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A B S T R A C T

The large number of published services has motivated the development of tools for creating customized com-
posite services known as service compositions. While service compositions provide high agility and development
flexibility, they can also pose challenges when it comes to delivering guaranteed functional and non-functional
requirements. This is primarily due to the highly dynamic environment in which services operate. In this paper,
we propose adaptation mechanisms that are able to effectively maintain functional and non-functional quality
requirements in service compositions derived from software product lines. Unlike many existing work, the
proposed adaptation mechanism does not require explicit user-defined adaptation strategies. We adopt concepts
from the software product line engineering paradigm where service compositions are viewed as a collection of
features and adaptation happens through product line reconfiguration. We have practically implemented the
proposed mechanism in ourMagus tool suite and performed extensive experiments, which show that our work is
both practical and efficient for automatically adapting service compositions once violations of functional or non-
functional requirements are observed.

1. Introduction

Many service and API sharing platforms such as ProgrammableWeb
index thousands of web services which are readily available to be used
by developers. The growing number of such services and their relatively
easy utilization has motivated researchers to create methods and sup-
porting tools to build composite services (Lemos et al., 2016). Given the
high variability of services and the abundance of their variations, re-
searchers have proposed that the development of service compositions
can, among other ways, be performed through Software Product Line
(SPL) engineering techniques in two lifecycle phases, namely domain
engineering and application engineering (Pohl et al., 2005). In the domain
engineering phase, a domain expert would organize the functional as-
pects of the domain through an SPL variability modeling mechanism
such as a feature model (Lee et al., 2002). This will include the definition
of the domain functionality and the services that can implement it. In
the application engineering phase, the user specifies her requirements
by selecting a valid subset of the features from the variability model. On
this basis, in our previous work (Bashari et al., 2016), we have proposed
a method to facilitate the composition of services by enabling the user
to express her requirements in terms of software product line features.
Our method would then automatically build service compositions re-
presented in the form of executable BPEL code based on the selected
features.

In this paper, we are focusing on another aspect of service compo-
sition, which deals directly with the practical execution of service
compositions at runtime. Considering that service compositions often
rely on open API and online services, their functional availability and
non-functional guarantees are highly dependent on the availability and
performance of the services that were used to build them. Therefore,
changes or failures in the constituent services can affect the functional
and non-functional guarantees of the service composition. In order to
handle such situations, we suggest enabling self-adaption. Self-adapta-
tion is the ability of a system to react to changes in its environment to
maintain service and is used in different problem domains such multi-
agent (Jiao and Sun, 2016), cyber-physical (Gerostathopoulos et al.,
2016; Chen et al., 2017), and even industrial software systems
(CÃ!‘mara et al., 2016). We propose enabling self-adaption in order to
allow a service composition to self-heal (Kephart and Chess, 2003) in
response to such failures. Although researchers have been working on
various methods for enabling self-adaptation in the BPEL domain, our
work is still timely considering that BPEL is currently extensively used
for defining business processes in industry and many recent work are
focused on enabling adaption for BPEL processes (ai Sun et al., 2018;
Alfrez and Pelechano, 2017; Margaris et al., 2016; 2015). The proposed
work is also relevant considering that it addresses limitations in existing
work by enabling service compositions to autonomously adapt at run-
time to recover from failure. More specifically, our work addresses the
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following challenges in the state of the art:

• In some of the existing self-healing methods (Cetina et al., 2009;
Subramanian et al., 2008), it is the developer’s responsibility to
design adaptation strategies. Designing adaptation strategies tend to
be complicated and prone to error given the diversity of ways or
circumstances under which a service or a collection of services can
fail (Lemos et al., 2013).

• Many of the existing work adopt an all-or-none approach in healing
functional failures where they try to fully recover functionality and
fail when full recovery is not possible (Hristoskova et al., 2013;
Angarita et al., 2016).

• Some of the methods only focus on maintaining either functional or
non-functional requirements (Hristoskova et al., 2013; Canfora
et al., 2008). However, an effective mechanism should be able to
consider both types of requirements at the same time when per-
forming adaptation since both of these types of properties can be
critical for the system’s operations (Tan et al., 2014; Angarita et al.,
2016).

A real-life example which can show the shortcomings of existing
approaches is a flight booking website. Such websites often provide
additional features such as hotel and car rental services, which provide
discounted price based on the destination and the selected airline.
These additional features are not critical although being desirable.
These features are typically implemented as a holistic process, which
will break if the services realizing the desired but not critical features
do not perform properly. To address such scenarios, existing self-
adaptive approaches focus either on finding alternate ways to realize
these features, which is not always possible or leave the task of devising
appropriate mitigation strategies to the developer, which could be
complex and labour-intensive. In our work, we address failure by re-
moving the feature(s) which caused the failure if they are non-critical
(such as hotel booking or car rental) while ensuring integrity of the
whole process. As a further example, it might be expected that the
ticketing process finishes in less than a specific amount of time in order
to guarantee customer satisfaction. Existing approaches focus on opti-
mizing the time-to-completion of the process through alternative ser-
vices or processes which may or may not result in meeting the specified
constraint. In our proposed approach, we satisfy such constraints by
removing the minimal set of non-critical features which guarantee the
time-to-completion constraint of the system being satisfied (e.g., auto-
matically removing hotel booking and/or car rental when they take
much longer than expected).

More concretely, we propose a Dynamic Software Product Line
(DSPL) engineering-based method (Hallsteinsen et al., 2008; Bosch and
Capilla, 2012), which enables a service composition to adapt auto-
matically and recover from violations of functional and/or non-func-
tional requirements without the need for the adaptation strategies to be
explicitly defined by the experts. Dynamic software product line en-
gineering methods use software product line models and methods at
runtime to satisfy or maintain requirements (Montalvillo and
DÃaz, 2016). We propose a method based on feature model re-
configuration techniques in software product line engineering to enable
automated re-selection of features such that all critical functional and
non-functional requirements are subsequently recovered after failure.
The concrete contributions of our work are enumerated as follows:

• We propose an automated failure mitigation method, which focuses
on finding an alternate feature model configuration for the service
composition that recovers critical functional and non-functional
requirements. This method is able to find an alternate service
composition to replace the failed service composition.

• In order to enable finding an optimal feature model configuration
with desired non-functional properties at runtime, we propose a
method which is able to estimate the effect of each selected feature

on the non-functional properties of the service composition.
Additionally, the proposed method is able to update its estimates at
runtime as the non-functional properties of the constituting services
of the service composition change.

• We have implemented the proposed method and added it to our
existing service development suite, called Magus. The tool suite al-
lows for the specification of the product line representation of the
domain, as well as the modelling of the desired functional and non-
functional requirements. Magus will automatically generate execu-
table BPEL code, continuously monitor the execution of the gener-
ated service composition and adapt it as necessary.

It should be noted that the work in this paper is an extension of our
earlier work (Bashari et al., 2017b) and extends it in the following ways
that are not addressed earlier: (1) In this paper, we propose a systematic
approach for calculating how software product line features can impact
the non-functional properties of a service composition and how they
can be continuously monitored, estimated and maintained; (2) We
present an algorithm, and formally prove its desirable characteristics,
for finding linearly independent feature subsets within a software
product line feature model. Linearly independent feature sets are im-
portant since a non-functional property of a service composition can be
estimated as a unique linear equation over the availability of one of the
features in each of these subsets; (3) We extend the formal re-
presentation of constraints within the context of psuedo-boolean opti-
mization to cover three distinct types of constraints, namely the con-
straints defined over non-functional properties of service composition
by the user, the constraints defined over combination of features which
describe a valid service composition, and the assumptions made over
input data by the failed service; and (4) We introduce our fully func-
tional publicly available online tool suite and also provide an extensive
comparative analysis of the literature beyond what was covered earlier.

The rest of this paper is organized as follows: Section 2 provides a
general overview of the techniques that are used in this paper along
with an introduction to the running case study. This is followed by
Section 3, which provides an overview of the proposed approach. The
details of this approach is presented in two sections. In the first section
(Section 4), we discuss how features and non-functional properties are
related to each other while the adaptation mechanism is proposed and
discussed in a subsequent section (Section 5). In Section 6 the archi-
tecture used to implement the proposed approach has been discussed.
This section is followed by Section 7 in which we go through the
functionality provided by our tool suite. In Section 8, the design details
of the experiments for evaluating the proposed approach have been
presented and our findings have been reported. In Section 9, the pro-
posed work is compared with existing works in both self-healing soft-
ware systems and dynamic software product line engineering. The
paper is finally concluded with a discussion of lessons learnt, threats to
validity as well as a summary of the findings and directions for future
work.

2. Background

In the following, background on feature models, how service com-
positions can be contextually modeled, and how automated composi-
tion of services can be performed, will be provided.

2.1. Feature models

Feature models are among the more popular models used in the SPL
community for representing the variability of the problem domain
(Benavides et al., 2010). Feature models allow for hierarchical re-
presentation of features that are related to each other through structural
and/or integrity constraints. The structural constraints relate features to
their parents through Mandatory, Optional, Alternative, and Or rela-
tions. Mandatory children of a feature must be selected when their
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parent is selected while optional features may or may not be selected
when their parent is selected. One or more features that are grouped
with an Or relation can be selected when their parent is selected while
exactly one feature from a group of Alternative features can be selected
when their parent is selected. Integrity constraints represent de-
pendencies between features which are not hierarchically related.
Having a feature model, users can define their desired variants by se-
lecting features from the feature model resulting in a specialized model
known as feature model configuration. A feature model configuration
consists of a subset of features from the feature model that respects
structural and integrity constraints and can be used as the reference
model for composing an application.

Fig. 1shows a feature model for a family of services, which process
and upload an incoming image on a website. An application instance in
this family needs to have the mandatory feature of storage and can
provide optional features of tagging, filtering, and editing. The tagging
feature processes an image and finds keywords that describe the image
to be used in different operations such as image search. There are two
types of tagging in this product line, namely metadata-based and ex-
ternal. In meta-data tagging, information about objects and text in the
image is used to create the tags for the image. In the external tagging
feature, an external service is used to create the tags for the image. The
filtering feature provides mechanisms for detecting nudity or profanity
within the image. Similar to the filtering feature, the editing feature
provides watermark or face blur capabilities. The watermark feature
watermarks an arbitrary text on an image and the face blur feature
obscures faces in the image. The marks on the bottom right corner of
the features in Fig. 1 are not part of the feature model notation and are
used here to refer to different feature model configurations. For ex-
ample, the features marked with (●) in Fig. 1 show the set of features
that belong to a valid feature model configuration.

2.2. Modeling service compositions

In previous work (Bashari et al., 2016; Cheng et al., 2017; Im et al.,
2013), service compositions have already been represented using the
Business Process Execution Language (BPEL) (OASIS, 0000). In this
language, a service composition is defined as a process which works
with a set of partner services from a service repository. In order to relate
services and features together, a model known as the context model is
often used (Wang et al., 2004), which contains a set of entity and fact
types and instances. Context modeling (Perera et al., 2014) is widely
used in context-aware systems (Alegre et al., 2016) in order to capture
relevant properties of the operating environment for decision-making.
It is possible to define how both features and services can affect the
context model. Using these information, the problem of finding a ser-
vice composition for a feature model configuration can be easily re-
duced to a planning problem and solved using an AI planner.

Fig. 2shows a context model for the upload image product family.
Here, the context model is a triple (cT, cE, S) where cT defines the entity
and fact types, cE defines entity instances, and S defines fact instances.
To be more elaborate, cT is a triple (Θ, Φ, )F where Θ includes the set
of all entity types, which can be used in the service family, Φ defines the
set of fact types where a fact is a relation that can be true between
entities, and F specifies the type of entities that are related to each
other for each fact type. Example members of Θ are Image and TagList,
which are the types of entities that are processed by the services of the
service family. An example member of Φ is HasTags, which relates an
image to a tag list. An example member of F is (HasTags(Image, Tag-
List)) which defines that HasTags relates entities of type Image to entities
of type TagList.

Using such a context model, the services in the service repository
can be annotated. Each service would have two annotation sets: I and O,
which define the service’s inputs and outputs. The members of these
two sets would be entities with types from the context model. Each
service can also be annotated with three sets of facts defined over

entities from I and O, namely (1) those facts that need to be true to
invoke the service ( IP ), (2) those facts that will be true after invocation
of the service ( IQ ), and (3) those facts that will become false after in-
vocation of the service ( IR ). Fig. 3 shows some sample parts of the
service repository for the example service family. It additionally shows
their inputs, outputs, and their annotations using the context model. For
example, the service GenerateTagMetadata has three inputs of type
Image, InImageObjectList, and InImageTextList. This service has an output
of type TagList. The set IP includes two facts of type HasObject and
HasText. The set IQ has a fact of type HasMetadataTags, which specifies
that the tag list entity in the output would represent the tags generated
from the objects and texts in the image. The set IR is empty for this
service.

Likewise and in addition to the services, the features in the feature
model can be annotated using the context model. The annotation of
each feature would be a triple E( , , )f f fP E where Ef is the set of entities
that are needed for the realization of the service composition when this
feature is included, fP is the set of facts that must be true before the
execution of the service composition with this feature, and fE is the set
of facts that will become true after executing a service composition that
includes this feature. The dashed boxes in Fig. 1 show the annotations
for the features in the feature model of the example service family. For
instance, the set Ef for the watermark feature has an entity of type Text
that is used to hold the text that needs to be watermarked on the image.
The set fP has the fact WatermarkRequested, which means that the
service composition that includes this feature requires a text entity that
has been requested to be watermarked in the image. The set fE has a
fact Watermarked that denotes after executing a service composition
with this feature, the image will be watermarked with the requested
text.

The collection of a feature model, a service repository, context
model, service annotations, and feature annotations would be referred
to as a domain model for the service family. In order to express his/her
requirements, the user can configure the feature model. Having the
domain model and a feature model configuration, the union of fP for
the selected features can be considered to be the initial state of the
planning problem and union of fE for the selected feature can be con-
sidered as the goal state of the planning problem. Considering the in-
vocation of different services to be actions, the problem of finding a
sequence of service invocations which satisfy the requirements of the
feature model configuration can be reduced into a planning problem
represented using PDDL which is supported by many off-the-shelf
planners. Such a planner will return a sequence of service invocations
which can move us from the initial state to the goal state. This sequence
of service invocations is converted to an invocation dependency graph
using an optimization algorithm which removes precedence relations
between service invocations. This graph is then converted into execu-
table BPEL code.

For example, Fig. 4 shows the visualization of the BPEL process for
the feature model configuration containing features marked with (●) in
Fig. 1. Service invocations in this BPEL process have been organized
using three type of structures: flow, sequence, and links. The invoca-
tions in the flow structure can be invoked in any order while the in-
vocations in a sequence structure should be executed in order. The link
structure is used when there is precedence relation between two in-
vocations which cannot be represented using a sequence. In this ex-
ample, after an image is received, two sequences of activities are per-
formed in parallel in a flow structure. The first sequence calls a service
for detecting the objects in the image, then calls a service for filtering
objects based on the type only keeping the list of face objects in the
image, and blurring faces by calling a face blur service and finally
uploading the image on an image upload server. The second sequence
calls text extraction service and using the text extracted from the image,
it calls two services in parallel in a flow structure. One detects profanity
in the image and the other generates meta-data based on the text and
objects detected in the image. The are two precedence relationships
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between the activities in the main flow which are enforced with links.
First, the invocation of the meta-data generation service should be done
after the invocation of the object detection service since it is dependent
on the data returned by the first service. Second, the invocation of the
text-extraction service should happen before blurring the image since it
may affect the text extraction service performance. After performing
this sequence, the service composition will return the generated tag list,
detected profanity and the url of the image that has been uploaded.

3. Approach overview

The main objective of this paper is to develop an automated service
composition reconfiguration method that can react to violations in
functional or non-functional requirements. Some existing failure re-
covery methods introduce redundancy into the service composition
(Christos et al., 2008; Carzaniga et al., 2015) while others find an al-
ternate composition for satisfying the requirements through realtime re-
planning (Huang et al., 2015; Hristoskova et al., 2013). Our work aligns
with the second line of research in that it attempts to enable re-selection
of features of a service composition at runtime such that it can satisfy
user’s critical functional and non-functional requirements while oper-
ating in a degraded state. We perform adaptation by automatically
choosing an alternative feature set that satisfies user’s critical require-
ments and at the same time circumvent those features that caused the
failure. A feature can cause a functional failure by using a faulty or
unresponsive service in its realization, which can also cause a violation
of the non-functional constraints.

Fig. 5provides an overview of the approach that is proposed for
recovering from such failures. The only input that the user should
provide to enable adaptation is the set of critical features and non-
functional constraints. Adaptation uses these inputs in addition to the
domain model and the feature model configuration, which specifies
desirable features, to decide about the best adaptation strategy in re-
sponse to a failure. The top box in Fig. 5 shows the activities performed
to enable self-healing for a service composition. The process is an
iterative process (as shown by a dashed line going from the last activity
in the process to the first one) which starts by an activity which
monitors the functional and non-functional requirements specified by
the user and possibly detects the occurrence of any failures. In case of a
failure, the process switches to those activities which are responsible for
finding an alternative service composition which replaces the failed
service composition. We briefly discuss how the monitoring activity can
be realized in Section 6; however, we assume mechanisms for mea-
suring service availability and quality of service metrics are already
available and as such methods for measuring them would be outside the
scope of this paper.

In our proposed approach, the first activity that is performed is
estimating the effect of features on non-functional properties of the
service composition. This step is required since the adaptation me-
chanism decides about features when performing adaptation and needs
to know how selecting a feature affects non-functional properties of the
service composition. The red box in the bottom of Fig. 5 shows the steps
that should be taken in this activity. The first step of this activity is
selecting independent feature sets. An independent feature set is a set of
features in the feature model where the selection status of all features in
the service composition can be determined by knowing the presence of
such features in a feature model and there is no feature in this feature
set whose presence can be determined by knowing the presence of other
features in this set using a linear relation. In the next step, we generate
a dataset of feature model configurations and their corresponding ser-
vice compositions. Based on this dataset, we estimate the extent to
which each of the features in the independent feature set contributes to
non-functional properties of the final service composition. It can be
shown that knowing the contribution value of features is enough for
estimating the non-functional properties of service compositions and
also linear regression converges to a single value for contribution values

of features. The first two steps of this activities only need to be executed
once and the next two steps need to be executed in each iteration of the
adaptation process. These steps have been discussed in detail in
Section 4.

The next activity in the adaptation process is to find an alternative
feature set to replace the failed feature set by reducing this problem into
a pseudo-boolean optimization problem that can be solved using an op-
timization solver. A solution to this optimization problem delivers cri-
tical features and satisfies non-functional constraints, if and when
possible, while minimizing loss of desired features. The details of this
step of the process is discussed in detail in Section 5. After finding an
alternative feature model configuration as a result of the pseudo-boo-
lean optimization problem, the replacement service composition is
composed. For composing a service composition based on a feature
model composition, we use a method which uses AI planning to gen-
erate the alternative. This method has been discussed in detail in
Bashari et al. (2016). After composing the alternative service compo-
sition, it will be deployed in the execution environment and new re-
quests are redirected to it. We discuss how such mechanism can be
implemented in Section 6.

4. Impact of features on non-functional properties

Although features represent functional properties of a system
(Bosch, 2000), the presence of a feature in a service composition can
affect the non-functional properties of that service composition as well.
For example, the presence of the Face Blur feature in our sample service
composition may result in higher response time since realizing the Face
Blur feature may require additional processing on the input image.
From a practical perspective, it is possible to measure the non-func-
tional properties of features by recording the performance metrics of
the services that implement those features. However, when the number
of services and features within the domain increases, i.e., the domain
becomes highly variable, measuring the non-functional properties of all
the domain features becomes impractical. For this reason, it is desirable
to estimate the non-functional requirements of a feature within the
context of a service composition. Such estimation function can be used
in deciding about optimal alternative features in the adaptation process.
Given the highly dynamic nature of services and their changing non-
functional properties, it is desirable for this estimation function to take
such dynamism into account.

The effect of each feature on non-functional properties comes from
the services that realize the feature. However, no direct link between
features and services can be assumed since one feature can be realized
using one or more services and likewise a service might implement
anything from a part of a feature to a collection of features. Therefore,
all possible configurations of a feature model should be realized in
order to find the function that specifies the exact value of a non-func-
tional property for each feature model configuration. This approach is
not practical since the possible number of configurations can grow
exponentially as the feature model grows larger. Furthermore, the
function needs to be lightweight to be recalculated often as the non-
functional properties of the constituent services change. Therefore, we
propose an estimation function which receives a feature model con-
figuration as input and estimates the value of the non-functional
properties of the composed service composition based on the features
available in that configuration.

The work in Benavides et al. (2005) recommends annotating fea-
tures with the effects they will have on the values of non-functional
properties of the system when present. It assumes that the non-func-
tional property values of each feature are independent of the other
features. Therefore, the value of a non-functional property of a system
containing a set of features represented in a feature model configura-
tion is calculated using the annotations of the selected features and an
aggregation function (Mohabbati et al., 2011) which aggregates the va-
lues of the non-functional properties of the individual features. In our
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work, while we do not assume that non-functional property values of
features are constant, we make a similar assumption about how fea-
tures’ non-functional properties can be aggregated. For example, Fig. 6-
A shows that the features in the model shown in Fig. 1 are annotated
with values showing how they contribute to the reliability of the service
composition. The reliability value for a service composition can be
calculated by aggregating these values using the product operator.

In this work, we employ a sum aggregation function for aggregating
non-functional properties. Those non-functional properties whose ag-
gregation function is the product operator, such as reliability, can be
converted to summation by working with their natural logarithm. It
should be noted that the relation between features and non-functional
properties might be more complex than the relation assumed in this
paper. However, we suggest that this relation can be estimated using a
linear function over feature presence with sufficient performance for
our purpose. As such, the function for estimating the value of a non-
functional property of a service composition can be represented as:

∑= = ⎧
⎨⎩

∉
∈

∈

Q C p c c
f C
f C

( )
0
1

i n
i i i

i

i{1,., } (1)

In this equation, Q(C) represents the function for determining a non-
functional property of the service composition realizing feature model
configuration C. C is a subset of features from feature model F, which
respects the structural and integrity constraints. ci can be zero or one
based on the presence of the ith feature (fi) in the feature model con-
figuration C. Similarly, pi is the contribution value of the ith feature to
the non-functional property. Based on this equation, it is only needed to
find the values for = < … >P p p, , n1 in order to be able to determine the
value of a given non-functional property for a service composition.

Considering a linear relationship between the presence of the fea-
tures and the value of a non-functional property, linear regression is a
suitable option for finding the pi values for the Q(C) function. The linear
regression approach is used for modeling the relationship between a
dependent variable and a set of independent variables affecting the
value of that dependent variable having a linear contribution. It allows
estimating the contribution value for each of the independent variables
to the value of the dependent variable using a limited number of de-
pendent variable and independent variable set values. The relation
between independent variables and the dependent variable can defined
as below:

∑= +
∈

y β x α
i n

i i
{1,., } (2)

where xi is an independent variable, y is the dependent variable, βi is a
regression parameter, and α is the intercept. Having a dataset
= …D d d{ , , }m1 and = < … >d y x x, , ,j j j jn1 where yj is the actual value for

the dependent variable when dependent variable values are
< … >x x, , ,j jn1 linear regression is able to estimate the values for the βi
and α parameters.

In Eq. (2), the intercept can also be viewed as another regression
parameter where its corresponding independent variable is always one.
In the case of our problem, the intercept for regression is not required
since the root feature in a feature model configuration is always se-
lected and acts as an intercept. Therefore, this relation completely
matches the relation between a feature selection and a non-functional
property defined in Eq. (1). Hence, linear regression can be used in
order to find = < … >P p p, , n1 which represents contribution values of
all features where pi is the contribution of the ith feature. This can be
done assuming that we have a set = …D C q C q{( , ), , ( , )}m m1 1 where pair
(Ci, qi) shows a feature model configuration and its corresponding value
for a non-functional property.

We employ the Ordinary Least Squares (OLS) regression method
(Späth, 2014), which is widely used for estimating regression para-
meters. Assuming that there is a dataset, the ordinary least squares
method is able to find an assignment to the regression parameters,

which minimizes the squared errors in that dataset. Having dataset
= …D d d{ , , },m1 the error for estimating the jth instance of the data

would be = −e y yj j j . As such, ordinary least squares will be able find
an assignment to the regression parameters such that the following is
minimized:

∑
∈

e
j m

j
{1,., }

2

(3)

This means that the sum of squared error over all instances of the
data is minimized. In the case of our problem, = −e q Q C( )j j j is the
error in estimating the value for the non-functional property using the
estimation function and = < … >P p p, , n1 is found such that the sum of
square of all errors is minimized.

As a requirement for OLS to converge to a single assignment to
= < … >P p p, , ,n1 which minimizes Eq. 3, there should not be a linear

dependence between values of independent variables in the training set.
Having a dataset = …D d d{ , , }m1 where = < … >d y x x, , , ,j j j jn1 this
means for the following system of linear equations:

+ +⋯+ =
⋮

+ +⋯+ =

a x a x a x

a x a x a x

0

0

n n

m m n mn

1 11 2 12 1

1 1 2 2 (4)

where the goal is to find possible assignments to = < … >A a a, , ,n1 the
only possible solution should be zero assignments to all ai variables.
However, creating such dataset of feature model configurations for a
feature model may not be possible considering the fact that the relation
between features are governed by structural and integrity constraints.
Examples of such situations include the following:

• Mandatory relation between a parent feature and a child feature
enforces the selection or deselection of a feature as a result of the
selection or deselection of the other feature. Therefore, a parent and
child always have the same selection status. Assuming that the ith

feature is the mandatory child of the jth feature, the linear relation
− =c c 0i j will be always true in all instances of the dataset of fea-

ture model configurations.

• If the ith feature is an alternative group and has two child features,
which are the jth and kth features, the linear relation − − =c c c 0i j k

holds for all instances of the dataset of feature model configurations.

There can be more complex situations where feature model con-
straints do not allow for creating a dataset in which a linear dependence
does not hold. In order to address this issue, we propose a method,
which selects a subset of features for which the constraints of the fea-
ture model do not enforce any linear dependence and show that a linear
function defined over the presence of all features in the feature model
can also be defined over the new set of features. This can be formally
defined as follows:

Assuming that we have a feature model fm which has the feature set
F, the goal is to find a set of features ′ = ′ … ′ ⊆′F f f F{ , , }n1 such that (1):

�¬ ∃ ∈ − < … > ∀ ⊆

⇒ ′+⋯+ ′ =

′

′ ′

A s t C F s t Valid C fm

a c a c

{ 0, ,0 } . . . . ( , )

0

n

n n1 1 (5)

and (2) assuming ′ = ′ ∩C F C:

� �∀ ∈ ⇒ ∃ ′ ∈ ∀ ⊆ ⇒

= ′ ′

′P P s t C F s t Valid C fm Q C

Q C

. . . . ( , ) ( )

( )

n n

(6)

holds.
In Eq. (5), A represents possible coefficient values for features in

feature subset F′ and Valid C fm( , ) examines if a configuration C is valid
in terms of the constraints represented in fm. Therefore, the equation
expresses that there is no assignment to = < … >′A a a, , n1 except all
zeros such that for all valid configurations of the feature model, linear
dependency holds for this subset of features. Eq. (6) denotes that for all
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assignments to contribution values P, there also exists an assignment to
P′ such that Q′(C′), which has been defined on a the subset of features
F′, has the same value as Q(C) for all valid feature model configurations.

In order to find the set F′, Algorithm 1 has been proposed. This
algorithm works on an input feature model and returns a set of features
for which the conditions in Eqs. (5) and (6) hold. The function works by
incrementally building a dataset for which no linear dependency holds.
In the process of building this dataset, the linear dependencies in the
current dataset are considered as candidates for the linear dependencies
that holds for all configurations of the dataset. If this is not the case, a
feature model configuration which does not hold the candidate linear
dependency is added to the dataset. Otherwise, one of the features in-
volved in the linear dependency is randomly removed from the feature
set and the process continues.

The algorithm starts by assigning an empty set of feature model
configurations as the dataset D where linear dependency does not hold
(Line 2) and continues by incrementally adding new instances of feature
model configurations to it in the while loop. Conversely, the set of all
features F is assigned to the result feature set F′ and features are in-
crementally removed from it in the while loop. This while loop con-
tinues until there is only one solution for the system of linear equations
which is built using the existing feature model configurations in the
dataset. Therefore, there will be no linear dependence between the
selected features F′ in the dataset after exiting the loop. In Line 4 of the
loop, function Solve D( ) is called, which finds one of these assignments
using an existing method for solving the system of linear equations and
assigns it to A. Line 5 examines if there exists a feature model config-
uration for feature model fm, which does not satisfy the linear equation
built using A by calling function FindConfiguration A fm( , ). In Line 7, if
there exists such a feature model configuration, it is added to the da-
taset of feature model configurations D. Otherwise, there is a linear
dependence between those features whose corresponding ai in A is non-
zero. Therefore, those features are assigned to a set FR in Line 9.
Therefore, FR will include those features in F′ which have linear de-
pendency. This linear dependency is broken by selecting a feature f
randomly in Line 10 and removing it from F′ in Line 11. Function
SelectAMemberRandomly simply selects the member randomly from a
set.

In the following, we formally prove that the set of features in F′ after
exiting the while loop will contain those features, which satisfy the
requirements in Eqs. (5) and (6).

Lemma 1. (No Linear Dependency) There exists no linear dependency
between the set of features F′ returned by Algorithm 1.

Proof. The proof goes by contradiction. Let us assume that there exists
an A for which linear dependency holds for all feature model

configurations. Furthermore, we assume D is the set of feature model
configurations in Algorithm 1 when the algorithm exits the loop.
Considering that A holds for all feature model configurations, it
should hold for all feature model configurations in D. Therefore, A
can be considered as a solution for the system of linear equations, which
is built using D. This means that there exist at least two solutions for the
system of linear equations built using D (all zeros and A). Considering
that we have used D after the loop exited, it is in contradiction with the
condition of the loop. □

Lemma 2. (No Loss of Information) Given a set of features, F, for a feature
model fm and a set of features, F′, which is the result of Algorithm 1 on
feature model fm, for function = ∑ ∈Q C p c( ) ,i n i i{1,.., } there exists an
assignment to ′ = < ′ … ′ >′P p p, , n1 such that = ′ ′Q C Q C( ) ( ) where C is a
valid feature model configuration and ′ = ′ ∩C F C.

Proof. We prove that there exists a P′ for the set F′ corresponding to
every P such that = ′ ′Q C Q C( ) ( ) for all valid configurations in all
iterations of the while loop. Therefore, there exists such P′ for the result
set F′. This is proven by mathematical induction over the validity of the
lemma in the kth iteration of the loop in Algorithm 1. In the case of
=k 1, = ′F F and the same values for P can be used for P′.
Now, we prove that if for iteration k there exists a Pk such that
=Q C Q C( ) ( )k k for all valid configurations, there also exists a +Pk 1 for

which = + +Q C Q C( ) ( )k k1 1 holds for all valid configurations. We assume
that there are l features in F′ in iteration k. The fact that the loop in
Algorithm 1 did not exit at iteration k means that there exists an as-
signment = < … >A a a, , l1 where ≠ < … >A 0, ,0 and the equation

+ ⋯+ =a c a c 0l l1 1 holds for all valid configurations. Assuming that in
iteration k, the jth feature has been removed to break a linear de-
pendency, since the jth feature has been removed, the value of aj cannot
be zero. Therefore, it can be said that:

=
∑ ∈ ≠c

a c

aj
i l i j i i

j

{1,., },

(7)

for all valid feature model configurations using equation
+ ⋯+ =a c a c 0l l1 1 . Having an assignment to Pk such that
= ∑ ∈Q C p c( ) i l ki i{1,., } based on the induction assumption, we can replace

cj with its equivalent term in Eq. (7). Consequently, we will have:

∑ ⎜ ⎟= ⎛
⎝

+ ⎞
⎠∈ ≠

Q C p a
a

c( )
i l i j

ki
i

j
i

{1,., }, (8)

The value for the right side of this is not affected by the value of cj
which no longer exists in F′ in iteration +k 1. Therefore, the coefficient
values in Eq. (8) can be used in +Pk 1 such that = + +Q C Q C( ) ( )k k1 1 . □

It should be noted that Lemma 2 is defined over one non-functional
property. However, the same proof can be used for more than one non-
functional property considering that the process of finding linearly in-
dependent process only depends on the feature model constraints and
does not depend on the non-functional property values.

The process of creating and updating this estimation function works
as follows: m feature model configurations are randomly selected and
their corresponding service compositions are built once. Having im-
plemented service compositions for all those feature model configura-
tions, the values for the non-functional property for all m feature model
configurations are calculated using the individual services’ non-func-
tional property values. Using the set of feature model configurations
and their corresponding non-functional property values, function Q(C)
is estimated using the ordinary least squares method. For example,
Fig. 6-B shows reliability values for the services in the upload image
service family. Having these reliability values for the services, Fig. 6-C
shows an example dataset which can be used for estimating the con-
tribution values for features using linear regression. This dataset is built
by randomly selecting a feature model configuration and calculating
the reliability of the corresponding service compositions by building the

1: function FindIndependentFeatureSet(FeatureModel f m)
2: D← {}, F′ ← f m.F
3: while GetNumberOfSolutions(D) � 1 do
4: A← Solve(D)
5: C ← FindConfiguration(A, f m)
6: if C � {} then
7: D← D ∪ {C}
8: else
9: FR ← { fi s.t. fi ∈ F′ and ai � 0}

10: f ← SelectAMemberRandomly(FR)
11: F′ ← F′ − { f }
12: end if
13: end while
14: return F′

Algorithm 1. The algorithm for finding a subset of features F′ for which line-
arly dependency does not hold.
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compositions and calculating its reliability using individual services’
reliability values. Using this dataset, the contribution of each feature is
calculated using ordinary least squares as shown in Fig. 6-A.

Given this approach for calculating the non-functional properties of
features as well as service compositions, we are able to monitor com-
pliance with non-functional requirements. In the next section, we will
introduce our proposed approach for adapting service compositions in
reaction to the violation of functional and non-functional requirements.

5. Feature adaptation management

The goal of self-healing is to enable service compositions to self
adapt in such a way that they fully recover or degrade gracefully in-
stead of failing completely when functional and non-functional re-
quirements are violated. Self-healing enables the service composition to
continue its service provisioning with complete, limited or alternative
features. Before discussion on how such self-adaptation is realized, we
specify what kind of failures are in focus in this paper:

Fig. 1. An annotated feature model for the upload image service family.

Fig. 2. The context model for the upload image service family .

Fig. 3. Part of the service repository and annotations for the upload image service family.
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Fig. 4. BPEL process visualization for a possible service composition satisfying requirements of the feature model configuration in Fig. 1.

Fig. 5. General overview of the proposed approach for self-healing from functional and non-functional failure.

Fig. 6. A. Feature model annotated with contribution value of each feature to the reliability of the service composition. B. Reliability of the individual services in the
service family C. An example of a dataset used for estimating the contribution value of each feature to the reliability of the service composition.
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• Functional Failures, which happen when one or more services be-
come unavailable. Such failures may result in not being able to
provide one or more features or a specific combination of features.

• Non-functional Failures are violations of constraints, which are set for
values of service composition’s non-functional properties as a result
of changes in the non-functional properties of the services. For in-
stance when a non-functional requirement such as keeping the re-
sponse time of the service composition less than 50 ms is violated.

In order to be able to react to failure, the adaptation mechanism
should have context-awareness where functional and non-functional
failures trigger adaptation. We assume that a special model called
context state model exists, which contains functional availability and
non-functional property monitoring information. A monitoring me-
chanism updates this model as changes happen in the context of the
service composition. Certain changes in this model trigger the adapta-
tion mechanism. An example of such model can be seen in Fig. 7, which
relates to the service family in Fig. 1.

As mentioned before, we assume that the user has specified those
functional and non-functional properties which are critical for the de-
livery of the service composition. When a failure occurs such that it
affects these critical requirements, the service composition should de-
cide on the selection of features, which can restore the critical re-
quirements. The decision making process should minimize the effect of
such adaptation on the currently selected features of the composition.
Such adaptation can be accomplished by finding an alternate feature
model configuration. Finding an alternate feature model configuration
ensures that the set of features in the alternate service composition
represents a valid combination of features. The alternate feature model
configuration should not rely on the failed services for its realization,
and should rather satisfy the critical functional and non-functional re-
quirements and should have the minimum difference in term of features
compared to the failed feature model configuration. This problem can
be seen as an optimization problem with the presence of certain con-
straints.

User’s requirements outlined in the Initial State of Fig. 7 shows an
example of the input a user needs to specify for service composition. It
specifies that Upload Image, Storage, and Tagging are critical and
Metadata-based Tagging, Filtering, Profanity, Editting, and Face Blur
are desired. It is also critical for the user that the composed service has a
reliability higher than 0.9. Based on the availability and reliability
measures of the services reported in the context state model of the in-
itial state, the features shown in Fig. 4 can be selected to offer a re-
liability value of 0.93, which satisfies the constraint specified by the
user. In the following, we describe a functional and non-functional

failure and use them as running examples in the reset of this section. An
example of functional failure is when the Object Detection service in
Fig. 4 becomes unavailable. The context state model and the satisfac-
tion of user requirements in this situation has been shown as failed state
in Fig. 7. In this state none of the user’s requirements is being satisfied.
An example of non-functional failure would be when the reliability of
Object Detection service decreases from 0.991 to 0.941 as shown in the
Failed state of Fig. 9. Such reduction in reliability will result in re-
duction of the overall reliability of the service composition to 0.883
which is less that 0.9 that is critical for the user.

We need to quantify the difference between the new feature model
configuration and the existing feature model configuration as a distance
measure. This distance measure can be represented as a function over
the presence or absence of features from the two feature model con-
figurations. In case of functional or non-functional violations, our ob-
jective would be to find an alternate feature model configuration that
would satisfy the critical requirements and have the minimum value for
this distance measure. In order to find such an alternate feature model
configuration, we define a pseudo-boolean optimization (PBO) problem
(Boros and Hammer, 2002), which can subsequently be reduced to a
boolean satisfiability (SAT) problem (Een and Sorensson, 2006;
Manquinho et al., 2009) and efficiently solved using existing SAT sol-
vers. Existing methods for finding an optimum for a pseudo-boolean
function also allow for including constraints over the input variables,
which the optimum should respect. In the following, a formal re-
presentation of what is meant by a pseudo-boolean optimization pro-
blem is presented and then we show how the problem of finding our
desirable feature model configuration can be reduced to it.

Pseudo-boolean Optimization. Assuming an array of variables
= < … >X x x, , ,n1 xi∈ {0, 1}, a pseudo-boolean optimization problem

can be formally defined as:

� �… →
… +…+ >

f x x f
R R R a x a x a

Minimize
Subject to

: ( , , ) :
: , , :

n
n

m i i in n i

1

1 1 1 (9)

In this definition, f is a function whose domain is a set of variables
…x x, , n1 with values that are in the set � = {0, 1} and its range is �

which is the set of real numbers. The possible minimum value for this
function should be found with respect to a set of constraints …R R, , m1
where each constraint is an inequality relation defined over the input
variables of function f. To be more specific, Ri is an inequality defined
as the weighted sum of variables …x x, , n1 where aij is the weight of xi
and the value of this weighted sum is greater than a threshold value ai.

A feature model configuration C can be represented as an array of
binary variables = < … >c c, , n1C where ci would be one if fi∈ C and zero

Fig. 7. Initial, failed, and degraded state of the service composition in Fig. 4 after failure of the Object Detection service.
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otherwise. Using this representation of the feature model configuration,
the difference between two feature model configurations can be re-
presented as a pseudo-boolean function. Before defining such function,
it is required to specify how the difference between the alternate fea-
ture model configuration and the current one can be quantified. One
possible way to quantify this difference is using the loss in the utility for
the user when an alternate feature model configuration is used. The
utility is a numerical value used in the requirement engineering process
to capture relative usefulness of a product for a user (Berger, 2013).
Therefore, loss of utility as a result of feature model reconfiguration can
be used as a measure that needs to be minimized. The problem of
finding an alternate feature model configuration C′ with the minimum
loss of utility from C can be formally defined as a pseudo Boolean
function as follows:

′loss
S E I N

Minimize
Subject to

: ( , )
: , , ,

C C

(10)

In this definition, loss is a function which takes two configurations
as input and returns a numerical value representing the loss of utility
when the feature model configuration represented with C is replaced
with the feature model configuration represented with ′C . In this
function, the parameter C is constant and the goal is to find an as-
signment to ′C which minimize the loss of utility. Furthermore, S, E, I, N
represent different sets of constraints which an assignment to ′C should
satisfy. These constraints are as follows:

• Constraint S is a set of constraints representing the feature model’s
structural and integrity constraints,

• Constraint E is a set of constraints that make sure the new config-
uration makes valid assumptions about the input data of the service
composition,

• Constraint I is a set of constraints which enforce the selection of
those feature model configurations that do not require the inclusion
of the failed services for their realization, and

• Constraint N enforces the selection of those combinations of features
which satisfy critical non-functional constraints.

In the following, we formally show how the utility function and the
set of constraints can be represented.

5.1. Loss of utility

The underlying idea behind loss of utility is that in an ideal situation
when neither functional nor non-functional requirement violations
have occurred, the current service composition is the best possible
service composition that satisfies the requested requirements. Now, if
some of the services fail or underperform, a new feature model con-
figuration needs to be created through which a new service composition
would be generated. In order to calculate loss of utility, one would need
to first calculate or estimate the utility of the underlying feature model
configurations. Some existing methods (Bashari et al., 2014; Bagheri
et al., 2010) assume the utility of each feature is independent of the
other features and propose ways for eliciting a numerical value to re-
present the utility of each feature. Assuming that such values are
available through a function �→U F: , the loss of utility incurred by
replacing feature model configuration C with feature model config-
uration ′C can be represented as a function ′loss ( , )C C where:

∑′ = − ′ − − ′
∈

loss c c U f c c U f( , ) (1 ) ( ) (1 ) ( )
i n

i i i i i i
{1,., }

C C
(11)

In this equation, i is the index for features assuming that we have n
features where fi maps to the ith feature. With this, U(fi) would be the
utility of the ith feature. This equation iterates over all features in the
feature model and calculates the amount of utility lost by using ′C . For
each feature, if the feature is selected or unselected in both feature

model configurations, the value inside the sum operator would be zero.
If the feature was selected inC but not available in ′,C the utility of the
unselected feature is added to the sum of the lost utility. If a feature
exists in ′C while it does not exist in ,C its utility is deducted from the
sum of the lost utility.

The drawback of this approach is that it is not applicable in all si-
tuations since the utility values of features are not always available.
Therefore, we suggest a restricted version of the ′loss ( , )C C function for
situations when utility values of features are not available. We refer to
this function as ′distance ( , )C C that uses only the number of features
which are different between the two feature model configurations. The
distance function can be used instead of the loss function:

∑′ = − ′ + − ′
∈

distance c c c c( , ) (1 ) (1 )
i n

i i i i
{1,., }

C C
(12)

The expression in the sum operator of the optimization function
evaluates to zero when ci and ′ci are both one or zero which means both
of those features are selected or unselected. In case one of c or c′ are one
and the other is zero, this expression evaluates to one. Therefore, this
function will be zero when the two feature model configurations are
identical.

5.2. Feature model structural and integrity constraints (constraint s)

The set of features in the alternate feature model configuration
should respect the constraints defined in the feature model. For ex-
ample, the storage feature cannot be unselected in an alternate feature
model configuration since it is a mandatory child of the root feature and
a service composition is not valid without it. Therefore, the set of linear
constraints S should be satisfied when an assignment to ′C represents a
valid feature model configuration in terms of structural and integrity
constraints. All types of structural and integrity constraints can be re-
presented using linear constraints over features. For example, the op-
tional relationship between the Upload Image feature and the Editing
feature can be represented as − > −c c 1UploadImage Editing . There exist
methods for translating a feature model structure and its constraints
into a set of linear constraints. In our work, we have used the transla-
tion proposed in Noorian et al. (2017).

5.3. Service composition precondition constraints (constraint e)

The new service composition which replaces the old service com-
position cannot make new assumptions about the preconditions of its
execution and needs to have the same preconditions. Therefore, a fea-
ture model configuration that is realized by a service composition
which has new preconditions cannot replace the failed feature model
configuration. For example, adding the watermark feature to the fea-
ture model configuration containing features marked with (●) in Fig. 1
will require the condition WatermarkRequested(im,wt) to be true before
execution, which might not necessarily be true. The linear constraints

Fig. 8. BPEL process visualization for an alternate solution for BPEL process in
Fig. 4 after adaptation by feature model reconfiguration as a result of the Ob-
jectDetection service failure.
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in the set E should ensure that the alternate feature model configuration
does not change the preconditions of the service composition.

Considering that each feature f in the feature model is annotated
with the set f( )P containing the preconditions that the selection of the
feature will add to the preconditions of the service composition, the
new configuration cannot include a feature whose f( )P is not a subset

of the old feature model configuration’s preconditions. Therefore, the
linear constraints set E will have one member, which can be defined as:

∑ ′ <
∈ ¬⊆

c 1
i n s t f Pre C

i
{1. } . . ( ) ( )iP (13)

Assuming that Pre(C) returns all of the preconditions required by the
service composition realizing feature model configuration C as outlined
in Bashari et al. (2016), the sum operator in this linear constraint makes
sure that the alternate feature model configuration will not have those
features that add preconditions not present in the precondition set of
the initial service composition. This condition will make sure that the
alternate feature model configuration has the same or looser pre-
conditions compared to the failed configuration. In the case of the ex-
ample feature model configuration, this condition would be
cwatermark<1 considering that the precondition for the current config-
uration is an empty set along with the only feature whose precondition
is not non-empty. This equation means that the watermark feature
cannot be selected in the alternative feature model configuration con-
sidering that it requires a text to be watermarked on the image.

A user may want to remove a feature from the alternative feature
model configuration. Removing a feature means making sure that the
feature will never get selected in an alternative feature model config-
uration. In the case that the user has such requirements similar con-
straints can be used. Assuming that set R contains the indices of the
features which have been removed by the user, a constraint represented
as ∑ ′ <∈ c 1i R i will ensure those feature will never be selected in the
alternative feature model configuration.

Fig. 9. Initial, failed, and degraded state of a service composition in Fig. 4 after change in the reliability of the Object Detection service.

Fig. 10. BPEL process visualization for an alternate solution for BPEL process in
Fig. 4 after adaptation by feature model reconfiguration as a result of the de-
crease in the reliability of the ObjectDetection service.

Fig. 11. Architecture of the proposed method.
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5.4. Service independence constraints (constraint i)

These constraints prevent the selection of those feature model
configurations which rely on the failed services for their realization.
Since there is no direct mapping between features and services in our
method and multiple features can be realized by multiple services, it is
not easy to find those feature model configurations that cannot be
realized after a service failure without trying to compose them.

In order to address this issue, an incremental approach is taken. We
define a failed feature model configuration set, which consists of those
feature model configurations that rely on the failed services for reali-
zation and make sure that members of this set are not selected as an
alternate feature model configuration. In the beginning, this set is in-
itialized with the feature model configuration whose corresponding
service composition has failed. Consequently, as alternative feature
model configurations are found, the adaptation mechanism tries to
compose their corresponding service composition using existing ser-
vices. If this approach is not able to compose a service composition for
the feature model configuration, that feature model configuration is
added to the failed feature model configuration set and the process of
looking for an alternate feature model configuration continues. The set I
is made of a set of linear constraints where each of those constraints
correspond to a feature model configuration in the failed feature model
configuration set. Assuming that C is a feature configuration in this set,
its corresponding linear constraint is defined as:

∑ ∑− ′ + ′ >
∈ ∈ ∈ ∉

c c(1 ) 0
i n s t f C

i
i n s t f C

i
{1. } . . {1. } . .i i (14)

This constraint would not be satisfied if the feature model config-
uration corresponding to the current assignment is the same as the
feature model configuration C and true otherwise. For the example
configuration, the constraint set I after a functional or non-functional
failure - such as the ones mentioned above - initially includes only the
following constraint:

− ′ − ′ − ′ − ′ − ′

− ′ − ′ − ′ + ′ + ′ + ′ >
c c c c c
c c c c c c

8
0

uploadImage tagging metadataBased filtering profanity

storage editing faceBlur external nudity watermark (15)

Considering c′∈ {0, 1}, this equation can never be lower than zero
and the only case it can be zero is when all features corresponding to
the current configuration are selected which will cause all subtracted
variables to neutralize the effect of 8 and none of the other features be
selected considering that they increase the value of the left side of this
inequation. This selection of features corresponds to the current con-
figuration. Therefore, this constraint prevents the currently failed
configuration to be selected again. As the method looks for an alter-
native configuration for the current failure, similar constraints corre-
sponding to those configurations which cannot be realized using ex-
isting services are added to I.

5.5. Non-functional constraints (constraint n)

The goal of these constraints is to make sure that the service com-
position, which is built based on the alternate feature model config-
uration satisfies the non-functional constraints set for the service
composition. It has been already discussed that the non-functional
properties of a service composition can be estimated using a linear
function over the features using Eq. (1). Therefore, the constraint for a
non-functional property can be represented as:

∑ ′ <
∈

p c q
i n

i i
{1,., } (16)

where pi is the contribution value of the ith feature and q is the threshold
for that non-functional property. This linear constraint ensures that the
value for the non-functional property of the alternate feature model
configuration is less than the threshold value when the user has

specified that the non-functional must be lower than the threshold. If
the user has specified that the value must be greater than a threshold,
the lower than operator should be switched to the greater than op-
erator. In the previous subsection, we proposed a regression method for
estimating the contribution value of each features to a non-functional
property. This method is used in order to estimate all pi values. The
Initial state in Fig. 9 shows the calculated contribution value for each
feature for the example case study as well as the updated contribution
value of the features after the example non-functional failure as result
of decline in the reliability of the object detection service. It can be seen
that the contribution value of metadata-based tagging and face blur
show decline, which is intuitive considering that it can be seen in Fig. 4
that this service is used in realizing the functionality of both of those
features. Considering that the product operator is an appropriate ag-
gregation operator for reliability, the constraint in Eq. (16) can be de-
fined over the natural logarithm reliability values as shown below:

′ + ′ + ′ + ′

+ ′ +

+ ′ ′ + ′

+ ′ >

ln c ln c ln c ln c

ln c

ln c ln c ln c

ln c ln

(0.957) (1) (1) (0.992)

(0.991)

(0.997) (0.967) (0.989)

(0.990) (0.9)

metadataBased filtering editing external

nudity

watermark faceBlur profanity

storage

(17)

This inequation is linearly defined over the presence of features and
will act as a constraint which assures that the alternative feature model
configuration will satisfy the reliability constraint.

It should be noted that these values are estimated rather than being
exactly specified, there is no guarantee that the actual non-functional
property of the service composition is the same as the estimated value.
In order to address this issue, we use a probabilistic approach.
Assuming e is the error of estimation, it can be assumed that it has a
normal distribution σ(0, )N with a mean of 0 and a standard deviation
of σ. The value of σ can be calculated using the feature model config-
uration in the dataset and their corresponding compositions. Having the
distribution of error e, the value for threshold q can be set in such a way
that there is a specific confidence, e.g., 95%, that the generated service
composition satisfies.

In summary, based on the formal definitions provided for the loss of
utility and the four constraints required in Eq. (10), we are now able to
automatically derive a new feature model configuration that alleviates
the functional and non-functional requirement violations as well as
respecting the four types of constraints. The adaptation happens by
optimizing the minimization problem of Eq. (10) in the context of
Eqs. (12)–(15). The outcome of this optimization problem is an alter-
nate feature model configuration that would be used for generating an
alternate service composition.

For the case of the sample functional failure, the above method
results in a feature model configuration which does not provide meta-
data-based tagging, editing and face blue features but provides external
tagging. The new feature model configuration is marked with (❍) in
Fig. 1. The alternative feature model configuration represents a de-
graded state where service composition still provides upload image,
storage, and tagging which are critical for the user but does not provide
some non-critical features. Fig. 8 shows the alternate service composi-
tion built based on this configuration. This BPEL process uses the same
service for realizing storage but uses alternative services for tagging and
detecting profanity considering that previous logic for realizing them is
no longer possible after the failure of the object detection service.

For the case of the sample non-functional failure, the adaptation
mechanism results in a feature model configuration which does not
provide metadata-based tagging and uses external tagging instead. This
feature model has been represented in Fig. 1 with features marked with
(■). Again, this configuration provides the critical features and the
corresponding service composition has a reliability of 0.906 which is
higher than the user specified threshold. Fig. 10 shows the alternative
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service composition built based on the alternative feature model con-
figuration. This BPEL process still uses degraded object detection ser-
vice considering that this service is required for realizing three of the
desired features (i.e., tagging, editing, and face blur) but uses different
logic for realizing tagging and detecting profanity features which re-
sults in higher reliability than the logic in Fig. 4.

6. Architecture

Fig. 11 shows a high level architecture of a general system that
would adopt our proposed adaptation management approach. The top
component represents a DSPL which is proposed by this approach. It
works with online tools and a BPEL engine integration component

Fig. 12. The Domain Design Tool interface for annotating features in the feature model.

Fig. 13. The Configuration Tool interface for specifying user’s requirements.

Fig. 14. The Adaptation Management Engine interface for monitoring current state of the service composition.
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which extends BPEL engine to detect failure and perform adaptation
through an API component. This architecture can be considered as a
connected DSPL (Cetina et al., 2008) considering that the product in-
teracts with the DSPL at runtime to decide about appropriate adapta-
tion at each state. We already discussed how adaptation management
logic of this DSPL works in this paper and also discussed the domain
model and service composition component in our previous paper
(Bashari et al., 2016). In this section, we discuss the functionality of the
API and BPEL execution engine components and their role in enabling
adaptation.

The API component provides a simplified RESTful service interface
for composition and adaptation of services which standardize the way
those requests are made. This component works with internal interfaces
of composition and adaptation components to realize those services.
Developing an API has a number of advantages compared to a solution
which extends an existing BPEL logic. First, it promotes separation of
concerns by separating the logic required for running the BPEL process
from the logic required for performing adaptation. This will facilitate
maintaining both DSPL and BPEL execution engines. Second, it allows
the DSPL mechanism to manage different BPEL execution engines by
developing executions engine integration components for them. This
reduces the effort required for introducing the adaptation management
mechanism to a new BPEL execution engine.

Then Execution engine integration component is developed for each
type of execution engine and works with the internal logic of the ex-
ecution engine to enable integration with DSPL API. This component
has two main functionalities. First, it monitors the BPEL process ex-
ecution and updates the context state model of the DSPL by calling the
relevant APIs. Second, it deploys the replacement BPEL process. We
have not yet implemented an execution engine integration component
for an execution engine and this has been left as our future work.
However, we discuss possible approaches for realizing the functionality
of this component.

The Monitoring functionality component can be realized by em-
bedding a probe in the service execution engine which would monitor
and collect data about service invocations. Conditions such service
availability can be defined by rules over these data (e.g., a service is
unavailable if its invocation results in a error three consecutive times)
and non-functional properties can be defined by queries over these data
(e.g., the response time for a service can be defined as the weighted
average of response time over the last hundred invocations). In this
paper, we focus on adaptation management and the proposed method is
agnostic on how the values in the context state model is updated and
therefore different methods (Rabiser et al., 2017; Psiuk and Zielinski,
2015) can be used for enabling monitoring in various domains and for
different purposes.

Replacing failed service composition with an alternate one can be
simply done by deploying a new process in service execution and re-
directing new requests to this service which prevents new invocations
of this process from failing. However, our approach requires working on
stateless services or having a rollback mechanism in place in order to
allow those invocations which have failed mid-execution to recover.
Having a rollback mechanism or running on stateless services ensures
that the execution of the replacement service composition from the
initial state would be a valid execution.

7. Tooling support

The ideas from this paper have been implemented in an online tool
suite called Magus.Online which is publicly available1 and supports the
whole lifecycle of service composition from design to managing its
adaptation. This tool suite provides three tools which focus on different
phases of the service composition lifecycle: Domain Design Tool,

Configuration Tool, and Adaptation Management Engine & API. In the
following, we provide details on the functionality of each of these tools
and how they are used in the service composition lifecycle.

7.1. Domain design tool

This tool allows a software developer to design domain models for a
service family. These domain models are base models for automated
composition and adaptation. Specifically, this tool provides the fol-
lowing functionalities:

• It enables for creating and editing a context model and its entities
and fact types and saving and loading it as an OWL ontology.

• It enables importing and modifying OWL-S definitions of existing
services into the domain model.

• It provides a graphical user interface for creating, editing, and se-
rializing feature models as well as annotating features using the
context model.

In order create a service family, the software developer extracts
possible variability in the problem domain and designs a feature model
capturing those using the feature model designer in the tool. The de-
veloper then uses context model design feature to design the context
model of the service composition, which reflects the properties of in-
terest within the context where the service composition operates in.
This context model is used to annotate the features in the feature model
in order to specify what is the expected behavior of the service com-
position that has that feature. Fig. 12 shows a screen shot of the Domain
Design Tool GUI used for editing and annotating a feature model.
Having the annotated feature model in the tool, the user can provide
services that realize features of the feature model by importing existing
OWL-S definitions or by developing new services and annotating them
using the service annotation GUI provided in the Domain Design Tool.

7.2. Configuration tool

A non-expert user can load an existing domain model corresponding
to a service family in the Configuration Tool and specify the require-
ments of the desired service composition using this tool. The require-
ment specification is used for composing desired service compositions
as well deciding on the adaptation when a failure takes place.
Specifically, the Configuration Tool provides the following functional-
ities:

• It allows loading an existing service family using the URL to its
configuration.

• It provides a user interface for interactively configuring a feature
model.

• It verifies the satisfaction of feature model structural and integrity
constraints as the user configures the feature model.

• It allows defining constraints over the values of the different non-
functional properties.

• It can create a service composition satisfying the specified require-
ments and generate its associated BPEL code as well as representing
it visually.

In order to define the requirements of a service composition, the
user first loads the service family. When a service family is loaded in the
Configuration Tool, the feature model for that service family is viewed
where the user can mark a feature as selected or unselected. The user
can additionally specify if that feature is critical for the service com-
position or not. The Configuration Tool checks the structural and in-
tegrity constraints of the feature model and notifies the user if the
current selection of features violates any of them. The user can also
define non-functional constraints by specifying the type of the non-
functional property, the threshold value and if the non-functional1 Available at: http://magus.online/
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property should be lower or higher than this value. The Configuration
Tool investigates the possibility of satisfying those constraints and no-
tifies the user if those constraints can be satisfied using current services.
Fig. 13 shows the interface for the configuration tool when the user has
selected a set of features and specified two non-functional constraints.
The user can request for the service composition to be generated, which
would produce the corresponding BPEL code for the composition.

7.3. Adaptation management engine & API

Rather than implementing this tool as an extension of an existing
BPEL execution engine which limits the application of the proposed
method to that specific engine, an API is developed which can work
with an execution engine. This API simply sends the current state of the
system to the Adaptation Management Engine where it detects failure
and recommends replacement BPEL processes when necessary.
Specifically, the Adaptation Management Engine & API provides the
following functionalities:

• It allows integration with different BPEL execution environments
through a well-defined REST API.

• It provides a visual representation of the current health and per-
formance of the service composition.

• It enables feature adaptation in response to service failure or non-
functional violation using the REST API.

• It provides a notification service which notifies the user of failures
and adaptation strategy taken to address them.

After a service composition is generated, it can be deployed on a
BPEL execution environment. An execution environment can be ex-
tended to be managed using the Adaptation Management Engine
through its API. This API is well-documented and is available online2.
Using an API makes adaptation management agnostic to the execution
environment and therefore can be used for different BPEL execution
environments. The execution environment sends the current context
state model to the adaptation management engine through the API
where satisfaction of user requirements is examined. In the case of
failure, an adaptation takes place and the updated service composition
is sent back to the execution environment. The Adaptation Management
Engine also updates the online console with updated information of the
service composition. Fig. 14 shows the console for a running service
composition. It shows the user’s desired features, those features that
have been provided, and those features which cannot be provided in the
current state as well as the health of the service composition in terms of
non-functional properties.

8. Experiments

Our proposed approach has been implemented using the FF planner
(Hoffmann and Nebel, 2001) for AI planning and NaPS solver
(Sakai and Nabeshima, 2015) for pseudo-boolean optimization. Using
this implementation, we performed four different sets of experiments in
order to investigate the practicality of the proposed method. The ex-
periments were performed on generated services and feature models
considering that actual feature/service repositories that would have
different sizes are not publicly available. These experiments were per-
formed on a machine with Intel Core i5 2.5 GHz CPU, 6GB of RAM,
Ubuntu 16.04 and Java Runtime Environment v1.8.

8.1. Effectiveness of adaptation in addressing functional failures

In this first set of experiments, we focus on answering two Research
Questions (RQ):

RQ 1.1 - How does the execution time for performing an adaptation
change as the possible feature model configuration size increases?

RQ 1.2 -What is the success rate of the adaptation mechanism when
addressing service failure for different feature model configuration
sizes?

The goal of exploring the first research question is to evaluate if the
adaptation process is performed in a reasonable amount of time.
Furthermore, through this research question we investigate the ap-
plicability of the proposed method in terms of adaptation time for
larger feature models. The objective of the second research question is
to first investigate if the proposed self-healing approach is capable of
recovering from service failures and second to examine if the adapta-
tion method remains feasible as the size of the feature model increases.
We used the number of valid feature model configurations rather than
the number of features since it is a more suitable metric for representing
the size of the search space for the optimization problem and the
method searches in this space for the solution.

The experiments were designed as follows: For different service
families with the same service repository size but different feature
model sizes, and a possible feature model configuration were randomly
selected and the service composition satisfying it was automatically
composed. Then a service was randomly selected and placed in the
failed state and the time to perform adaptation and if the adaptation
was successful were recorded.

The experiment was performed for five different groups of service
families where feature models in the same group had the same number
of features but different numbers of possible configurations. Each group
had 10 different service families which were generated as follows: We
used the Betty feature model generator (Segura et al., 2012) to generate
the feature models with 30 features which is the average number of
features in the SPLOT repository3 and with maximum branching factor
of 10. Four groups consisting of 25 percent of the features each were
allocated to Or group, Alternative group, Optional and Mandatory ca-
tegories. According to the survey that is performed in
Thum et al. (2009), these parameters reflect structural properties of a
real feature model. The number of possible configurations for the
generated feature models ranged between 400 and 2,000, which was
divided into 5 groups. The feature models were annotated using the
context model with 30 entity types and 600 fact types using a feature
model annotation generator with parameters (2, 1),N (0.2, 0.8),N and

(1, 1)N as the number of entities, preconditions, and effects, respec-
tively. μ σ( , )N is a normal distribution with a mean of μ and a standard
deviation of σ. These values were calculated based on the case studies
that we implemented while investigating the practicality of the pro-
posed method since there is no other real case study reported in the
literature related to this. In the composition approach, OWL-S is used
for annotating service preconditions-effects. Although OWL-S is widely
used for service annotation in service composition, we were not able to
find a dataset of OWL-S services with preconditions-effects annotations
or a paper in the literature which reports on service preconditions-ef-
fects parameter distributions. Therefore, the services for the annotated
feature models were generated by a customized random service gen-
erator with 250 services, (1, 1),N and (2, 1)N for the number of
preconditions and effects.4

For generating services for the feature model, a customized service
model generator was implemented in order to make sure that all pos-
sible configurations of the feature model have corresponding service
compositions. In this method, the generator iterates over all possible
configurations of the input feature model and makes sure the required
services for realizing that feature model configuration exist in the re-
pository. For each feature model configuration, the planner is used to

2 Swagger documentation available at: http://magus.online/swagger-api

3 http://www.splot-research.org/
4 All generated dataset are available for download at: http://magus.online/

experiments/1
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examine if that feature model configuration can be realized using ex-
isting services in the repository. If the feature model configuration
cannot be realized using existing services, a planner is used to find a
service compositions whose effects have the largest intersection with
the feature model configuration aggregated effects. Then, a random
service generator is used to realize the remaining effects of the feature
model configuration, which are not realized by the sequence generated
by the planner. This service generator ensures that all feature model
configurations in a service family can be realized using services in the
service repository.5

For each service family, the experiment was performed by selecting
a random valid feature model configuration with 15 ± 1 features from
the feature model and generating its corresponding service composi-
tions. Then, a random service from the generated compositions was
selected and failed. The failure was handled through adaptation. This
process was repeated 100 times for each service family. Having five
groups and ten service families in each group, this activity was repeated
5000 times.

Fig. 15 shows the average time to perform feature adaptation for

feature models with different numbers of possible configurations. It can
be seen that the time for adaptation increases as the number of possible
configurations increases since the problem becomes more complex to
solve. However, it should be noted that the feature adaptation time
remains fast for feature models with the size in this range (<300 ms),
and increases linearly.

Fig. 16 shows the distribution of successful versus failed adaptation
efforts as service failure occurs. In our dataset of service families, the
adaptation approach is able to recover from a failure in more than 77%
of cases. However, it should be noted that the recovery rate for a service
family can be influenced by different factors of how it has been realized
through services and may not be the same for other service families.
However, the results show that this approach can recover a failed ser-
vice compositions while the rate of success can differ between different
service families. It can also be seen from this figure that there is no
obvious relation between the size of the feature model and the success
rate of the adaptation mechanism.

8.2. Robustness of adaptation toward functional failure

In this set of experiments, we focus on the effect of the number of
failed services on the different aspects of adaptation in the service
compositions to examine the robustness of the approach. In these ex-
periments, we are looking to answer the following research questions:

RQ 2.1 - How successful is the adaptation mechanism in addressing
a service failure as the number of failed services increases?

RQ 2.2 - How extensive does the feature model configuration
change as a result of feature model adaptation in terms of the distance
between the new feature model configuration and the failed one as the
number of failures increases?

The objective of the first research question is to investigate how well
the proposed self-healing method performs in response to more severe
failures when two or more services fail. The objective of the second
research question is to determine if the changes in the adapted feature
model configuration are limited enough to be used as a mitigation
strategy.

For generating the dataset for this experiment, we created 10 service
families with parameters used in the first experiment with 800 possible
configurations and service repository size of 150.

In this experiment, for the number of failures between one to four,
the following process was performed: a random valid feature config-
uration was selected from the service family and the corresponding
service composition was generated. Then, a random number of services,
between 1 and 4, was selected and set to failed status. The failures were
then addressed by the proposed approach. This activity was repeated
250 times for each service family.

Fig. 17 shows the distribution of successful versus failed adaptation
as service failure occurs for different number of failed services. As ex-
pected, the number of recovered service compositions decreases as the
number of failed services increases. However, 70% of failures can still
be addressed in the extreme case where four services fail simulta-
neously.

Fig. 18 shows the distribution of the distance between the alternate

Fig. 17. Distribution of success versus failure mechanisms after a service failure
in terms of number of failed services.

Fig. 16. Distribution of success versus failure of the adaptation mechanism.

Fig. 15. Feature adaptation execution time in terms of feature model configuration size.

5 The code for the tool and the service generator is available at https://github.com/
matba/magus
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feature model configuration and the failed feature model configuration
for different number of failures. It can be seen that the average distance
of the alternate feature model configuration increases as the number of
failed services increases since it is more likely that more extensive
changes are required as more services fail. However, the average dis-
tance between the failed feature model configuration and the alternate
feature model configuration remains less than 2 features even when
four services have failed.

8.3. Effectiveness of regression for estimating non-functional properties

In this set of experiments, we focus on investigating if using a linear
function is an effective way to accurately estimate the non-functional
properties of a service composition. More specifically, we are trying to
answer the two following research questions:

RQ 3.1 - How fit is a linear function for estimating the values of
non-functional properties in a service composition?

RQ 3.2 - How accurate is the estimation approach in estimating
non-functional properties for a service composition, which is not in the
dataset and how does the size of the dataset affect this accuracy?

The objective of the first research question is to determine if a non-
functional property of a service composition can effectively be modeled
by a linear function. The goal of asking the second question is to see if

an estimation function which is built based on a set of feature model
configurations and their corresponding non-functional property values
can be used for predicting the value of a non-functional property for a
feature model configuration, which was not in the training dataset.

In order to answer the first question, we used coefficient of de-
termination or R squared (R2), which is a metric for determining how
good an estimation model has been built. R2 is the proportion of var-
iance in the dependent variable, which can be explained by the model
for the dataset it has been built upon. The value of R2 ranges between 0
and 1 where the value of 1 means it can perfectly model the variance
and value of zero means it cannot model the variance.

In order to perform the first experiment, we focused on service
composition response time as the non-functional property of interest.
The first experiment was performed as follows: Four groups of service
families were generated in a similar way to the first experiment. Each
group had five service families. The service compositions in different
groups were different in terms of the number of independent features
used for training the regression. The process started by annotating the
services in the service families in a group with random response time
with distribution (200, 50)N . Then, the contribution values of the
features were calculated using the smallest possible dataset of feature
model configurations, converging to a single result. Using the con-
tribution values, the value of R2 was calculated. The dataset was aug-
mented with five more feature model configurations. The response time
pairs and the updated contribution values and the new R2 value were
then calculated. This process was performed three times for each ser-
vice family for each group.

Fig. 19 shows the average R2 values for service families in each
group for different dataset sizes. The value of R2 is around 0.9 in the
beginning for all groups and starts decreasing as the size of the dataset
increases. The reason for this decrease is that the model built using
smaller datasets overfits; therefore, can model the data accurately while
it will perform worse for new data predictions. The increase in the size
of the dataset results in a more generalized model. The value of R2 stops

Fig. 22. The distribution of the distance between the alternate feature model
configuration and the failed one after a non-functional constraint violation.

Fig. 21. Distribution of success versus failure mechanisms after a non-func-
tional constraint violation.

Fig. 20. Root Mean Squared Error of the estimation method in terms of number
of training feature model configuration.

Fig. 18. Distribution of the distance between the alternate feature model con-
figuration and the failed one after service failure in terms of number of failed
services.

Fig. 19. R Squared of regression model for estimation in terms of number of
training feature model configuration.
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its descent around 0.7 for all groups. In general, having values closer to
one for this metric shows that the function has modeled the relationship
between the dependant variable and the independent variables more
accurately and having values closer to zero shows that the model was
less successful in capturing the relation. Having this value for R2 shows
that the linear function in Eq. (1) does model the relation between the
presence of features in a feature model configuration and the response
time of the service composition implementing that feature model con-
figuration to a good extent. Furthermore, having the same value for R2

for all groups shows that the size of the feature model does not affect
the efficiency of the modeling approach for a non-functional property.

In order to measure the accuracy of our estimation model for an-
swering the second research question, we used root-mean-square error,
which is a metric for evaluating the accuracy of regression. This metric
calculates the standard deviation for error of estimation for a test da-
taset. Therefore, values closer to zero show that the estimation model
has a better accuracy.

The experiment was designed based on the previous experiment
dataset. For each service family in each group, 100 feature model
configurations were selected as the test dataset. Then, starting from the
smallest possible dataset, the contribution values of features were cal-
culated using the proposed method and the value of root-mean-square
error for the test data was calculated and recorded. This process was
repeated three times.

Fig. 20 shows the average root-mean-square error values for service
families in each group for different dataset sizes. For all feature model
sizes, the value for root-mean-square error decreases at the beginning
but eventually stops decreasing. This observation confirms our spec-
ulation that estimation model overfits data when the dataset is small. It
can also be seen that although the value of the root-mean-square error
is larger for larger feature models, the root-mean-square error remains
less than 15ms for all groups. One other difference between groups with
different feature model sizes is the number of instances in the dataset
where adding more instances does not improve the estimation model.
For smaller feature models, it happens sooner which means less number
of instances are needed for creating the estimation model. In other
words, a larger dataset is needed for larger feature models. However, it
can be seen that the estimation model for a feature model with 40 in-
dependent features, which can have up to 240 feature model config-
urations can be modeled using less than 200 feature model configura-
tions.

8.4. Effectiveness of feature adaptation for addressing non-functional
violations

In this set of experiments, we are investigating if the proposed ap-
proach can effectively address non-functional violations of service
composition. More specifically, we are trying to answer two research
questions:

RQ 4.1 - How successful is the adaptation mechanism in addressing
non-functional failures for feature models with different sizes?

RQ 4.2 - How extensive does the feature model configuration
change as a result of feature model adaptation in response to a non-

functional violation?
The objective of the first research question is to examine if the

proposed feature adaptation mechanism can be used as an effective way
to recover from a failure. The goal of the second research question is to
investigate if changes to the feature model configuration are small
enough (minor) such that the alternate feature model configuration is
still desirable for the user.

In order to answer these two questions, the experiment was de-
signed as follows: The services in the dataset used for answering RQ 1.1
were annotated randomly with response times with the distribution of

(200, 50)N . Then, a random feature model configuration from the
feature model was selected and the corresponding service composition
was built. Then, the response time for the built service composition was
calculated using service annotations. Then, a non-functional constraint
was added having a threshold value which is equal to 110% of the
calculated response time. Afterward, the services in the service com-
position were randomly selected and their response time was increased
by 25% until the non-functional constraint did no longer hold. Then,
the non-functional failure was addressed using the proposed self-
healing approach and the result of the adaptation and the distance
between the alternate feature model configuration and the failed one
was recorded.

Fig. 21 shows the success rate of adaptations for feature models with
different sizes. Although, the success rate of the proposed adaptation
approach in addressing non-functional failure is less than its success
rate in addressing functional failure, it can still address one-third of the
non-functional failures. The other observation from this figure is that
the growth in the size of the feature model slightly increases the chance
of success.

Fig. 22 shows the distribution of the distance between the alternate
and the failed feature model configurations for feature models of dif-
ferent sizes. One observation from this figure is that the distance of
alternate feature model configuration increases slightly as the size of
feature model increases. However, it can be seen that for all feature
model sizes, the majority of failures are addressed by replacing the
failed feature model configuration with an alternate one, which has a
distance of ‘one’. This means the alternate feature model configuration
will have one feature added or removed compared to the original one.

8.5. Threats to validity

We discuss the threats to the validity of our work in two parts. First
we discuss the validity of the observations made in the experiments in
internal validity and then we discuss potential issues which can
threaten generalization of the observations in external validity.

8.5.1. Internal validity
In the following, we discuss threats which can affect the validity of

the observations we made in the experiments:

• In the experiments for evaluating the impact of features on non-
functional properties, we assume that feature presence as an in-
dependent variable determining the value of dependent variable

Table 1
Comparison of recent approaches for self-healing in service compositions.

Approach Adaptation Cause Adaptation Goal Adaptation Realization

Functional Non-functional Functional Non-functional Strategy Method

Hristoskova et al. (2013) Service Failure – Recovery – Substitution / Reorganization AI Planning
Tan et al. (2014) Service Failure – Recovery Mitigation Reorganization Genetic Algorithms
Angarita et al. (2016) Service Failure – Recovery Mitigation Retry/Substitution Rule-based
Nallur and Bahsoon (2013) – Constraint Violation Recovery Recovery Substitution Market-based Heuristics
Carzaniga et al. (2015) Service Failure – Recovery – Reorganization Rule-based
Our Approach Service Failure Constraint Violation Mitigation Recovery Reorganization Reduction Pseudo-boolean Optimization
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which is the value of the non-functional property. However, there
are other factors which can affect non-functional properties of a
service considering that different BPEL processes with different non-
functional properties can realize a feature model configuration. The
design of the planner affects which of those processes are selected.
The planner may have a bias on selecting a specific realization of a
feature model configuration and therefore our observation may not
be valid when a realization is selected randomly from the set of
possible realizations. However, this does not affect the applicability
of the proposed method used for estimating the non-functional
properties of the process created using a planner.

• Considering that there are currently no real-world dataset available
to perform experiments, the models used in these experiments were
synthetically generated. All the parameters and distributions used in
generating the models have been reported in the paper for replica-
tion studies. However, there could be unaccounted parameters that
could affect the values observed in the experiments if and when such
unaccounted parameters are found.

8.5.2. External validity
In the following, we discuss threats which can affect the general-

ization of the observations made in the experiments:

• The values reported on the success rate of the adaptation in response
to both functional and non-functional failures are on the domains
which have been synthetic. The success rate of adaptation can
change depending on the domain model as a result of change in the
different properties of the domain model. The effect of this threat
can be mitigated by applying the proposed method on real-world
domains and reporting on the efficiency of the proposed approach
on those domains.

• The way that a non-functional property for a service composition is
calculated based on the value of individual services value differs for
various types of non-functional properties. This can affect the ac-
curacy and fitness of the method for estimating non-functionality of
service compositions based on the selected features. This threat can
be mitigated by extending Experiment 2 of the evaluation on larger
sets of non-functional property types.

8.6. Lessons learned

Based on our experience from the experiments, we present the les-
sons that was learned from these experiments.

• In our work, we assumed a linear relationship between the presence
of the features and non-functional properties of a service composi-
tion. Although this is a simplification of the complex relationship
between these two variables, our experiments showed such as-
sumption can be effectively used for deciding about adaptation in
the case of response time. However, this might not necessarily be the
case for all types of non functional properties considering that the
way a non-functional property is calculated can differ for different
types. Therefore, our findings might not be generalizable to all non-
functional properties. As future work, the effectiveness of the pro-
posed method for different types of non-functional properties will be
evaluated and we will look for alternative estimation approaches if
and when the linear relation does not work effectively.

• One of the limitations of our approach is that it takes feature
adaptation as the first step toward addressing functional or non-
functional failure. Although, this allows the service composition to
recover from failures which cannot be addressed with current failure
recovery methods, it may result in larger effect on the service
composition functionality in cases where a failure can be addressed
by smaller changes. As a next step, we will work on a hybrid method
which applies existing failure recovery methods such as service re-
placement and re-planning as a first step to address the failure and

uses feature adaptation when such methods cannot recover the
service composition from failure.

• As a part of the objective evaluation of the proposed method, we
tried to find datasets and tools which can be used to compare the
proposed method with. We were not able to find such datasets or
tools to perform the comparison. This can be considered as a lim-
itation of the work reported in this domain. In order to enable other
researchers to compare their method with the proposed method, we
publicly shared the datasets of this paper as well as the source code
of the tool suite.

• Although the proposed adaptation mechanism in this study makes
sure the critical constraints are satisfied after an adaptation, it does
not guarantee the service composition is in optimal state in terms of
non-functional properties. This can be considered as a limitation of
the proposed approach. In future work, we will look for ways to
adapt the composition in such a way that ensures that the compo-
sition is in optimized state in terms of non-functional properties as
well.

9. Related work

This section first compares our work with existing self-healing ap-
proaches in service-based systems in general and then compares our
work with existing works which use feature models as the main model
for managing adaptation.

9.1. Self-healing in service compositions

Given that services are executed in highly dynamic environments,
languages which define service compositions such as BPEL provide
fault-handling and rollback capabilities. However, it is the developer’s
responsibility to implement strategies to address failures. Some re-
searchers have worked on extending BPEL or its execution engine in
order to automate recovery from failure (Moser et al., 2008;
Subramanian et al., 2008; Koning et al., 2009). For example in
Subramanian et al. (2008), an enhancement to the BPEL engine is
proposed which is able to detect seven different categories of failures
and perform different possible healing strategies such as re-invoking the
failed service or substituting it. However, it is still the developer’s re-
sponsibility to specify what strategies to adopt in response to each
failure. Here, we are focusing on methods which automatically recover
the failed service composition.

The concept of enabling a system to automatically recover from a
failure is not new. There have been efforts for enabling fault-tolerance
for mission-critical systems mostly through redundancy. However, the
popularity of services, their modular nature as well as their dynamic
operating environment have motivated the introduction of self-healing
strategies. Table 1 shows some of the more recent works in this area
(≥ 2013) compared to the proposed method. In the following, we go
through the different aspects of self-healing mechanisms covered in
Table 1 and dummyTXdummy- discuss similarities and differences be-
tween existing methods and our proposed method.

Most of the work in the literature have focused on service failure,
which is when a service does not respond, because it is not available or
has crashed. Examples of such approaches include the work by
Hristoskova et al. (2013) where a failure in a service composition is
addressed by substituting the failed service with a service with the same
functionality using semantic matching or using AI planning to find a
process fragment to replace the failed service when the substitute ser-
vice cannot be found. Self-adaptation in order to address non-functional
failures has also been addressed in the literature. Service compositions
which are built using these methods will self-adapt when the QoS for
service composition is not in the acceptable range to restore it. As an
example, Nallur and Bahsoon (2013) propose a self-adaptive me-
chanism based on a market-based strategy which is able to reselect
services which are used in the service composition execution process in
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order to restore failed QoS constraints. Although providing both func-
tional and non-functional requirements can play a critical role in the
usability of the system, most existing methods in the literature are
designed such that they can only respond to one of these failure types.
In the proposed method, we address this shortcoming by proposing a
decision-making mechanism which considers both functional and non-
functional requirements at the same time in planning for addressing a
failure.

Although a system usually fails because it cannot satisfy a require-
ment which is functional or non-functional, the adaptation mechanism
should decide by considering both of those requirements simulta-
neously since addressing a functional failure ideally should not affect
the provision of non-functional properties of the service composition
and vice-versa. As an example of an approach that considers both of
these requirements at the same while deciding on adaptation, we refer
to the work by Angarita et al. (2016) that proposes a method for
handling service failures where the adaptation management mechanism
dynamically uses contextual information such as execution state to
decide on existing failure handling strategies such that it addresses the
failure while minimizing the effect of the failure on the system quality
of service criteria. In practice, restoring both of these types of properties
may not be possible, therefore, the failure should be mitigated by
partially providing the properties. This is usually done through the full
recovery of functional properties while degrading the non-functional
properties of the service composition considering it is hard to define
degradation over functional properties. For example, Tan et al. (2014)
propose a method which uses Genetic Algorithms at runtime to find an
alternative BPEL process which fully restores functional properties of
the system while optimizing the quality of service criteria. Failure mi-
tigation in terms of functional properties is difficult since it requires a
mechanism which can guarantee that the set of functional properties
provided in the degraded state is logically valid. In our proposed
method, we used feature models to address this issue. A feature model
introduces a set of hierarchical and cross-tree constraints between
features of the system such that a feature model configuration re-
specting those constraints represent a valid system. This allows the user
to specify critical features in addition to critical non-functional re-
quirements. Therefore, the adaptation mechanism can degrade a service
composition in terms of its functional requirements while providing
both critical functional and non-functional requirements, which was
not possible before.

Strategies for realizing adaptation can be classified into three ca-
tegories (Huang et al., 2015): retry, substitution, and reorganization. In
the retry strategy, the functional failure of a service composition is
addressed by re-running the composition assuming that the failure is
temporary such as network failure and retrying will address it
(Elnozahy et al., 2002; Dobson, 2006). In substitution strategies, ex-
isting redundant services with the same functionality are used to re-
place the currently used services in the service composition such that
the new composition can satisfy required functional and non-functional
requirements (Carzaniga et al., 2015; Huang et al., 2015; Tibermacine
et al., 2015). One example of such methods is the approach proposed by
Christos et al. (2008) in which a proxy is placed over all services with
the same functionality which calls the redundant services and decides
which result to be used in the execution process. This method is able to
address failure without substantial change in the logic of the service
composition. Reorganization strategies recover from a failure by finding
alternate solutions which involve changing the services and how they
interact with each other. Existing strategies usually use adaptation rules
(Ali and Reiff-Marganiec, 2012; Liu et al., 2007), AI planning (Huang
et al., 2015; Hristoskova et al., 2013), and other methods (Boudaa et al.,
2017; Ismail and Cardellini, 2013) to recover from failure. For example,
the failure recovery method proposed in Huang et al. (2015) looks for a
service with the same functionality when a failure occurs; in cases that
such service does not exist, the method uses planning as model
checking to find a sub-process which can replace the failed service. Our

work is similar to these works in the sense that it tries to address failure
by re-planning to find an alternate composition. However, our method
is different as it works on features rather than at the implementation
level.

9.2. Using feature models for managing adaptation

Feature models have been effectively used in many of the dynamic
software product line approaches for managing variability of the
adaptive software (Bashari et al., 2017a). These methods mostly work
by monitoring execution context where certain changes in the context
trigger a change in the current feature model configuration. Conse-
quently, the change in the feature model configuration is reflected in
the running service composition (Baresi et al., 2012; Cetina et al.,
2009). For example in Cetina et al. (2009), a method is used for de-
veloping self-healing smart homes where devices are likely to fail. In
this method, rules for changes in the feature model have been defined
to address failures. For example, if the service for the siren device fails,
it selects a feature which uses house lights for alarming. The changes in
the feature model configuration are reflected on the running system by
enabling/disabling its corresponding services and connectors. In the
Refresh approach (White et al., 2009) for self-healing service compo-
sition, feature models are used as the model for capturing different
ways for realizing a service composition. When a service failure occurs,
the feature corresponding to the service is marked as unselectable and
the problem of finding an alternate feature model configuration is re-
presented as a Constraint Satisfaction Problem (CSP) and solved using
existing solvers. When an alternate feature model configuration is
found, the system shut downs those components corresponding to the
unselected features and launches those corresponding to the selected
features using a method called micro-booting. The work in
Pascual et al. (2015) proposes using multi-objective evolutionary al-
gorithms to select features from mobile applications’ feature model in
different contexts in order to optimize its performance in respect to
multiple non-functional requirements. In general, our work is similar to
this work in the sense that it uses feature models as the main artifact for
representing variability but there are three aspects that distinguish our
work: first, none of the existing methods work on the relation of a
feature and non-functional properties nor take those requirements into
account. Second, our work does not require any predefined rules for
adaptation, which have been shown to be prone to rule inconsistencies
(Fleurey and Solberg, 2009). Third, existing approaches assume that
there is a direct relationship between features and services, which is not
always true in practice (Trinidad et al., 2007). In our work, we do not
assume any direct relationship between features and services, instead,
we use planning for finding either an atomic or composite service that
can collectively create the service composition.

10. Concluding remarks

This paper proposes that idea that it is possible for a service com-
position to recover from both functional and non-functional failures by
losing some of its non-critical features automatically without external
intervention. In order to investigate the feasibility of this idea, we
proposed a self-healing service composition reconfiguration method. In
the proposed method, the features of a family of service compositions
are represented through software product line feature models, which
allow for defining constraints on features, which guarantee that a set of
features that satisfy those constraint represent a valid service compo-
sition. This allows the service composition to undergo adaptation by
selecting another subset of features which are valid with respect to
those constraints. The proposed method is composed of two sub-pro-
cesses where the first sub-process calculates the contribution of each
feature on the non-functional properties of the service composition and
feeds it to the second sub-process which realizes the adaptation by
deciding which features should be included in the adapted service
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composition. The first process works by performing a regression
method and the second process works by reducing the problem of se-
lecting features to pseudo-boolean optimization. Our experiments
showed that the first process can effectively estimate the contribution
value of features and the second process can recover a service compo-
sition in more than 70% and 35% of the time for functional and non-
functional failures, respectively. This results show that the proposed
approach can effectively improve the robustness of service composi-
tions in response to both functional and non-functional failures.
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