficulty adjustment algorithm tively increases the profitability waiting time for the attackers to almost double its original
value. For example, for a miner with 40% of the network’s hash power, the algorithm
extends the waiting time from 4 weeks to more than 11 weeks. This will discourage attack-
ers from performing their malicious activities. We also show that our proposed algorithm
allows the network to scale while it increases the waiting time.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

One of the goals of the Bitcoin network is to keep the block generation rate constant. This means that the whole network
should be able to generate a block every ten minutes on average. So, if the network grows, difficulty needs to also increase
proportionally and vice versa. In practice, this happens every 2016 block, which is roughly equivalent to two weeks. This
process is known as the difficulty adjustment process.

Bitcoin’s Difficulty Adjustment Algorithm (DAA) is very simple, i.e., at the end of every 2016 block period, all the nodes in
the Bitcoin network calculate the ratio of expected block generation rate to the actual block generation rate. This ratio offers the
actual difficulty value for the previous period, which is then multiplied by the current difficulty value to produce the next
difficulty value. By doing so, the difficulty value of the next period is set proportional to the actual difficulty value of the pre-
vious period.

Given the simplicity of the difficulty adjustment algorithm, some malicious Bitcoin network users have exhibited beha-
viour that is often known as selfish mining, first introduced by Eyal and Sirer [12]. Selfish mining attempts to maximize the
profitability of the attacker through strategies such as hiding generated blocks from the main blockchain. There has been
conflicting evidence on how effective selfish mining attacks could be. As our first contribution, we investigate the effective-

* Corresponding author.
E-mail addresses: hazimy@unb.ca (H. Azimy), ghorbani@unb.ca (A.A. Ghorbani), bagheri@ryerson.ca (E. Bagheri).

https://doi.org/10.1016/j.ins.2022.07.035
0020-0255/© 2022 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2022.07.035&domain=pdf
https://doi.org/10.1016/j.ins.2022.07.035
mailto:hazimy@unb.ca
mailto:ghorbani@unb.ca
mailto:bagheri@ryerson.ca
https://doi.org/10.1016/j.ins.2022.07.035
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

ness of selfish mining and show that time is an essential factor in the profitability of selfish mining, and attackers who are
powerful enough can potentially benefit from selfish mining after a certain waiting period.

We further argue that the difficulty adjustment algorithm in the Bitcoin network is a major factor for allowing selfish
mining to work. Therefore, as our second contribution, we propose an alternative difficulty adjustment method that dis-
courages selfish mining by making it less profitable and riskier for the attackers. To the best of our knowledge, our work
is among the first proposed to adaptively adjust the difficulty. We show that it is possible to extend the waiting period
needed for selfish mining to become profitable to more than double by using our proposed difficulty adjustment algorithm,
which will discourage miners from performing the selfish mining attack.

As our third contribution, we developed a Bitcoin network simulator. This simulator, which will be discussed in more
detail in Section 6.3, is a discrete-event simulator that can be used to run arbitrary episodes of the Bitcoin network with dif-
ferent configurations of miners. It can simulate different mining strategies, in particular, default (honest) mining and selfish
mining. Also, the simulator can be employed to study the effect of various difficulty adjustment algorithms, namely default
DAA and Zeno’s DAA. The simulator could also be easily expanded to include more mining strategies and difficulty adjust-
ment algorithms. So, for our fourth contribution, we used this simulator to study and analyze selfish mining and the effec-
tiveness of our proposed DAA.

To summarize, here is the list of contributions of this paper:

. An empirical study to show the effect of time on the profitability of selfish mining;

. Proposing an alternative DAA to overcome the issues with the default DAA and discouraging selfish mining;

. Developing a Bitcoin network simulator to simulate different mining strategiesand difficulty adjustment algorithms;

. Conducting experiments and analyzing the results to show the effect of time on selfish mining and the effectiveness of the
proposed DAA.

AW N =

The rest of the paper is organized as follows. In Section 2, we will go through the related works, review threats and attacks
to the Bitcoin network and blockchain, and discuss some countermeasures. In Section 3, we will analyze selfish mining and
discuss its profitability. The problem will be defined in Section 4, and our proposed method will be introduced in Section 5. In
Section 6, we will evaluate our proposed method and present the results. We also discuss the properties of our proposed
method in Section 7. Finally, in Section 8, we will conclude our work and discuss potential future research.

2. Literature Review

In recent years, blockchain has received growing attention [4] in domains such as financial services, insurance, healthcare,
voting systems, [oT, and smart city, could storage [21], to name a few. This naturally leads to a variety of threats towards the
blockchain structure and its mining process [38]. In a broader view, we can categorize Bitcoin threats into two major cate-
gories: privacy issues and security issues. Conti et al. [7] have surveyed these issues in their paper. We will selectively review
these issues as well as a few example attack types in the next sections.

2.1. Privacy and Anonymity Issues in Bitcoin

In traditional payment systems, the trusted third parties (e.g. banks) who are responsible for validating transactions are
also responsible for the users’ privacy. They achieve this goal by limiting access to transaction information. This information
is only accessible by the parties involved and the trusted third party. However, the Bitcoin approach is totally different. The
sole purpose of Bitcoin is to remove the need for a trusted third party; To achieve this goal, all the transactions are public,
and every node in the network has access to all the transactions. Transaction validation is done collectively by all the nodes.
But this does not mean that there is no privacy in Bitcoin.

Identities of Bitcoin users are associated with Bitcoin addresses, which are linked to a pair of Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) public and private keys. Anyone can generate any number of Bitcoin addresses and use them. Thus
every node in the network can see that someone (with a public address) is sending some bitcoins to someone else (also with
a public address), but these addresses cannot be easily linked to a real identity. Also, to further improve privacy, it is strongly
suggested that users should use each address only once. However, this is an ideal scenario; In the real world, linking public
addresses to individuals is possible to some extent. Adversaries can perform blockchain analysis to follow the flow of the
coins in the Bitcoin network using some simple rules. For example, in multi-input transactions, all input addresses almost
certainly belong to a single individual [26], or the address provided to collect the change (after transferring the specified
amount to the receiver) also belongs to the sender. By using these rules, adversaries can link addresses together, and using
other off-chain information (for example, public addresses that a Bitcoin user publishes in their website or forums or even in
emails) they can link this group of addresses to a single individual or IP address [23]. Androulaki et al. performed an exper-
iment to deanonymize users in such networks [1], and showed promising results.

Therefore it is often stated that Bitcoin does not offer anonymity. Instead, it offers pseudonymity. This problem is not lim-
ited to Bitcoin. Many other blockchains and cryptocurrency systems suffer from the same problem [19]. There have been

1504

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

various efforts to mitigate privacy issues in Bitcoin [22,18]. They can be categorized into three major categories: Peer-to-peer
mixing protocols, Distributed mixing networks, and Altcoins [7].

o Peer-to-peer mixing protocols: Mixing is a technique that can be used to confuse the trail of transactions to remove link-
ability in the Bitcoin network and preserve privacy. In peer-to-peer mixing, mixers who are anonymous service providers
receive Bitcoins that are divided into small parts from different users, and mix them into a transaction and send them
back to the users but with different public addresses. This helps break links between public addresses and ensures users’
privacy. There are many examples of these mixing protocols, e.g., Coinjoin [25] and CoinShuffle [36] among others.

o Distributed mixing networks: In this approach, the users share some bitcoins through a third party and receive back the
same amount of coins. So it provides strong anonymity. MixCoin [5] is one of the examples in this category. However,
there is the issue of trusting the third party, who could steal the coins or reveal sensitive information. To solve this prob-
lem, other mixing networks have been proposed. For example, BlindCoin [42] uses blind signatures to create user inputs
and cryptographically blinded outputs called blinded tokens. Another example is TumbleBit [14], which helps users to
make fast, off-blockchain payments anonymously through an intermediary called Tumbler.

o Altcoins: While Bitcoin remains the first and most widely used cryptocurrency in the world, there are hundreds of other
coins that are inspired by Bitcoin. These coins are called altcoins. Some of these altcoins try to tackle privacy issues and
offer different mechanisms to ensure the anonymity of their users. One of these altcoins is ZeroCoin [28] that uses cryp-
tographic techniques such as zero-knowledge proof to validate encrypted transactions. Two extensions of ZeroCoin are
ZeroCash [40] and Zcash [17], which try to further develop ZeroCoin and overcome some of its limitations, using advanced
cryptographic techniques such as zk-SNARK. Other examples include Monero, which is based on CryptoNote protocol and
uses ring signatures to improve the privacy of its users, and Dash which mixes transactions using master nodes to achieve
higher privacy.

2.2. Security of Bitcoin

Our focus in this paper is on attacks against the mining process or, in other words, the peer-to-peer structure of the block-
chain. Many of these attacks are related to the pooled mining process. Therefore, first, we discuss pooled mining and differ-
ent types of attacks in this category.

2.2.1. Pooled mining

As the size of the Bitcoin network grows, its computational power also increasesTherefore,it becomes more difficult for
individual miners to mine a new block. Finding a block has a significant reward, but the computational power of an individ-
ual is extremely limited in comparison to the computational power of the network. Thus, an individual has a small chance of
finding a block. However, in other areas such as Edge Computing, the issue of resource-limited devices has been addressed by
developing optimization algorithms to reduce the energy and delay cost [50,49].

Because of the limited hashrate of a user, the variance of the reward is very high, because most of the time, a solo miner
will receive no reward, but on very rare occasions, she will receive a significant reward. To reduce income fluctuations, min-
ers usually join forces and create pools to mine together and share the reward. With their computational powers combined,
they will find blocks more often and divide the reward among themselves. By doing so, they will significantly reduce the
fluctuation of the reward, because they will receive smaller rewards but frequently. Obviously, the expected value of the
reward for a single miner will not change, and she will receive the same reward in the long run.

2.2.2. Mining attacks

There are several categories of attacks against the Bitcoin network and other blockchains in general [8]. One of these cat-
egories is mining attacks. Attacks in this category target the mining process in Bitcoin. These attacks are usually not related
to the security of the Bitcoin transactions and Bitcoin network, meaning they are not trying to compromise the validity of the
blockchain or steal bitcoins. Instead, they target the miners and pools. In a scenario where all miners are working honestly
(loyal to the Bitcoin protocol), in the long run, any miner will receive a reward proportional to her computational power!. For
example, suppose that the total computational power of the entire Bitcoin network is one. Then suppose one miner or a pool of
miners have a fraction of it, say . So, the ratio of the reward for this miner should also be «. We call it the miner’s ‘fair share’ of
the rewards. In mining attacks, attackers try to increase their revenue beyond their fair share and/or decrease other miners (or
pools) revenues. We discuss some of these attacks here.

One of the most famous attacks in this category is ‘Selfish Mining’ introduced by Eyal and Sirer [11]. In selfish mining, the
attacker intentionally creates forks. It means that in this attack, the attacker (also known as the selfish miner) starts to mine,
and if she finds a new block, unlike what the protocol states, she does not publish its block to other miners. Instead, she
keeps it for herself and tries to find the next block on top of it. We will discuss this attack in more detail in the following
sections. The importance of selfish mining is that it is not limited to Bitcoin, and it can be applied in other blockchains,

! Terms ‘computational power ratio’ and ‘hashrate’ both refer to the ratio of the number of hashes that a miner can generate per unit of time to the total
number of hashes that can be generated by the whole network. We use this two terms interchangeably throughout this paper.

1505

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

e.g., Ethereum [33,24]. Based on [44], until now, pools in the Bitcoin network have not been large enough for selfish mining
to be profitable, and the only case of selfish mining in the real world has been observed in Monacoin [37]. However, the like-
lihood of such attacks is increasing with the growth in the Bitcoin network. Many other attacks in this category try to expand
or generalize the selfish mining attack or combine it with other attacks [3].

Block withholding attack, introduced by Rosenfeld [35], is another attack against a mining pool, in which the attacker
joins a pool and pretends to contribute to the pool without any actual contribution, and receives her share from the pool,
without any benefit for the pool.

Stubborn mining, presented by Nayak et al. [31] in 2015, tries to improve selfish mining by a new strategy. As the name
suggests, the attacker acts more stubbornly in this strategy and keeps mining on her private branch even though it is not the
longest branch. They also combine it with another network-level attack called Eclipse attack to make it even more profitable.
Eclipse attack is a well-known attack that tries to isolate some parts of the network from the rest of it to be able to deceive
them with an unreal picture of the network. This attack was introduced by Heilman et al. [15].

The next attack is optimal selfish mining. In this attack, Sapirshtein et al. (2016) [39] provide an algorithm to find an opti-
mal selfish mining policy that guarantees a lower bound for the revenue. Another attack in this category is Fork After With-
holding attack, introduced by Kwon et al. [20] in 2017. This attack combines Selfish Mining and Block Withholding attacks to
overcome their limitations and create a stronger attack.

Meshkov et al. [27] introduced a new attack called Coin-hopping. In this attack, an attacker switches between two coins,
C, and C,. Suppose that at first, the attacker has not joined any of the coins yet, and the difficulty of both coins is one. If the
attacker joins one of the coins, the difficulty of that coin will increase because of the network growth. Now, the attacker will
join C; for one difficulty adjustment period, and therefore mine C; with the difficulty value of one. Because of this, for the
next period, the difficulty of C; will increase to a value greater than one; but the difficulty of C, remains at one. So for the
start of the second period, the attacker switches to C, with the difficulty of one for one period. Because of this switch,
now the difficulty of C, will increase to a value greater than one, but meanwhile, the difficulty of C; will go back to one,
because the attacker left the C;’s network. So the attacker comes back to Cy, and so on. Therefore, the attacker always mines
on a coin with the difficulty of one, while if she stayed at one coin, she should have mined on a coin with difficulty greater
than one, which is not as profitable for her.

2.2.3. Selfish mining

As discussed earlier, Selfish Mining [12], is an attack from a mining pool toward other miners or mining pools. Selfish
miners do not follow the protocol. Instead, they follow a set of rules that help them to waste honest miners’ efforts, and
therefore, increase their proportional reward. Briefly, when a selfish miner/pool finds a block, she will not propagate it
immediately, but keep it for herself, so other miners cannot mine on the top of her block, which is the last block in the block-
chain. By doing so, she creates a private branch alongside the public branch (that is accessible to everyone). Then she pub-
lishes her private branch whenever it’s needed according to a specific set of rules to invalidate honest miners’ blocks. This set
of rules is called selfish strategy and it indicates which action should be taken by the selfish miner based on the state of the
network (length of the branches) and the last event in the network (either the new block is mined by the selfish miner or
other miners). By following the selfish strategy, the attacker will waste a lot of computational power from honest miners.
There is multiple research that analyzes selfish mining in different circumstances [47,29]. For example, Motlagh et al. ana-
lyzed the effect of selfish mining on the performance of the network [30]. Wang et al. analyzed the impact of propagation
delay and network distance on the performance of selfish mining [45] Also, there are several researchers that have analyzed
selfish mining in a network with multiple selfish miners [2,48].

Because of the decentralized nature and anonymity (pseudonymity) of Bitcoin and blockchain, detecting selfish mining is
not so straightforward. However, there have been several attempts to detect this attack [6]. For instance, Saad et al. [37]
leveraged the expected transaction confirmation height and the block publishing height to detect selfish mining behaviour
in Proof of Work (PoW)-based Blockchains. Using the relationship between the two features, they created a “truth state” for
each published block in order to distinguish between a legitimate block and a selfishly mined block.

There are a few mitigation techniques proposed to prevent mining attacks [34]. Our focus here is on selfish mining pre-
vention. The first mitigation strategy, proposed by Eyal and Sirer [12], suggests a slight change in the Bitcoin protocol. Bitcoin
protocol requires that when receiving two blocks with the same height, a node should accept the first one, broadcast it to
others, and ignore the second block completely. In this mitigation technique, Eyal and Sirer suggest that in such situation,
the node should broadcast both of those blocks, and choose one of them randomly to mine on. They prove that by using this
technique, we can set the minimum hash power required by a selfish miner to 25%. So, it is called a 25% defence against self-
ish mining, because by using this technique, selfish miner should have at least 25% of the network hash power to benefit
from selfish mining.

Another mitigation technique is called Freshness Preferred, proposed by Heilman [14]. In this method, every block should
have a timestamp. These timestamps are unforgeable (meaning no one can set a timestamp in the future) because every min-
ute, one timestamp will be generated and broadcasted to the network. Every miner should include this timestamp in their
block. Whenever a miner receives a block with the same height, it will compare the timestamps of the newly received block
and the previous block with the same height, and it (as the method name suggests) prefers the fresher one. Because if a self-
ish pool withholds a block that it had found, its timestamp will not be fresh. Heilman analyzed this method and proved that

1506

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

this method is actually a 32% defence mechanism, meaning every pool that wants to perform selfish mining profitably should
possess at least 32% of the computational power of the whole network.

There is also another mitigation technique proposed by Solat and Potop-Butucaru, called Zeroblock [41]. This method also
suggests some changes to the Bitcoin protocol and introduces a new type of block besides regular transaction blocks, called
Zeroblock. Zeroblock is essentially a dummy block with no significance in terms of data. The technique is as follows: Every
miner is trying to mine a block and listen to other blocks if there was a new block generated by other miners. If none of those
happen in a fixed time window (for example, 10 min, which is average block generation time in Bitcoin), she generates a
Zeroblock (which does not need a PoW, and is easy to generate, and can be created by all nodes independently), and appends
it to its local version of the blockchain. From now on, this block is the new head of the blockchain, and all miners should mine
on top of this block, instead of the previous block. If she receives a withheld block in the future, she will know that this is
withheld because it is not mined on the top of the Zeroblock. The authors analyzed this method and proved that it is a 50%+
defence mechanism. It means that selfish mining is not profitable unless the selfish pool has the majority of computational
power, and of course, if it has, the original 50%+ attack will happen on the Bitcoin network, and it will devaluate the whole
network.

There are a few problems with these mitigation techniques. More specifically, in freshness preferred, we need an unforge-
able timestamp, and therefore, an entity that generates these timestamps. First, having such an entity challenges the dis-
tributed nature of the blockchain. Second, achieving such an entity is extremely difficult, and maintaining its security is
another issue. Regarding the method Zeroblock, by adding a dummy block to the blockchain, because this dummy block can-
not include any transactions, we have periods that no transactions can be confirmed. Thus the transaction confirmation time
for those transactions will increase by at least the time of the zeroblock. Another problem with these mitigation techniques
is that they are fairly complicated and need significant changes to the Bitcoin protocol. Because of this, the Bitcoin commu-
nity has not adopted any of them as a solution to be added to the Bitcoin protocol. Also, these solutions do not pay attention
to the difficulty adjustment algorithm, which is the reason that selfish mining becomes profitable. We will discuss this in the
following sections. Our proposed solutions should overcome these issues and be practical to be used in the Bitcoin protocol.

2.3. Blockchain Trilemma

Researchers have already discussed that the blockchain or essentially any distributed system can face a trilemma often
known as the scalability trilemma [43,16]. The three components of this trilemma are:

e Decentralization: It is the main focus of the blockchain that makes it possible to be controlled by a network of peers rather
than an individual. It is arguably the easiest component to achieve.

e Scalability: This refers to how well the network can be scaled to process higher transaction throughput. This component is
the most challenging of the three components and is still considered one of the main issues in the blockchain that needs
to be addressed.

e Security: Without proper assurance of security, no one will trust to participate and use a distributed system. As such, the
Blockchain should be resilient to external attacks and be able to defend its users.

Retaining all three of these components simultaneously is a challenging task, and improving one of them often comes at
the cost of partially losing another. Our work is also not an exception to this rule. In this work, we try to improve the security
of the blockchain, especially against selfish mining attacks. This may lead to minor decline in scalability. We discuss this in
more detail in the following sections.

3. Profitability of Selfish Mining

In this section, we will review countering arguments on the profitability of selfish mining. As one of the earlier works on
this topic, Eyal and Sirer analyzed selfish mining and presented it as a state machine with the transition probabilities
between the different states [12] Fig. 1. Using this state machine, they computed the state probabilities [12] Eq. (2)-(5).
In their analysis, they use two parameters. The first parameter is o which is the selfish pool’s hashrate, relative to the hash-
rate of the whole network. Consequently, the hashrate of all the other miners combined is 1 — «. The next parameter is 7,
which denotes the ratio of honest miners who choose to mine over selfish mining branch. This parameter does not affect
the state probabilities but it will show its effect on the revenue calculations.

The next step is to calculate the revenues of the selfish pool and honest miners. If the selfish pool would have been honest,
the ratio of its share from the total revenue would be proportional to its hashrate, . However, in this scenario, its revenue
and also the revenue of honest miners should be calculated. The revenue of a miner is the sum of products of state proba-
bilities and state revenues, over all the states. Based on different cases that might happen in every state, Eyal and Sirer cal-
culated the revenues [12] Eq. 6,7 and called them 1y, and romers, Which show the revenues of the selfish pool and other
(honest) miners, respectively.

1507

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

0.5 4 — Selfish (

Selfish (

—— Selfish (
—— Selfish (y =

(

(

044 — Selfish
—— Selfish
—— Honest

0.3 1

Tpool

0.2

0.1 1

0.0

Fig. 1. ry, for different o and y (after difficulty adjustment).

As noted before, o, which is the hashrate of the selfish pool, also shows the ratio of the pool’s revenue in the case of honest
mining. However, 1,0, Shows the new ratio of the pool’s revenue in the case of selfish mining. Therefore, we can interpret this
ratio as ‘effective hashrate’ (or ‘apparent hashrate’ [13]) of the pool in this scenario.

Fig. 1 shows the amount of r,,,, which is the total net revenue (not relative revenue) of the selfish pool with respect to «
for different values of y. As shown in this figure, the value of . is always below the black line, which corresponds to the
revenue of the pool if it chooses the honest mining strategy. Therefore from the perspective of the total net revenue, selfish
mining is never profitable.

VoV : Tpool < &

This is also the case for other honest miners in the network, meaning they also lose some of their revenue and their effec-
tive hashrate is lower than 1 — o.

VoY : Tothers < 1 — 0

As a result, the total revenue in the network is lower than one. This indicates that with the presence of selfish miners,
there will be many discarded blocks in the network, which leads to a lot of waste in computational power. Because of this,
the total revenue that is generated in the network will decrease.

Ttotal = Tpool + Tothers < 1

As an example, suppose Alice and Bob both make five bitcoins per day. Also, assume there is a strategy (e.g., selfish min-
ing) that Alice can adopt. If she chose to use this strategy Bob’s revenue will be decreased to two bitcoins per day, but her
revenue will also be reduced to four bitcoins per day. In this example, Alice’s relative revenue increased compared to Bob's,
and now she makes twice as Bob’s. But her total net revenue decreased by one bitcoin per day, which is not desirable for a
rational agent. Also, the total revenue in this example is reduced from ten to six.

Wright and Savanah [46] argue that this scenario will always hold. When a miner starts to use the selfish mining strategy,
all the nodes in the network will suffer a loss. However, the loss may be less for the selfish miner in some cases. However, in
practice, the Bitcoin network operates based on a difficulty adjustment algorithm. What will happen in the long term with
the presence of difficulty adjustments? To calculate the relative revenue of the selfish pool, Eyal and Sirer simply divided the
selfish pool revenue by the sum of the revenues of both honest miners and selfish pool, and called it R,,,. As noted before, «,
which is the hashrate of the selfish pool, also shows the ratio of the pool’s revenue in the case of honest mining. However,
Tpoot Shows the new ratio of the pool’s revenue in the case of selfish mining. Therefore, we can interpret this ratio (Rye) as
‘effective hashrate’ after difficulty adjustment. This results in:

Tpool _ Tpool (])
rpool + Tothers Ttotal

Rpool =

1508

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

1.0 4 —— Selfish (y =0.0)
Selfish (y = 0.2)
—— Selfish (v = 0.4)
—— Selfish (y = 0.6)
0.8 — Selfish (y =0.8)
—— Selfish (y = 1.0)
—— Honest
0.6 1
H
~
0.4
0.2 1
0.0 1
0.0 0.1 0.2 0.3 0.4 0.5

«

Fig. 2. R, for different « and y (after difficulty adjustment).

Fig. 2 shows the value of Ry, with the same configuration as Fig. 1. It shows that in many cases, the pool’s revenue
exceeds its revenue in case of honest mining. This is a strong motivation to perform this attack against other miners in
the network. The fact that difficulty adjustment makes selfish mining profitable is a crucial point in this paper, and we
will get back to it in the following sections.

An important factor that neither Eyal and Sirer [12] nor Wright and Savanah [46] considered in their analyses is time. Eyal
and Sirer considered the final value of the revenue, while Wright and Savanah considered just the first period before any
difficulty adjustments. In a sense, they are both right. However, to better understand the revenue and its changes, the impor-
tant time factor has to be considered.

Based on the analysis above, regardless of the selfish miner’s hash power, selfish mining is not profitable at the beginning.
However, after the difficulty adjustment, the revenue of the selfish miner starts to increase. If the selfish miner is powerful
enough, it will eventually exceed the revenue of honest mining strategy. We will analyze this in detail in Section 5.

4. Problem statement

As we discussed in the previous section, an important factor that makes selfish mining profitable is the difficulty adjust-
ment algorithm. That is because instead of increasing the pool’s revenue, selfish mining will decrease everyone’s revenue, but
decrease honest miners’ revenues more. So, from a relative perspective, it is profitable. But after the difficulty adjustment, it
will become profitable in terms of total net revenue.

As discussed in Section 1, difficulty adjustment is a crucial mechanism to ensure the scalability of the Bitcoin network.
Without the difficulty adjustment, as the size of the network grows, it becomes easier to generate a new block, which
imposes serious security risks on the blockchain. Because, by definition, generating a Proof-of-Work should be difficult
and require a lot of effort. Otherwise, everyone could generate many consecutive blocks, which will lead to multiple
branches in the blockchain and make it unstable.

On the other hand, in Section 3, we discussed that Bitcoin’s current difficulty adjustment algorithm is what makes the
selfish mining attack (and some other types of mining attacks) possible. Because these kinds of attacks are based on wasting
the computational power of other miners. So, when the DAA lowers the difficulty, the attackers are going to benefit from it.
Hence, we need to change the difficulty adjustment algorithm, but we cannot remove it.

One of the contributions of this paper is a solution to this problem. We need an alternative difficulty adjustment algo-
rithm that can maintain the scalability of the network while discouraging dishonest mining behaviour.

5. Proposed approach

The first step toward our goal, which is to propose an alternative difficulty adjustment algorithm, is to understand the
features and properties of a good difficulty adjustment algorithm. For example, similar to the original Bitcoin difficulty

1509

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

adjustment algorithm, it should be easy to understand, implement, and compute. Everyone should be able to compute it by
themselves without any need to interact with others, just by having the blockchain history to this point. For this step, we will
discuss a list of properties of a sound difficulty adjustment mechanism.

For example, Meshkov et al. describe the properties of an ideal difficulty adjustment algorithm as follows [27]:

1. It should make Bitcoin mining resistant to the attacks that work based on manipulating difficulty.
2. It should make the block generation rate constant and as close to the desired value as possible.

However, the attack that Meshkov et al. had in mind was the coin-hopping attack, which is different from the selfish min-
ing attack considered in this paper. In the coin-hopping attack, the attacker’s focus is to alternate the difficulty between a
higher value and a lower value. As such, she will mine on lower difficulty periods and switches the network on higher dif-
ficulty periods. Therefore, a linear DAA proposed Meshkov et al. is able to address such an attack.

On the other hand, in selfish mining, the attacker’s focus is to lower the difficulty of the whole network and gain profit
from higher relative revenue. However, as discussed before, the selfish miner has to wait for a while before selfish mining
becomes profitable for her. What we are trying to achieve here is to propose an alternative DAA that could extend this wait-
ing period to discourage miners from performing selfish mining attacks. This results in a lower block generation rate, and we
cannot guarantee a constant block generation rate. However, there will always be a trade-off between allowing miners to
perform selfish mining attacks and tolerating a small decrease in block generation rate. Our solution aims for the latter while
keeping the block generation rate as close to the desired value as possible. The reason that the block generation rate is impor-
tant is that it has a direct relation with the transaction confirmation time. Therefore, in other words, we need to keep trans-
action confirmation time as low as possible.

Also, in addition to these two important characteristics, there are more characteristics that a difficulty adjustment algo-
rithm should have. For example, the current difficulty adjustment algorithm is easy to understand, implement, and compute.
Any proposed DAA should inherit these properties because it is highly unlikely that the Bitcoin community accepts adding a
very complicated module to the Bitcoin system just for the difficulty adjustment. It should also not add a computationally
expensive task to the system because the mining process is a very resource-intensive task. Another important characteristic
is that it should be computable by every miner in the network without a need to interact with other miners and by just using
the blockchain history and public data.

To summarize, based on the above discussion, a sound DAA for our purpose should:

(P1) be resistant to selfish mining and ideally, other types of attacks based on difficulty manipulation.
(P,) lead to an almest constant block generation rate as close to the desired value as possible.

(P3) be able to maintain the scalability of the network.

(P4) be easy to understand, implement, and calculate.

(Ps) be independently computable by peers.

To be able to analyze difficulty adjustment algorithms, we need some evaluation metrics. The simplest yet most impor-
tant evaluation metric is total net revenue. Because it is the most important, and very likely the sole factor for miners to par-
ticipate in Bitcoin mining. The reason for emphasizing the term total net revenue is that, as discussed before, there are some
cases in which the miners’ relative revenue will increase. But that is not desired, because a miner does not want her total net
revenue decrease, even if her relative revenue increases.

Since the number of bitcoins mined is directly related to the number of blocks generated (currently 6.25 bitcoins per
block), we simply consider the number of blocks generated by a miner as her total net revenue and denote it as R. Suppose
t is the time (in hours) since a particular miner P; started to mine.

Rp,(t) : Number of blocks generated by
the pool P; in time t (2)
(Total net revenue of the pool P;)

The scenario where all miners are honest is our baseline, which defines our expected value of the revenue. Because in this
scenario, every miner will receive its fair share of the total revenue, and any deviation from this amount shows either loss or
profit. We denote the revenue in the all-honest scenario as R as below.

Rp,(t) = 04 x t x 6 3)

The constant value of 6 in the equation above indicates that, on average, six blocks should be generated by the whole
network every hour. In other words, the block generation rate for Bitcoin is ten minutes.

For every miner, if all miners are loyal to the protocol (mine honestly), their expected total net revenues are the same as R
and proportional to their hashrate, o;.

1510

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

Rp.(t) ~ Rp,(t),if all miners are honest 4)

By comparing R, and Rp, in the presence of selfish miners, we can see if the configuration of miners has any profit or loss
for every miner or not. Therefore we define another metric to see this comparison. It is a normalized gain or loss metric
which we call ‘gain’ for short, denote it by Gp, and defined as follows:

Rr, () — R (1)

e ="16 (5)

In the case of all miners being honest, Gp, should be zero. Because the numerator of the equation above equals zero (as
Re,(t) ~ Ry, (1)),

We further assume that time begins from the moment that a pool starts to adapt the selfish mining strategy right after a
difficulty adjustment (beginning of a new period). Also, we mentioned that in Bitcoin, the difficulty adjustment takes place
every 2016 block, and the block generation rate is one every ten minutes or £ hours. So the length of a difficulty adjustment
period should be as follow:

T = 2016 x é =336 hours (6)

Suppose that at the beginning, the value of difficulty equals one. When a pool starts to perform the selfish mining strat-
egy, the value of the difficulty stays equal to one for the first period. Meanwhile, selfish mining creates a lot of discarded
blocks, which leads to a lower block generation rate in the first period, before the difficulty adjustment tries to bring it back
to its intended value of six blocks per hour. Therefore, the block generation rate in the first period will drop by a factor of r,
which is the effective hashrate of the entire network in the first period. As a result, the length of the first difficulty period, T4,
will be longer than T, and it has a reverse relationship with 7.

Tl o7 (7)

T'total

After 2016 blocks, the difficulty adjustment happens. We assume that after T;, nothing will change, meaning that no
miner will change its strategy, no miner will leave the network, and no new miner will join the network.

Do = 1 (initial difficulty)
Dl = DO X Ttotal

Dk>1 = Dl
By converting the difficulty to a function of time, we will have:
1, t< T1
D(t)=< " 8
() {rtotah t> Tl ()

Fig. 3 shows the value of difficulty with respect to time.
Now, we calculate Eq. 1, but this time we consider the time and this means we have to consider the effect of the difficulty
adjustment:

Rpool(t) = [(; <gz:; X 6) dt
if t> T, =
Rpoat(t) = f()T1 (# X G)dt + fT[] <% x 6) de
00 T 00! ‘
= I:Tp] Ly qul + [:fum’l X St} . ®

= oot X 6T1 + ;22 x 6(t — T1)

6 - (12—) 6T,

Ttotal Ttotal

= Rpool X 6t — (Rpual - rpool) x 6Ty

In Eq. 9, as seen previously, rp and Ry show the effective hash rates of the pool before and after the difficulty adjust-
ment, respectively. Also, from Eq. 9, we can conclude that if t— oo, the value of Ry, (t) would converge to Ry, from Eq. 1,
which confirms the analysis of Eyal and Sirer of the selfish mining strategy in the long run. On the other hand, when t < T,
the value of Ry, Would be 1 x 6t, which confirms the analysis of Wright and Savanah of selfish mining in the short term.

We also have:

Roonl(t) = 0t x 6t

1511

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

1 -
[P S
2
]
8
:‘D:
0 : : : : :
0 T1 T+ T T +2T T4 +3T Ty +4T
Time (h)
Fig. 3. Difficulty value by time in a selfish mining scenario.
Therefore:
Ryoo1 (£)—Rpooi (1)
Gpool(t) = 6t £
_ Rpgei(t)—0x6t
- 6t
ift>T = (10)
(Rpoo,><6t—(Rpm,—rp00,)x6T1)—oc><6t
Gpoal(£) = 5

= (Rpool - O‘) + (Rpool - rpool) X TTI

Fig. 4 shows an example of G, (t) for a selfish miner with hashrate of 0.35 (or %35). As shown in this figure, in the first
period, G is negative, meaning that the pool is losing a portion of its revenue, as Wright and Savanah [46] mentioned in their
paper. However, after the first difficulty adjustment, the value of G begins to increase. Somewhere around time 2,000, it
reaches zero, meaning that at this point (which is roughly equal to twelve weeks from the beginning of the attack), the selfish
strategy evens out. We call this point a break-even point. After that, it continues increasing slowly and eventually, it con-
verges to the point that Eyal and Sirer predicted in [12] Eq. 8. This figure clearly shows that time plays an important role
in the profitability of selfish mining.

Based on the properties of a sound DAA, we propose a novel difficulty adjustment algorithm and analyze its properties
and performance. The formula of Bitcoin’s current DAA is as follows:

2016 x 600 (11)

tbzmsxn - thOlGx(n—lJ

Dn = Dn,] X

15
—— Gpoot; @ =0.35
10 1
5
T o0
<
&)
75_
710_
—15 T

0 1000 2000 3000 4000 5000 6000 7000
t

Fig. 4. Gain for a selfish miner by time.

1512

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

in which, D, is the difficulty from the n’th period forward, b; is the i'th block, and tj, is the generation time for block i in sec-
onds. Also, the numerator is the expected time for generating 2016 blocks for an average of 600 s (10 min).

Our proposed method modifies the original DAA of Bitcoin to make the difficulty sensitive to history, not just the expected
difficulty of the current period. We formulate it as follows:

2016 x 600
Eyt =Dy q x ——2x000 (12)
Coyore0n — thOlGx(nfl)
D *1 E, +l D, 13
n— i n-1 Z n-1- ()

Here, E,_; is the expected difficulty for the previous period, and D,_; is the difficulty value that has been used for this
period. But, unlike what the current DAA does, we do not set this value as the next period’s difficulty. Instead, we set the
difficulty of the next period to a simple average between these two values.

This formulation considers a history of difficulties and therefore changes more smoothly than the original one. We call
this new difficulty adjustment algorithm “Zeno’s DAA”, because it resembles Zeno’s Paradox in which the hare travels half
of the distance between itself and the tortoise in each step, similar to our difficulty that gets adjusted to a point halfway
through its final goal. Because of this property, it will take longer for the difficulty to be set to the desired amount by the
selfish miners. Thus it will take more time for selfish mining to become profitable. This is the type of effect we want from
an alternative difficulty adjustment algorithm. In the evaluation section, we will discuss how our proposed DAA satisfies
each of the properties P; through Ps.

6. Evaluation and Results

In this section, we evaluate our proposed difficulty adjustment algorithm, Zeno’s DAA, and discuss how it satisfies the
properties we discussed in the previous section. We compare Zeno’s DAA with Bitcoin’s default difficulty adjustment algo-
rithms to see its effect on selfish mining reward and block generation rate. In the literature, there have been a few works that
compare existing difficulty adjustment algorithms from different proof-of-work cryptocurrencies with the highest market
share (e.g. Bitcoin Cash, Litecoin, Monero, Dash, Zcash) [32,9]. Based on these studies, although other DAA’s might have their
advantages form other perspectives, Bitcoin’s DAA is the one that shows the most resistance to selfish mining and makes
selfish mining less profitable. Therefore, we compare our proposed algorithm with Bitcoin’s DAA and try to outperform it.

6.1. Research Questions

In this paper, we introduced an alternative difficulty adjustment algorithm that discourages selfish behaviour among
miners and mining pools. In Section 5, we discussed the properties of a sound alternative for Bitcoin’s default DAA and intro-
duced our proposed DAA. We discussed that regardless of their computational power, selfish miners start with a loss of rev-
enue and have to wait for a certain period to profit from selfish mining. We proposed an adjustment algorithm, referred to as
Zeno’s DAA, in such a way that it extends this waiting period so that selfish miners get discouraged from performing the
attack. On the other hand, the goal of having a DAA is to keep the block generation rate constant and as close as possible
to the desired block generation rate.

Below are the research questions that we address in this paper. These research questions are based on one of the first two
properties of a good DAA discussed previously.

(Q;) How successful is Zeno’s DAA in extending the waiting period and discouraging miners from performing selfish
mining?
(Q,) Does it keep the block generation rate constant and as close as possible to the desired rate?

6.2. Evaluation Metrics

In Section 5 we talked about total net revenue and also gain as indicators to evaluate profitability of selfish mining in dif-
ferent circumstances. We use these two metrics here to evaluate our DAA’s effect on the profitability of selfish mining, more
specifically, the waiting period before it becomes profitable. We defined these two metrics in Eq. 2 and Eq. 5 and used them
to evaluate property P;. Another metric, which we use to evaluate P, is the block generation rate. We will use the average
block generation rate with respect to time and compare it to the desired value to examine the effect of the new DAA on block
generation rate.

2 https://gitlab.com/hamidazimy/bitcoin-simulator

1513

https://gitlab.com/hamidazimy/bitcoin-simulator

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523
6.3. Simulator

We developed and used a simulator to simulate different scenarios and analyze their outcome. Our simulator?, which is
written in Python 3, is a discrete-event simulator. Unlike continuous simulators, it is based on events. In this type of simulation,
it is assumed that no changes occur between two consecutive events. So the simulator can jump to the next event and process it.
These kinds of simulators are typically faster because they are not required to simulate every time slice. We used this simulator
for our previous work on selfish mining, which studied the effect of multiple selfish miners on the Bitcoin network [2].

The simulator uses an event queue. This event queue is a priority queue, in which the priority of every event is its occur-
rence time. Each step of the simulation in this simulator is as follows: pop the first event from the event queue, process it,
and if needed, add future events that this current event may cause. Note that because we use a priority queue based on the
time of the events, the first event in the event queue is the first event in the future. Obviously, it is not allowed to add an
event from the past. For every event added to the queue, it should have a time greater than the current event time.

In our Bitcoin simulator, we have two kinds of events: 1) the event of finding/generating a new block by a miner (mining
event), 2) the event of a miner receiving a new block that is found/generated by another miner (receiving event). Bitcoin pro-
tocol clearly states the action that should be taken in the case of each event. For the first one, when a node finds a new block,
it should broadcast it to the rest of the nodes. Therefore, upon processing this event, we will add a receive event for all other
nodes in the network, considering a propagation delay that comes from a gamma distribution. Details of this part of imple-
mentation are derived from the work of Decker and Wattenhofer [10], in which they analyzed information propagation in
the Bitcoin network. We also schedule another mine event for the current node, x seconds into the future, in which x comes
from an exponential distribution. Note that the scale parameter of this exponential distribution has an inverse relationship
with the node’s hashrate, o.

The second type of event is receiving a newly generated block from another miner. In this case, based on the Bitcoin pro-
tocol, the miner will accept the new block (of course, if it contains valid transactions) and starts to mine on top of that. It
means we will schedule a new mine event for the node in the future.

For implementing other mining strategies, we just have to define different types of miners and implement the policy of
the miner on each event under different circumstances. We implemented the strategy described in Section 2.2.3 and used
this new miner to analyze the selfish mining attack.

After running the simulator for the desired amount of time, we can get the simulation outcome and analyze them in order
to get our desired results.

6.4. Findings

In this section, we use our simulator to analyze Bitcoin’s network, first to observe the effect of selfish mining on the net-
work, and second to study the effect of our proposed DAA to see how it performs and whether it is a suitable alternative for
the default DAA or not. So, besides the default DAA, we also implemented our proposed DAA and compared the results.

6.4.1. Simulation results for selfish mining

For the case that all the miners are honest and loyal to the protocol, Fig. 5 shows the outputs of Eq. 2 and also the results
of the simulation®, which demonstrates Rp,(t) from Eq. 14, for different values of o. As seen in these figures, the two curves in
both figures match perfectly.

Re(t) ~ o xtx6 (14)
Rp,(t) ~ Rp,(t),if all miners are honest (15)

The desired value for Gp,(t) from Eq. 16 is zero when all miners are honest. Fig. 6 shows this value for honest miners with
different hashrates.

Rr,(t) — Re,(t)

Cr(t)=—""1 6 (16)
The next result of the simulator is related to Eq. 17 (Eq. 6 from Section 5):
T:2016><é:336 hours (17)

In an all-honest scenario, we expect the value of T to be very close to 336 h. We ran the simulator 350 times, and Fig. 7
shows the histogram of different values of T from these simulations. Also, the mean and variance of the samples are as
follows:

u = E[T] = 336.22
02 = Var(T) = 63.76

3 All the simulation results here are average between 35 independent simulations.

1514

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

Real and expected reward for o = 0.4 Real and expected reward for a = 0.3
10000 10000
—— R(t) (Formula) —— R(t) (Formula)
—=- R(t) (Simulation) ——- R(t) (Simulation)
8000 q 8000
6000 q 6000
T T
2 2
e e
1000 4 4000
2000 4 2000
0 T T T T T T 0 T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
time time
(a) (b)
Real and expected reward for o = 0.2 Real and expected reward for o = 0.1
10000 10000
—— R(t) (Formula) —— R(t) (Formula)
—== R(t) (Simulation) —== R(t) (Simulation)
8000 4 8000
6000 4 6000
® T
E E
e e
4000 4000
2000 2000
0 T T T T T T 0 T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
time time
(c) (d)

Fig. 5. Real and expected rewards for honest miners with different hashrates.

T; is the length of the first difficulty adjustment period in the presence of a selfish miner. Fig. 8 shows the value of T; for
different network configurations with selfish miners who have hash rates between 0.25 and 0.50. As seen, the two curves
match perfectly.

TI—T

T'total

>T (18)

In Eq. 19, we have the value of the difficulty, in the case that the selfish miner starts at time zero with no other changes in
the network.

1, t<T
D(t) = 19
() {rtotah t> T] ()

Fig. 9a,9b show D(t) for two different network configurations with oc = 0.30 and o = 0.45, respectively. Again in these fig-
ures, the two curves match perfectly. It is important to note that because of the different values of «, both T, and the final
value of D are different in the two figures (T; has a direct relationship with o and the final value of D has an inverse rela-
tionship with it).

The next equation is Eq. 20, which is defined as follows:

Rpool(t) = Rpool x 6t — (Rpool - rpool) x 6T, (20)

Fig. 10,11, show the values of R(t) (from the simulation and the equation) and R(t) (expected value of reward in all honest
scenario) for two network configurations of « = 0.40 and o = 0.33, respectively.
The last equation, which is the most important for us, is Eq. 21:

T
Gpool(t) = (Rpool - O‘) + (Rpool - rpool) X T] (21)

1515

H. Azimy, A.A. Ghorbani and E. Bagheri

Real and expected gain for & = 0.4

Information Sciences 608 (2022) 1503-1523

Real and expected gain for a = 0.3

0.15 0.15
----- Desired value for G(t) <weee Desired value for G(t)
=== G(t) (Simulation === G(t) (Simulation
0.10 4 @) 0.10 @«)
0.05 4 0.05 4
IS
54 0.00 == waran o]
—0.05 4 —0.05
—0.10 4 —0.10 4
—0.15 T T T T T T —0.15 T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
time time
(a) (b)
Real and expected gain for o = 0.2 Real and expected gain for o = 0.1
0.15 0.15
----- Desired value for G(t) +we+ Desired value for G(t)
=== G(t) (Simulation === G(t) (Simulation
0.10 4 o) 0.10 4 ®)
0.05 4 0.05
£ h £
g 0.007 BT e g 000 g 2R A 8 8 0 0 0 0 A A 0 At

—0.05 —0.05 1
~0.10 4 ~0.10 4
~0.15 T T T T T T -0.15 T T T T T r
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
time time

(c)

(d)

Fig. 6. Real and expected gain for honest miners with different hashrates.

Histogram of the value T for multiple simulations

—— Fitted Normal Distribution

0.05- M Histogram

0.04 A

0.03 A

0.02 A

0.01 A

0.00 T T T T

0 100 200 300 400 500

Fig. 7. Histogram of value T.

Similar to the previous figures, Fig. 12,13, show the values of G(t) from the simulation and the equation for two network
configurations of « = 0.40 and o = 0.33, respectively. The black dotted line shows the line G(t) = 0, which is the expected
value of gain in the all-honest scenario.

1516

H. Azimy, A.A. Ghorbani and E. Bagheri

Information Sciences 608 (2022) 1503-1523

1000
—— T (Fermula)
——=~ T (Simulatien)
04 e T
600 -
S
=)
400
200 -
0 T T T T T T
0.25 0.30 0.35 0.40 0.45 0.50

L3

Fig. 8. Value of T, for different values

Difficulty value in time for o = 0.3

of a.

Difficulty value in time for a = 0.45

=== Simulation === Simulation
----- Formula ++==+ Formula
1.0000 1.0000
0.7882 rarares
2 B
< 3 00343 .
£ £
< °
426 762 1098 1434 1770 2106 2442 2778 3114 529 865 1201 1537 1873 2209 2545 2881 3217
time time
(a) @ =0.30 (b) « =0.45
Fig. 9. D for different values of o.
Real and expected reward for selfish miner Real and expected reward for honest miner
10000 4 — —
R(t) L 12000 ()
=== R(t) (Formula) L === R(t) (Formula)
80004 === R(t) (Simulation) L 10000 ==~ () (Simulation) e
6000 4 8000 4
2 T
3 §
3 g 6000
4000 4
4000 4
2000
2000 4
0+ 0
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
time time

(a) Selfish miner reward

Fig. 10. Rewards for miners when o =

(b) Honest miner reward

0.40.

Now we can look at the results using our proposed DAA, Zeno’s DAA. We implemented our proposed Zeno’s DAA within
the simulator to see its impact on the gain of selfish miners. Our difficulty adjustment algorithm’s final goal is to postpone
the break-even point, which will extend the period that selfish mining is non-profitable for the selfish miner.

1517

H. Azimy, A.A. Ghorbani and E. Bagheri

Real and expected reward for selfish miner

Information Sciences 608 (2022) 1503-1523

Real and expected reward for honest miner

7000 q — 4 —
R(t) 14000 R(t)
~
6000 === RO (Formula) S 12000 | =7 B0 (Formuta)
—== R(t) (Simulation) s —== R(t) (Simulation)
5000 10000 4
- 4000 4 5 8000
£ 3000 4 = 6000 4
2000 4 4000
1000 4 2000 4
04 04
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
time time
(a) Selfish miner reward (b) Honest miner reward
Fig. 11. Rewards for miners when o = 0.33.
Real and expected gain for selfish miner Real and expected gain for honest miner
0.15 0.15
——= G(t) (Formula) —== G(t) (Formula)
0.10 —== G(t) (Simulation) 0.10 —== G(t) (Simulation)
0.05 4
0.00 4
s =
g 0.05 4 g
0.10 4
0.15 4
-0.20 4
-0.25 T T T T T T T T —0.25 T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
time time
(a) Selfish miner gain (b) Honest miner gain
Fig. 12. Gain for miners when o = 0.40.
Real and expected gain for selfish miner Real and expected gain for honest miner
0.15 0.15
—=- G(t) (Formula) -=- G(t) (Formula)
0.10 4 ~== G(t) (Simulation) 0104 -== G(t) (Simulation)
! i
0.05 4 : 0.059
1
1
1
0004 | 0001
| - -
< ! PO Arar b bl = :
g 0054 1 ot 5 0051 |
P 1
Nt i
~0.10 0104 |
1
1
—0.154 —0.15 V\a«'
—0.20 4 —0.20
-0.25 T T T T T T T T —0.25 T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
time time

(a) Selfish miner gain

(b) Honest miner gain

Fig. 13. Gain for miners when o = 0.33.

6.4.2. Discussion on Q;

To answer the first research question, Q;, we analyze the gain for selfish mining in different configurations. Figs. 14,15,
show the gain and also the difficulty for networks configurations of o = 0.35,« = 0.40, and o = 0.45, respectively. In each
figure, subfigure (a) shows the amount of gain and subfigure (b) shows the amount of difficulty with respect to time.

1518

H. Azimy, A.A. Ghorbani and E. Bagheri

0.15
0.10
0.05

3
5 000
~0.05

~0.10

~ =~ Original algorithm
~=- New algorithm

—0.15

0 500 1000 1500 2000 2500 3000 3500

time

(a) Selfish miner gain

1.0000

Information Sciences 608 (2022) 1503-1523

Difficulty value in time for o = 0.35

0.7518

difficulty

~=- New algorithm
----- Original algorithm

1“6 782

1118 1454 1790 2126 2462 2798 3134 3470

time

(b) Network difficulty

Fig. 14. Comparison of different DAAs (o = 0.35).

0.15

0.10

0.05

0.00

gain

—0.05

0.10

~0.15

0.15

0.10

0.05

0.00

gain

—0.05

—0.10

0.15

=== Original algorithm
~==- New algorithm

0 500 1000 1500 2000 2500 3000 3500
time

(a) Selfish miner gain

1.000

0.705

difficulty

Difficulty value in time for o = 0.4

-k,

—=- New algorithm
----- Original algorithm

476 812

1148 1484 1820 2156 2492 2828
time

3164 3500

(b) Network difficulty

Fig. 15. Comparison of different DAAs (« = 0.40).

=== Original algorithm -
===~ New algorithm -
-

0 500 1000 1500 2000 2500 3000 3500
time

(a) Selfish miner gain

1.0000

0.6343

difficulty

Difficulty value in time for o = 0.45

~== New algorithm
----- Original algorithm

520 865 1201 1537 1873 2209 2545 2881 3217 3553

time

(b) Network difficulty

Fig. 16. Comparison of different DAAs (o = 0.45).

As shown in Figs. 14a,15a,16a, the new algorithm decreases the slopes of the gain curves for the selfish miner, and also
the break-even times (which is the point where the curves cross the zero line) goes further in time, which makes the non-
profitable period of selfish mining longer.

To better understand the effect of Zeno’s DAA over a larger range of o values, we summarize the results in Fig. 17. This
figure shows the average break-even time for a range of «. In this figure, y = 0; Therefore, based on our simulations, selfish
mining only becomes profitable when 0.36 < o, and that is the range we included in this figure. As seen in this figure, for all
values of &, Zeno’s DAA increases the break-even time, and in many cases doubles it. This is desirable for us because our goal
is to discourage selfish miners by extending the period that selfish mining is non-profitable for the selfish miners so that they
avoid this strategy. Although, with « increasing (meaning when the selfish miner becomes so strong that it almost has the
majority), the effect of Zeno’s DAA diminishes and the amount of increase in break-even time is less.

In Figs. 14b,15b,16b, one can see that in the new difficulty adjustment algorithm, the amount of difficulty decreases grad-
ually in steps, despite the original algorithm that changes the difficulty abruptly and in one step.

1519

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

Comparison of break-even time
between default DAA and Zeno's DAA

— Default DAA
2x Default DAA

14000 —— Difference

12000

10000

8000

Time (h)

6000

4000

S A
2000
~

Fig. 17. Comparison of break-even times between default DAA and Zeno’s DAA over a range of o.

Difficulty value in time for o = 0.35 Block Generation Period (a = 0.35)

=== Default DAA Default DAA
Zeno's DAA 17.5 Zeno's DAA

Selfish Mining Start Time
12.5 [.\

1.0000 ey

=== Desired Value
Selfish Mining Start Time

0.7518 == =T TP S e 3 s wara ey o —

Difficulty
Average Block Generation Time (min)

336 672 1008 1344 1680 2016 2352 2688 3024 3360 0 500 1000 1500 2000 2500 3000 3500
Time (h) Time (h)

(a) Difficulty Value (b) Block Generation Time

Fig. 18. Comparison between two DAAs.

The analysis above covers Q; from our research questions in Section 6.1 which is related to P; from the list of properties of
an alternative DAA that is mentioned in Section 5 (Page 19).

6.4.3. Discussion on Q,

To answer the second question, Q,, we have to analyze the block generation rate of the network. As discussed before, a
selfish miner slows the whole network down by performing the attack and waits for the difficulty adjustment to adjust the
difficulty so that the block generation time goes back to the desired value. The default DAA does this suddenly, and the block
generation time goes back to normal at the earliest possible. However, the whole idea of our proposed DAA is based on a
gradual alteration of difficulty so that selfish miners’ profitability waiting time becomes longer and longer and thus, selfish
miners get discouraged from performing the attack. Therefore, increasing the break-even point contradicts constant block
generation time. This is because of the trilemma that we discuss in Section 2.3. This means by using Zeno’s DAA, we improve
the security of the Bitcoin network, but it decreases the scalability of the network. So, with our proposed DAA, we cannot
achieve the best block generation time, but we try to keep it as close as possible to the desired value.

Fig. 18 depicts a comparison between the two algorithms: Default DAA and our proposed Zeno’s DAA. To understand the
situation before any selfish mining attack, in this scenario, selfish mining starts the attack not from the beginning but right
after the first difficulty adjustment (shown in the green vertical line). Fig. 18a shows the comparison of the difficulty values
for the two DAAs. This figure is similar to Fig. 14b. Fig. 18b shows the average block generation time for the same scenario.
Before the selfish mining attack, the average block generation times for both algorithms are at the desired value of ten min-
utes. After the first difficulty adjustment, the attacker starts its attack and suddenly, block generation time for both algo-
rithms increases as expected. However, after the second difficulty adjustment, the default algorithm suddenly changes
the average block generation time to ten minutes by lowering the difficulty. But our proposed Zeno’s DAA does this gradually
in multiple steps. Although the average block generation time for Zeno’s DAA is not as ideal as the default DAA, we argue that

1520

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

its effect on the average block generation time is not severe and can be tolerated. At the same time, it tries to achieve its
ultimate goal, which is preventing selfish mining.

This analysis shows that our new proposed method (Zeno’s DAA) could satisfy the first characteristic of a suitable DAA
and keep the second characteristic within a tolerable range. So, Zeno’s DAA is in the right direction toward the ultimate goal.

7. Discussion

In this section, we discuss how our proposed method satisfies the rest of the properties of a good DAA, P; to Ps, and also
we a few other characteristics of Zeno’s DAA in terms of defence and applicability.

7.1. Discussion on Ps

The third property, Ps, is about maintaining the scalability of the network. The proposed DAA, similar to the default DAA,
is designed to change the difficulty of the network based on the average block generation rate in the last period. Therefore, if
the network scales, which will result to a lower block generation rate, Zeno’s DAA will increase the network’s difficulty to
make up for that, just like how the default DAA does it. The only difference is that instead of doing it in one step, it does
the job in multiple steps. Thus it can maintain the scalability of the network just fine.

7.2. Discussion on Py

Our next Property is P4, which is about the alternative DAA being easy to understand, implement, and calculate, similar to
the default Bitcoin DAA. As we discussed before, instead of setting the difficulty value to the expected difficulty value of the
previous period (E,_1), Zeno’s DAA simply assigns it to the mid-point between the current difficulty value for the last period
(Dy-1) and E,_;. Therefore it is reasonably easy to understand. Regarding implementation and calculation of Zeno’s DAA, it
just adds a very simple equation (Eq. 13) to the computations. This equation is trivial to implement and adds an extremely
insignificant and negligible computational load to the network.

7.3. Discussion on Ps

The last property, Ps, asks whether the alternative DAA is independently computable by peers or not? We know that Bit-
coin’s default DAA has this property, and peers do not need any more information from each other than what they already
have. The only information that is needed to calculate the difficulty value in this case are t,,,, and ty, ., (from Eq. 11),
which are already known to all the nodes in the network. Besides these two values, Zeno’s DAA needs only one more value,
D,_ (from Eq. 13), which is the difficulty value for the previous period. Because this value is also known to all the peers, we
conclude that Zeno’s DAA, similar to the default DAA, is independently computable by peers and does not need any further
communication between them.

7.4. Zeno’s DAA and Selfish Mining Minimum Profitability Hashrate

Unlike some of the other proposed defences against selfish mining, our algorithm is not designed to change the minimum
required hashrate for performing selfish mining. Instead, it is designed to extend the waiting time for every attacker regard-
less of hashrate. However, for weaker attackers like the ones closer to the minimum required hashrate (e.g. o < 0.33), it will
extend the waiting time more drastically, which means it will be a stronger force to discourage this behaviour.

7.5. Implementing Zeno’s DAA on Bitcoin or Another Existing Blockchain

Implementing a new feature or changing an algorithm in the bitcoin protocol requires forks in the blockchain. There are
two types of forks: hard forks and soft forks. Soft forks are backward compatible, meaning that if some nodes do not upgrade
their software version, they can still see the blockchain as valid. Therefore, soft forks do not require the whole network to
upgrade their application. In contrast, hard forks are permanent divergences from the previous versions and are not back-
ward compatible. Therefore, they need all the nodes to upgrade to the newer version simultaneously.

Implementing Zeno’s DAA is a change that requires a hard fork. Even though the implementation is straightforward (Eq.
13), this change is not backward compatible because, in case of an increase in the difficulty, the acceptable difficulty value in
Zeno's DAA is lower than Bitcoin’s default DAA. Therefore, the newer blocks would not be valid for nodes with the previous
version of the application that will calculate a higher difficulty value. This is not necessarily a negative point because many
security patches (including other proposed defences against selfish mining) also require hard forks. But like any other hard
fork, this certainly requires more effort to unite the community in favour of the change.

1521

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523
8. Conclusion and Future Work

In this paper, we started with an introduction to Bitcoin and privacy and security issues concerning Bitcoin. Then we
focused on a specific type of attack against mining pools, namely, selfish mining. We discussed two opposing ideas regarding
the profitability of selfish mining. Eyal and Sirer [12] analyzed selfish mining and concluded that it is profitable in many
cases. On the other hand, Wright and Savanah [46] argued that selfish mining is never profitable. As our first contribution,
we showed that both scenarios are feasible if and when the important time factor is considered. Selfish mining always starts
with a loss in revenue, similar to what Wright and Savanah showed in their analysis. Only after the difficulty adjustment, it
starts to increase the revenue of the selfish miner until it surpasses the minimum required value for becoming profitable and
finally converges to the final value that Eyal and Sirer predicted. We empirically showed this in Section 5.

On this basis, we identified the difficulty adjustment algorithm to be an important factor that affects the profitability of
selfish mining, and as such, we analyzed the revenue and gain of the selfish miner with respect to time to see the effect time
on the feasibility of selfish mining. For doing so, we introduce a simulator that we implemented to show the effect of selfish
mining on the revenue of the miner under different setups.

To address the challenges posed by selfish miners on the default difficulty adjustment algorithm of Bitcoin, as our second
contribution, we proposed an alternative difficulty adjustment algorithm, namely Zeno’s DAA, which takes the history of dif-
ficulty into account. By analyzing our proposed method, we showed that our proposed method has the requirements of a
suitable alternative for Bitcoin’s DAA, and could discourage selfish behaviour by extending the waiting time before selfish
mining becomes profitable.

We also empirically evaluated our proposed method in Section 6. Our results show that our proposed DAA, although sim-
ple, could effectively extend the waiting period to more than double in every setting while keeping the block generation rate
within a reasonable margin.

However, this is not a perfect alternative for the original difficulty adjustment. For example, one of the problems with our
proposed Zeno’s DAA is that it acts symmetric, meaning it increases and decreases the difficulty in the same way. However,
to better maintain the scalability, a DAA may need to be more sensitive to increasing difficulty than decreasing it. Another
point is that a DAA could be parametric, meaning that it could be customizable by the needs of the network. We plan to
extend this algorithm and propose better difficulty adjustment algorithms to overcome these issues. As our future works,
we are planning to work on more sophisticated alternative DAAs that could potentially improve the performance of Zeno’s
DAA in terms of extending the profitability time, maintaining a constant block generation rate and allowing better scalability
for the network. Also, we plan to perform a mathematical analysis for our proposed method to backup our simulation
analysis.

CRediT authorship contribution statement

Hamid Azimy: Conceptualization, Methodology, Software, Writing - original draft. Ali A. Ghorbani: Supervision, Concep-
tualization, Methodology, Writing - review & editing, Funding acquisition. Ebrahim Bagheri: Supervision, Conceptualization,
Methodology, Writing - review & editing.

Data availability

Data will be made available on request.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] E. Androulaki, G.O. Karame, M. Roeschlin, T. Scherer, S. Capkun, Evaluating user privacy in bitcoin, in: International Conference on Financial
Cryptography and Data Security, Springer, 2013, pp. 34-51.

[2] H. Azimy, A. Ghorbani, Competitive selfish mining, in: 2019 17th International Conference on Privacy, Security and Trust (PST), IEEE, 2019, pp. 1-8.

[3] L. Bahack, Theoretical bitcoin attacks with less than half of the computational power (draft), 2013. arXiv preprint arXiv:1312.7013.

[4] D. Berdik, S. Otoum, N. Schmidt, D. Porter, Y. Jararweh, A survey on blockchain for information systems management and security, Information
Processing & Management 58 (2021) 102397.

[5] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J.A. Kroll, E.W. Felten, Mixcoin: Anonymity for bitcoin with accountable mixes, in: International Conference
on Financial Cryptography and Data Security, Springer, 2014, pp. 486-504.

[6] V. Chicarino, C. Albuquerque, E. Jesus, A. Rocha, On the detection of selfish mining and stalker attacks in blockchain networks. Annals of
Telecommunications, 2020. pp. 1-10.

[7] M. Conti, E.S. Kumar, C. Lal, S. Ruj, A survey on security and privacy issues of bitcoin, IEEE Communications Surveys & Tutorials 20 (2018) 3416-3452.

[8] N.T. Courtois, L. Bahack, On subversive miner strategies and block withholding attack in bitcoin digital currency, 2014. arXiv preprint arXiv:1402.1718.

[9] M. Davidson, T. Diamond, et al, On the profitability of selfish mining against multiple difficulty adjustment algorithms, IACR Cryptol. ePrint Arch. 2020
(2020) 94.

1522

http://refhub.elsevier.com/S0020-0255(22)00724-1/h0005
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0005
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0005
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0010
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0010
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0020
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0020
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0025
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0025
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0025
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0035
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0045
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0045

H. Azimy, A.A. Ghorbani and E. Bagheri Information Sciences 608 (2022) 1503-1523

[10] C. Decker, R. Wattenhofer, Information propagation in the bitcoin network, in: Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International
Conference on, IEEE, 2013, pp. 1-10.

[11] L Eyal, E.G. Sirer, Bitcoin is broken, 2013. [Online; Accessed Feb. 2020].

[12] L Eyal, E.G. Sirer, Majority is not enough: Bitcoin mining is vulnerable, in: International conference on financial cryptography and data security,
Springer, 2014, pp. 436-454.

[13] Grunspan, C., & Pérez-Marco, R. (2018). On profitability of selfish mining. arXiv preprint arXiv:1805.08281.

[14] E. Heilman, One weird trick to stop selfish miners: Fresh bitcoins, a solution for the honest miner, in: In International Conference on Financial
Cryptography and Data Security, Springer, 2014, pp. 161-162.

[15] Heilman, E., Kendler, A., Zohar, A., & Goldberg, S. (2015). Eclipse attacks on bitcoin’s peer-to-peer network. In 24th {USENIX}) Security Symposium
({USENIX}) Security 15) (pp. 129-144).

[16] V. Holotescu, R. Vasiu, Challenges and emerging solutions for public blockchains. BRAIN, Broad Research in Artificial Intelligence and Neuroscience 11
(2020) 58-83.

[17] D. Hopwood, S. Bowe, T. Hornby, N. Wilcox, Zcash protocol specification, GitHub, San Francisco, CA, USA, 2016.

[18] K. Huang, X. Zhang, Y. Mu, F. Rezaeibagha, X. Du, Scalable and redactable blockchain with update and anonymity, Information Sciences 546 (2021) 25-
41.

[19] M.C.K. Khalilov, A. Levi, A survey on anonymity and privacy in bitcoin-like digital cash systems, IEEE Communications Surveys & Tutorials 20 (2018)
2543-2585.

[20] Y. Kwon, D. Kim, Y. Son, E. Vasserman, Y. Kim, Be selfish and avoid dilemmas: Fork after withholding (faw) attacks on bitcoin, in: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, ACM, 2017, pp. 195-209.

[21] J. Li, J. Wu, L. Chen, Block-secure: Blockchain based scheme for secure p2p cloud storage, Information Sciences 465 (2018) 219-231.

[22] L. Li, J. Liu, X. Chang, T. Liu,]. Liu, Toward conditionally anonymous bitcoin transactions: A lightweight-script approach, Information Sciences 509
(2020) 290-303.

[23] P. Li, H. Xu, T. Ma, An efficient identity tracing scheme for blockchain-based systems, Information Sciences 561 (2021) 130-140.

[24] Y. Liu, Y. Hei, T. Xu,]J. Liu, An evaluation of uncle block mechanism effect on ethereum selfish and stubborn mining combined with an eclipse attack,
IEEE Access 8 (2020) 17489-17499.

[25] Maxwell, G. (2013). Coinjoin: Bitcoin privacy for the real world. [Online; Accessed Feb. 2021].

[26] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G.M. Voelker, S. Savage, A fistful of bitcoins: characterizing payments among men with
no names, in: Proceedings of the 2013 conference on Internet measurement conference, 2013, pp. 127-140.

[27] D. Meshkov, A. Chepurnoy, M. Jansen, Short paper: Revisiting difficulty control for blockchain systems, in: Data Privacy Management, Cryptocurrencies
and Blockchain Technology, Springer, 2017, pp. 429-436.

[28] I. Miers, C. Garman, M. Green, A.D. Rubin, Zerocoin: Anonymous distributed e-cash from bitcoin, in: Security and Privacy (SP), 2013 IEEE Symposium
on, IEEE, 2013, pp. 397-411.

[29] S.G. Motlagh,]. Misi¢, V.B. Misi¢, Analysis of selfish miner behavior in the bitcoin network, in: ICC 2021-IEEE International Conference on
Communications, IEEE, 2021, pp. 1-6.

[30] S.G.G. Motlagh,]. Misic, V.B. Misic, The impact of selfish mining on bitcoin network performance, in: IEEE Transactions on Network Science and
Engineering, 2021.

[31] K. Nayak, S. Kumar, A. Miller, E. Shi, Stubborn mining: Generalizing selfish mining and combining with an eclipse attack, in: 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), IEEE, 2016, pp. 305-320.

[32] K.A. Negy, P.R. Rizun, E.G. Sirer, Selfish mining re-examined, in: International Conference on Financial Cryptography and Data Security, Springer, 2020,
pp. 61-78.

[33] Niu, J., & Feng, C. (2019). Selfish mining in ethereum. arXiv preprint arXiv:1901.04620.

[34] W. Ren,]. Hu, T. Zhu, Y. Ren, K.-K.R. Choo, A flexible method to defend against computationally resourceful miners in blockchain proof of work,
Information Sciences 507 (2020) 161-171.

[35] Rosenfeld, M. (2011). Analysis of bitcoin pooled mining reward systems. arXiv preprint arXiv:1112.4980.

[36] T. Ruffing, P. Moreno-Sanchez, A. Kate, Coinshuffle: Practical decentralized coin mixing for bitcoin, in: European Symposium on Research in Computer
Security, Springer, 2014, pp. 345-364.

[37] M. Saad, L. Njilla, C. Kamhoua, A. Mohaisen, Countering selfish mining in blockchains, in: 2019 International Conference on Computing, Networking
and Communications (ICNC), IEEE, 2019, pp. 360-364.

[38] Saad, M., Spaulding, J., Njilla, L., Kamhoua, C., Shetty, S., Nyang, D., & Mohaisen, A. (2019b). Exploring the attack surface of blockchain: A systematic
overview. arXiv preprint arXiv:1904.03487.

[39] A. Sapirshtein, Y. Sompolinsky, A. Zohar, Optimal selfish mining strategies in bitcoin, in: International Conference on Financial Cryptography and Data
Security, Springer, 2016, pp. 515-532.

[40] E.B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza, Zerocash: Decentralized anonymous payments from bitcoin, in: 2014 IEEE
Symposium on Security and Privacy (SP), IEEE, 2014, pp. 459-474.

[41] Solat, S., & Potop-Butucaru, M. (2016). Zeroblock: Preventing selfish mining in bitcoin. arXiv preprint arXiv:1605.02435.

[42] L. Valenta, B. Rowan, Blindcoin: Blinded, accountable mixes for bitcoin, in: International Conference on Financial Cryptography and Data Security,
Springer, 2015, pp. 112-126.

[43] Viswanathan, S., & Shah, A. (2018). Scalability trilemma. [Online; Accessed Dec. 2021].

[44] Wang, C.,, Chuy, X., & Yang, Q. (2019). Measurement and analysis of the bitcoin networks: A view from mining pools. arXiv preprint arXiv:1902.07549,.

[45] H. Wang, Q. Yan, V.C. Leung, The impact of propagation delay to different selfish miners in proof-of-work blockchains, Peer-to-Peer Networking and
Applications (2021) 1-8.

[46] Wright, CS., & Savanah, S. (2017). The fallacy of the selfish miner in bitcoin: An economic critique. Available at SSRN: https://ssrn.com/
abstract=3009466 [Online; Accessed Nov. 2018].

[47] Yang, R., Chang, X., MiSi¢, J., & Misi¢, V.B. (2021). Deep-dive analysis of selfish and stubborn mining in bitcoin and ethereum. arXiv preprint
arXiv:2112.02588.

[48] S. Zhang, K. Zhang, B. Kemme, A simulation-based analysis of multiplayer selfish mining, in: 2020 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), IEEE, 2020, pp. 1-5.

[49] W. Zhang, Z. Zhang, H.-C. Chao, M. Guizani, Toward intelligent network optimization in wireless networking: An auto-learning framework, IEEE
Wireless Communications 26 (2019) 76-82.

[50] W. Zhang, Z. Zhang, S. Zeadally, H.-C. Chao, V.C. Leung, Masm: A multiple-algorithm service model for energy-delay optimization in edge artificial
intelligence, IEEE Transactions on Industrial Informatics 15 (2019) 4216-4224.

1523

http://refhub.elsevier.com/S0020-0255(22)00724-1/h0050
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0050
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0050
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0060
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0060
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0060
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0070
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0070
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0070
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0080
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0080
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0085
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0085
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0090
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0090
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0095
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0095
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0100
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0100
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0100
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0105
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0110
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0110
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0115
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0120
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0120
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0130
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0130
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0130
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0135
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0135
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0135
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0140
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0140
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0140
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0145
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0145
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0145
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0150
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0150
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0150
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0155
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0155
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0155
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0160
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0160
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0160
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0170
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0170
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0180
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0180
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0180
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0185
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0185
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0185
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0195
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0195
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0195
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0200
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0200
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0200
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0210
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0210
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0210
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0225
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0225
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0240
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0240
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0240
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0245
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0245
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0250
http://refhub.elsevier.com/S0020-0255(22)00724-1/h0250

	Preventing proof-of-work mining attacks
	1 Introduction
	2 Literature Review
	2.1 Privacy and Anonymity Issues in Bitcoin
	2.2 Security of Bitcoin
	2.2.1 Pooled mining
	2.2.2 Mining attacks
	2.2.3 Selfish mining

	2.3 Blockchain Trilemma

	3 Profitability of Selfish Mining
	4 Problem statement
	5 Proposed approach
	6 Evaluation and Results
	6.1 Research Questions
	6.2 Evaluation Metrics
	6.3 Simulator
	6.4 Findings
	6.4.1 Simulation results for selfish mining
	6.4.2 Discussion on [$]{Q}_{1}[$]
	6.4.3 Discussion on [$]{Q}_{2}[$]

	7 Discussion
	7.1 Discussion on [$]{P}_{3}[$]
	7.2 Discussion on [$]{P}_{4}[$]
	7.3 Discussion on [$]{P}_{5}[$]
	7.4 Zeno’s DAA and Selfish Mining Minimum Profitability Hashrate
	7.5 Implementing Zeno’s DAA on Bitcoin or Another Existing Blockchain

	8 Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

