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A B S T R A C T

The growth in the number of publicly available services on the Web has encouraged developers to rely more
heavily on such services to deliver products in a faster, cheaper and more reliable fashion. Many developers are
now using a collection of these services in tandem to build their applications. While there has been much
attention to the area of service composition, there are few works that examine the possibility of automatically
generating service compositions for variability-intensive application domains. High variability in a domain is often
captured through an organized feature space, which has the potential for developing many different application
instantiations. The focus of our work is to develop an end-to-end technique that would enable the automatic
generation of composite services based on a specific configuration of the feature space that would be directly
executable and presented in WS-BPEL format. To this end, we adopt concepts from software product line en-
gineering and AI planning to deliver the automated composition of online services. We will further benefit from
such notions as safeness and threat from AI planning to optimize the generated service compositions by in-
troducing parallelism where possible. Furthermore, we show how the specification of the generated service
composition can be translated into executable WS-BPEL code. More specifically, the core contributions of our
work are: (1) we show how AI planning techniques can be used to generate a workflow based on a feature model
configuration; (2) we propose a method for optimizing a workflow generated based on AI planning techniques;
and (3) we demonstrate that the optimized workflow can be directly translated into WS-BPEL code. We evaluate
our work from two perspectives: (i) we will first formally prove that the methods that we have proposed are
sound and complete from a theoretical perspective, and (ii) we will show through experimentation that our
proposed work is usable from a practical point of view.

1. Introduction

The service-oriented architecture paradigm promotes the use of self-
contained units of functionality in the form of services and/or software
components to enhance interoperability, rapid development and dis-
tributed deployment, just to name a few. Many industrial entities are
now providing public access to their services to developers through
publicly available RESTful APIs. Directories such as ProgrammableWeb
provide a systematic way of finding the available services. The im-
portance of these open services is that they are often implemented by
reliable vendors and provide functionality that are not otherwise easily
implementable by smaller companies or individuals. For instance,
Google Maps, Zazzle and Paypal are examples that provide access to
their services through public APIs. The ease of adoption of the REST-
based SOA architecture has increasingly motivated the development of

applications on top of public services where multiple services are
composed to cater the required functionality (Sheth et al., 2007;
Rodriguez-Mier et al., 2017; Cappiello et al., 2011). Such services are
often composed of a number of other services and provide added-value
through new functionality. The added value of service compositions is
through the emergence of newer functional capabilities that were not
available prior to the integration of the already existing services.

While practitioners have traditionally employed manual or semi-
automated approaches for composing services to build their required
applications (Mayer et al., 2016), there is strong body of research that
has investigated the automated composition of services given some
input constraints and requirements specified by the users (Daniel et al.,
2009; Deng et al., 2016; Liu et al., 2007). In order to facilitate the
process of modeling and composing service compositions, several re-
searchers have already identified the synergy between Software
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Product Lines (SPL) and service-oriented architectures (Basile et al.,
2017; Medeiros et al., 2009; Soltani et al., 2012). Within the SPL
paradigm, a feature is often defined as an incremental prominent or
distinctive user-visible functionality of a software and is therefore a
good candidate to be represented and implemented through services.
The integration of services and features has already been extensively
investigated in the literature (Lee and Kotonya, 2010; Tizzei et al.,
2017). For instance, in the model proposed by Lee et al., features are
operationalized through atomic or composite services (Lee and
Kotonya, 2010). In this model, two distinct lifecycle phases are in-
troduced: (i) domain engineering phase: during which appropriate ser-
vices that can operationalize features are identified, and are connected
to their corresponding features, and (ii) application engineering phase:
during which the end-users select their desired features through which
the right services are identified.

The mapping of services and features allows one to develop custo-
mized service-oriented applications through the configuration of the
associated software product line. However, the limitation is that while
the selection of the services happens automatically in this approach as a
result of the configuration, the sequence of service interactions are not
determined. In other words, while the approach can determine which
services should be included in the final application, it does not specify
in which order they should be executed. The work that we present in
this paper is positioned within the application engineering phase, de-
scribed earlier, and provides mechanisms for automatically composing
services based on a set of functional requirements. The objective of our
work is to address the following challenges:

1. Existing work that integrate software product line techniques and
service-oriented architectures face the limitation of not being able to
determine the sequence of services once they have been selected
through the software product line configuration process. For this
reason, the concept of business process families (Gröner et al., 2013)
has been introduced where business process templates are designed
that include placeholders that show where selected services should
be plugged in. A business process template limits the possibility of
achieving the same objective but using a service composition with a
different process structure.

2. In the business process family paradigm, given the fact that the
business process template is pre-defined, there is no possibility to
optimize the generated business process model depending on the
circumstances. Therefore, the maximum possible variation is the
selection of the appropriate services to be placed in the placeholder
locations from amongst the possible service options.

3. Even in cases where business process families are not used and service
composition happens directly based on the individual services using
techniques such as AI planners, the final result is often a sequence of
services that are chained together to perform the task. The main
reason is that techniques that are used for planning or composition
produce sequential solutions. Therefore, the generated solutions are
not fully optimized with regards to criteria such as execution time.

Considering these limitations, the work in this paper aims to benefit
from the integration of software product lines and service-oriented ar-
chitecture to propose an automated approach for composing services
without the need for business process templates within the context of
variability-rich domains. Therefore, the novel aspect of our work is that it
allows for the automated generation of executable service compositions
for highly variable domains, which includes an end-to-end method en-
compassing (1) domain configuration based on functional require-
ments, (2) variability-aware service composition, (3) optimization of
the service composition and (4) the generation of executable code. The
concrete contributions of our work are enumerated as follows:

• We propose an AI planning based method for automated service
composition for variability-rich domains, which operates based on

software product line configurations as the main input model for
specifying requirements and automatically generates a workflow
that satisfies the functional requirements.

• We further propose a method for optimizing the created workflow
by considering the concepts of safeness and threat from the AI
planning domain in order to inject parallelism into the generated
workflow and improve its execution efficiency (e.g., reduce execu-
tion time).

• We demonstrate how the generated optimized workflow can be di-
rectly translated into WS-BPEL code that can be executed without
any input from the designer. This provides the added benefit for the
designer in that this approach would only require her to select the
desirable features from a software product line as a result of which
an executable WS-BPEL code will be generated.

• We have developed tool support for all of the introduced methods in
this paper. We theoretically prove the soundness and correctness of
our proposed work and also report on extensive evaluation of our
work under different circumstances to validate its usability and
practicality.

It should be noted that this paper is an extension of our earlier work
(Mahdi et al., 2016) and extends it in the following directions: (1) the
current paper provides an end-to-end solution for delivering executable
BPEL code based on a set of functional requirements, which includes
the composition, optimization and generation processes. However, the
earlier paper did not address the generation aspect of this process; (2)
We provide formal proof for the completeness, correctness and validity of
the generated workflows that was not present in the earlier publication;
(3) We extend the discussion on the findings in the experiments and
include two additional research questions; and (4) we introduce our
fully functional publicly available online tool suite and also provide an
extensive comparative analysis of the literature beyond what was
covered earlier. It should be noted that this paper focuses on functional
requirements and interested readers are encouraged to see
(Mahdi et al., 2017) for the treatment of non-functional requirements.

The rest of this paper is organized as follows: The next section will
cover the related literature and systematically compare our work with
the state of the art. Section 3 will cover the required background in-
formation and the problem statement. In Section 4, we will describe the
details of the proposed approach. This is followed by the introduction of
our tool suite in Section 5. Section 6 will provide the details of the
experiments and the insights gained from them. Finally, the paper is
concluded in Section 8 where future work is also discussed.

2. Related work

Given the scope of this paper, we cover the related literature from
four aspects: (1) The theme of our work is close to existing service
composition methods that have been extensively explored in the lit-
erature. We review some of the most similar work in service composi-
tion to our work and systematically compare our approach with them in
Table 1; (2) we review how software product line feature models have
been used to specify service compositions and systematically compare
our work with them in Table 2; (3) We review earlier work on service
composition optimization, which is also addressed in our work; and
finally, (4) we provide a synopsis of the work that attempt to auto-
matically generate code for service composition and place our work
within such context.

2.1. Automated service composition

Our work is positioned among considerable other research on ser-
vice composition methods. Here, some of the approaches that are clo-
sely related to the approach proposed in this paper are discussed and
summarized in Table 1, while the interested reader is encouraged to see
recent surveys on these approaches in Sheng et al. (2014),
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Lemos et al. (2016), Syu et al. (2012a). In Table 1, four comparative
approaches, which are highly cited in the literature, have been com-
pared with our work from three perspectives: (1) the models they use
for requirement specification; (2) the formalization used for describing
the service composition; and (3) the method used for generating the
service composition.

Existing work in the literature employ four main approaches for
defining and expressing composition requirements (second column of
Table 1). The first approach is based on the natural language specifi-
cation of the requirements. For example in Fujii and Suda (2006), an
approach is proposed where a composite service is created based on a
request in natural language using semantic annotation of the compo-
nents. Although natural language seems an easy to use method for
specifying requirements, it does not provide the user with a tangible
model of system functionality, which makes its adoption unreliable
(Cremaschi and De Paoli, 2017). The second more popular approach is
to adopt service description languages for expressing requirements. As
an example, the authors in Hristoskova et al. (2013) propose to use
OWL-S to define the requirements. This might be hard to use by the
stakeholders as it requires a good understanding of service standards
such as OWL-S. The third approach, which is commonly used in
methods that use AI planners for service composition, is to express re-
quirements based on the planning language that can then easily be
translated into the planner input. For example, in Klusch et al. (2005),
an XML dialect of PDDL is used to define the expected service specifi-
cation. However, specification of requirements in those languages re-
quires expert knowledge. In order to facilitate the design of service
compositions in some approaches, the concrete service composition is
generated from the abstract process created by the user using some GUI
interface. For example in Ngu et al. (2010), users drag and drop the
required components of their service composition into a canvas and
create the flow by connecting these components using arcs where this
process is facilitated using semantic annotations for components. Such
approaches still rely on the users for designing the logic of the service
interactions. In our work, different from earlier work in the literature,
we propose the idea of using software product line feature models to
express requirements. Feature models strike the right balance between
the need for understanding functional requirements as well as avoiding
low-level implementation details (Lee et al., 2002).

In terms of composition specification (third column of Table 1), many
existing approaches use simple models such as sequence and direct

graphs. However, more complex functionality are usually needed in the
practical applications of service composition. Therefore, many lan-
guages and standards have been proposed in the industry such as WS-
BPEL, BPML (Thiagarajan et al., 2002), and ebXML (Gibb and
Damodaran, 2002). These languages and standards provide capabilities
such as complex logic support, exception handling and ability to be
executed by an engine. One of the popular ways to represent service
composition is OWL-S (previously DAML-S). Although OWL-S main
purpose is to describe semantic web services, it also allows for defining
a composite service which is built on other services using basic op-
erations. OWL-S composite services is widely used for describing service
composition because of its semantic description and reasoning support
which facilitates composition of the service. Examples of services
composition using OWL-S are Hristoskova et al. (2013),
Hatzi et al. (2013), Klusch et al. (2005), Sirin et al. (2004). For example
in Hristoskova et al. (2013), existing services are defined as OWL-S
atomic services and described using OWL-S precondition and effect
tags. In this method, HTN planning is adopted which uses OWL-S
control constructs to define the process of a composite service which
serves as the goal service. Although OWL-S semantic support facilitates
composition of services, it lacks capabilities which are required in many
industrial contexts such as error handling (Sheng et al., 2014). We
adopted WS-BPEL as a standard for defining service composition in our
approach since it provides a rich language for defining business pro-
cesses and it is widely used in the industry and hence increases the
chances of our work being relevant and applicable for practitioners.

Now from the perspective of the composition method (fourth column
of Table 1), planning is often considered to be the main activity in
service composition since it figures out the workflow of the composite
service. The methods used in service composition can be categorized
into two groups: top-down and bottom-up (Syu et al., 2012b). In the
top-down methods, the planner commences with the description of the
desired composite service which it then decomposes to make less ab-
stract until the process reaches a concrete workflow. Moving from a
more abstract workflow to a less abstract workflow is guided by domain
knowledge. For example, in Menasc et al. (2008), using an ER-model an
ontology representing the domain knowledge is built. The ontology is
used in order to create an abstract workflow. In the bottom-up ap-
proaches, available services are connected by matchmaking methods
which attempt to build desired services using AI planning approaches
such as HTN (Sirin et al., 2004), (Hristoskova et al., 2013), Model
Checking (Bertoli et al., 2010; Traverso and Pistore, 2004), Theorem
proving (Rao et al., 2004), and other (McDermott, 2002). Different AI
planning techniques have different advantages and restrictions. For
example, HTN planning can provide more efficient composition but it
requires the specification of certain decompositions. PDDL has been
proposed to standardize the way a planning problem is represented
which facilitates changing the planner based on input requirements.
Conversion of web service composition to PDDL allows for the selection
of the most appropriate planner based on the context and provides the
ability to use state-of-the-art planners as they are introduced in the
future. In McDermott (2002), the service composition problem has also
been reduced to a planning problem represented by PDDL and then
solved using estimated-regression planning. However, the proposed

Table 1
Comparison of recent approaches for automated service composition.

Approach Requirement specification Composition specification Composition method

Hristoskova et al. (2013) OWL-S service description OWLS composite service HTN planning
Bertoli et al. (2010) Goal State by prepositional logic WS-BPEL Planning with model checking
Hatzi et al. (2013) Initial/Goal state OWLS composite service Conversion to PDDL
Fujii and Suda (2006) Natural language Sequence of operations Inference engine
Proposed approach Feature model WS-BPEL Conversion to PDDL

Table 2
Comparison of the main approaches to for service composition using feature
models.

Approach Automated Composition
specification

Composition method

Baresi et al. (2012) ✓ WS-BPEL Configuring base model
based on substitution model

Asadi et al. (2014) BPMN Direct mapping
Alferez et al. (2014) WS-BPEL Direct mapping
Proposed approach ✓ WS-BPEL Conversion to PDDL
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approach requires extending PDDL in various ways. The works pre-
sented in Sirin et al. (2004) and Hatzi et al. (2013) are similar to our
work in the sense that they convert the problem into PDDL and use a
planner to find the solution. But our work is different in terms of how
users represent their requirements and the way service composition is
represented in addition to the extra steps that we propose for workflow
optimization and code generation.

2.2. Feature models in service specification

Since service-oriented engineering and software product line en-
gineering share the goal of reusing existing assets for developing new
products, there exists some methods which try to use concepts from
Software Product Line Engineering in order to systematically manage
variability of service oriented systems (Narwane et al., 2016; Asadi
et al., 2014; Alferez et al., 2014). Some of these methods specifically use
feature models as the central model of capturing variability. However,
existing automated approaches which work on services provide custo-
mization of the service composition rather than composing a new ser-
vice composition. Here, we review existing prominent approaches in
this area and compare them to our work. Table 2 reviews these ap-
proaches.

The approach in Baresi et al. (2012) (first row of Table 2) builds
service compositions from feature model configurations using an im-
plementation of the Common Variability Language (CVL). CVL
(Haugen et al., 2008) is a suggested generic approach for managing
variability in domain specific languages. In this approach, each feature
is annotated with a set of substitutions. Using these annotations, se-
lected features in the feature model configuration are mapped to a
series of substitutions in the base BPEL code. Base BPEL code defines
the BPEL process of a generic solution to the problems in the problem
domain. It also has placement locations where new process fragments
can be inserted or removed for customization. A substitution is defined
as placing a BPEL aspect from the CVL library into a placement location
in the base code. The target business process is derived using these
placements.

The work described in Asadi et al. (2014) (second row of Table 2)
conceives a method for representing variability of a reference business
process model using a feature model. A reference business process
model Rosa et al. tries to capture generic structure of solution processes
in a problem domain. This reference business process model is then
customized based on specific requirements of a problem. In this
method, features are mapped to activities in the reference process
model using a mapping model. In the mapping model, a presence
condition, which is a first order logic condition over features, is defined
for each activity in the reference business model which determines if
those activities should exist in the final business process. Using this
mapping, a customized business process model can be built given a
feature model configuration. However, the possible variation in the
business process model is limited since the mapping mechanism only
allows addition and removal of activities to the business process and
does not allow more substantial changes such as changes to flow of the
process. Additionally, this approach represents the final process using
Business Process Model Notation (BPMN) which cannot be directly
executed.

In Alferez et al. (2014) (third row of Table 2), an approach for
building self-adaptive service composition is proposed, which is able to
change its structure based on context changes. The adaptations are
enabled using software product line configuration techniques. The
variability of the system is modeled using a feature model and changes
in the context would result in various feature model configurations. The
authors propose a method for building new service compositions based
on the feature model configuration using an intermediate model called
the weaving model. Each feature is mapped to a BPEL code fragment
which is inserted in the corresponding variation point in the base BPEL
code of the system when that feature is selected. Although, this allows

composition of the different service compositions, all these composi-
tions should have been developed at design time. Additionally, use of
the approach is limited to the variability’s which can be represented in
a single point composition process.

In most, if not all, of these approach which create a service com-
position based on a feature model or other common variability mod-
eling techniques, the basic logic for the composition is provided by a
human designer. Our work is different from these works in term of
being able to automatically compose the logic satisfying the selected
features without requiring a direct mapping and primarily based on the
automated conversion of feature model configurations into executable
WS-BPEL code.

2.3. Service composition optimization

BPEL allows sequential as well as parallel invocation of services.
However, most AI planning methods come up with total-ordered se-
quential composition of services (Rodriguez-Mier et al., 2011). For
example in Chafle et al. (2007), a planner is used to find the goal service
composition which is sequential although BPEL is used to represent the
composition. Some automated service composition methods generate
compositions which take advantage of parallelism (Rodriguez-Mier
et al., 2011; Jiang et al., 2010). For example in Rodriguez-
Mier et al. (2011), service composition is modeled as a tree search
problem where the goal is to find a service composition with maximum
parallelism. In another example (Jiang et al., 2010), the service com-
position problem is modeled as a sub-graph search in a service de-
pendency graph where the goal is to find a composition, which satisfies
its functional requirements as well as optimizing different quality at-
tributes such as parallelism. However, enabling parallelism is em-
bedded in the composition process of these methods. In order to com-
pose services with parallel execution, Peer (2005) suggests that partial-
order planning methods need to be used. However, none of the existing
service composition methods use partial-order planning because ex-
isting partial-order planners are significantly less efficient than total-
order planners Nguyen and Kambhampati; Backstrom. We suggest that
enabling parallelism in the workflow can be viewed as an optimization
problem. The idea of optimizing a total-order plan in order to take
advantage of parallelism has been explored in the planning area
(Siddiqui and Haslum, 2013). However, it has not been used in the
context of service composition. Our approach uses ideas from the
planning domain to propose an optimization model where different
optimization methods can be used in order to enable parallel execution
of operations in a workflow.

2.4. BPEL generation

Existing service composition methods which create BPEL as their
final representation in the literature can be categorized into three
groups. The first group of methods generate the final BPEL code by
selecting appropriate partner services for an existing abstract process.
These methods allow limited functionality variation in the result service
and are therefore usually used in domains where the goal of composi-
tion is optimization of the result service in terms of non-functional
properties. For example, Synthy (Agarwal et al., 2005; Chafle et al.,
2007) proposes a physical composition approach which accepts an
abstract BPEL workflow in which the workflow works with service
types instead of actual service instances. This method uses a cost
function to select from existing service instances of each type to create a
deployable BPEL workflow which optimizes workflow quality of ser-
vice. The methods in the second group generate the BPEL process di-
rectly from the requirements (Bertoli et al., 2010; Baresi et al., 2012;
Pistore et al., 2004; Syu et al., 2011). As an example in
Bertoli et al. (2010), a state transition system encoding BPEL processes
has been proposed and an equivalent state transition system for a
specific requirement is found by model checking. However, the BPEL
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language is a complex language since it is an implementation level
language rather than a modeling language and it is hard to consider all
aspects of this language in designing a method for generating its pro-
cess. Therefore, usually a more abstract model of the resulting service
composition is created and then is converted to BPEL in the third group
of methods (Chafle et al., 2007). This facilitates the design of the
method for generating a service composition by removing redundant
information. Then this abstract workflow is converted to a BPEL process
(Mcdermott et al., 1998; Agarwal et al., 2005; Chafle et al., 2007). We
adopt a similar approach in our proposed method.

Considering that BPEL can be readily executed and is adopted by
many businesses, different methods have been proposed for converting
models such as BPMN (Ouyang et al., 2008; Ouyang and Dumas, 2006),
Petri-net and their variations (Aalst and Lassen, 2008; van der Aalst
et al., 2005), workflow graph (Ning et al., 2007; Gtz et al., 2009) and
other models (Yuan et al., 2008; Cesari et al., 2010) into BPEL form-
alism. Many of these models are considered graph-based while ideal
BPEL code is fully structured. One of the main factors in evaluating a
BPEL generation mechanism is readability of the generated code since
BPEL code is verbose and complex and may needs refinement or testing
(Ouyang et al., 2008). Therefore, different metrics has been proposed
for evaluating the readability of a BPEL code (Aalst and Lassen, 2008;
Reijers and Mendling, 2011; Reijers et al., 2011; Lassen and van der
Aalst, 2009). All these methods point to structuredness as the main
determinant of readability of the process and different metrics for
structuredness have been proposed. One of the main factors that affect
structuredness is how the workflow is organized in hierarchical com-
ponents. Therefore, some work have been done which try to find single-
entry single-exit (SESE) components (Johnson et al., 1994) that can
then be organized in a hierarchical manner. Examples of such ap-
proaches are Reijers et al. (2011), OMG (2009), Gtz et al. (2009).
However, practical workflow structures cannot always be modularized
using well-structured SESE components but still organizing them as
components will reduce the complexity of the structure of the workflow
(Ouyang et al., 2008). In such situations, existing methods that look for
SESE will stop or require user assistance. In our work, we suggest a
method which allows the building of components as long as it helps the
structuredness of the BPEL process.

2.5. Advantages and scope of this work

Our work in this paper distinguishes itself from the existing work in
the service composition literature in the following ways:

1. End-to-end solutions that automatically generate executable busi-
ness process code for service compositions based on input require-
ment specifications are primarily dedicated to non-variable systems.
In other words, the focus of these service composition methods is to
efficiently connect existing services to satisfy the requirements. Our
work is among the first to provide an end-to-end solution for highly
variable domains where the configuration of the target application as
well as the generation of the final service composition need to be
performed in tandem.

2. As discussed in Section 2.2, there have been earlier work that em-
ploy product line feature models to address service composition in
highly variable domains; however, our work is among the few to
perform automated generation of a composition based on a set of
feature selections while no existing work addresses issues of com-
position optimization and executable code generation within the
same framework for variablity-rich application as proposed in this
paper.

It should be noted that this present work is limited to only con-
sidering functional requirements and not treating non-functional re-
quirements. We have addressed the issue of considering non-functional
requirements in a separate work reported in Mahdi et al. (2017).

3. Problem statement and background

The objective of our work is given a set of requirements and con-
straints from the users to automatically optimally compose services in
order to satisfy the presented requirements. To achieve this objective,
we rely on the integration of software services and software product line
features. As mentioned earlier, researchers such as Lee and
Kotonya (2010) have already explored and concretely investigated how
services and features can be integrated. There is ample literature that
builds on a two-phase lifecycle that integrates services and features in
its first phase and then, in the second phase, uses the integrated model
to derive a product that satisfies the end-users’ desired feature selec-
tions (Medeiros et al., 2009; Lian et al., 2018). The derived product will
then be operationalized by the services that are connected to the se-
lected features.

In this paper, we assume that the first domain engineering phase of
the lifecycle, i.e., the connection between services and features, has
already been completed using one of the established methods in the
literature (Lee and Kotonya, 2010). Our focus will, therefore, be on the
development of a method which automates the application engineering
phase of the lifecycle and is able to build a service composition based on
a set of selected features. Current automated service composition
methods work on inputs such as OWL-S service descriptions
(Hristoskova et al., 2013), temporal logic (Bertoli et al., 2010), or other
formal languages, which are used to specify the characteristics of the
desired service composition. However, we are interested in an input
specification model abstract enough to be used by non-expert end-users
to specify their requirements and an output that would be concrete
enough to be directly executable. For this purpose we use feature
models as the input specification model and generate the final outcome
in WS-BPEL.

In the following, we will briefly review the two core technologies
that are the foundations of the work in this paper, namely feature
models and the business process execution language.

3.1. Feature models

Feature models are amongst the widely used variability modeling
tools used in Software Product Line Engineering (SPLE) for representing
product lines. A product line is a group of products that share mean-
ingful similarities and are distinguished by unique characteristics often
known as variabilities. A feature model provides a hierarchical tree
structure that systematically organizes the similarities and variabilities
of a product line through features. Features can be structurally related
to each other through optional, mandatory, Xor-, Or-, or And-group
relations. These relations express the possible variabilities of the pro-
duct family. Feature models also represent cross-cutting variations
known as integrity constraints. A feature model configuration is a subset of
the features of a feature model which satisfies a given set of structural
and integrity constraints, and represents a valid instance of the family.
Prior work has shown that a feature model configuration can be used as
an effective tool for representing end-users’ requirements (Lee et al.,
2002; Noorian et al., 2017).

Fig. 1 depicts a sample feature model for a software family that
processes a purchase request and creates an invoice. The family re-
presented through the ‘Order Processing’ root feature has four sub-
features, namely invoice creation, shipping scheduling, payment pro-
cessing, and territory support, where shipping scheduling and payment
processing features are optional. Territory support sub-features are
mutually exclusive. Furthermore, the selection of the ‘international’
feature prevents the selection of the ‘tax calculation’ feature and re-
quires the selection of the ‘currency conversion’ due to the integrity
constraints. The selection of features marked with a checkbox in Fig. 1
represents a valid feature model configuration that can also be con-
sidered to be the functional requirements expressed by an end-user.
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3.2. Business process execution language (BPEL)

The Web Service Business Process Execution Language (WS-BPEL),
commonly interchangeably known as BPEL, is a well-known standard
for the specification and execution of service-oriented business pro-
cesses. In WS-BPEL, processes are built using WSDL-SOAP services and
processes themselves are exposed as WSDL-SOAP web services. Control
flows in WS-BPEL are expressed by structured activities and data is
passed between services by sending variables as parameters. The gen-
eral process for a service composition is made of hierarchical organi-
zation of activities using <flow> and <sequence> tags. The activities
in <flow> can be executed in any order or in parallel while activities
in a <sequence> tag should be executed in order. The synchronization
between activities in a<flow> tag can be done using<link> tags. The
atomic activities in WS-BPEL are made of service invocations, receiving
a callback for a service invocation, and a number of WS-BPEL actions or
control activities which will not be considered in this paper for the sake
of simplicity and without loss of generality. Each service invocation
may receive some variables as input and may return one or more out-
puts. WS-BPEL code can be readily executed using existing WS-BPEL
engines.

Fig. 2 represents a graphical representation for a WS-BPEL code for
the possible realization of the feature model configuration in Fig. 1
where features marked with checked boxes are selected. The variables
which this process works with and their types have been defined in the
top left corner of the figure. This activity is a sequence which starts with
receiving a request whose outputs is assigned to c and po variables
which are variables containing information about the customer and
purchase order. The next step in the sequence is invoking re-
questInvoiceCreation that creates an invoice for a purchase order. This
service makes a callback when it has all the required information for
creating an invoice. The information is then sent in a flow activity. This
flow activity is made of three sequences which can be run in any order
and send tax information, production schedule and shipping schedule of
a product to the scheduling service. The only observable dependency is
that shipping schedule should be invoked after production schedule has
been invoked. This dependency between the children of the flow is
enforced using a link between these two activities. Afterwards, all the
information is sent to the invoice creation service in the flow activity.
The process waits for receiving invoice from it and assigns it to variable
i and then responds by replying with i.

3.3. AI Planning

The area of AI planning focuses on developing methods for solving a
class of problems known as planning problems. In a planning problem, a
state-based world is assumed and a number of actions is defined where
each action requires a number of conditions over the state space to be
true for it to be executed. The execution of an action results in a change
to the state of the world. It this context, a planning problem is the
problem of finding actions which can change the state of the world from
an initial state to a goal state. Considering that many real-world pro-
blems can be represented as a planning problem, there has been sig-
nificant work in this area. To standardize the way a planning problem is
described in different domains, a language called Planning Domain
Definition Language (PDDL) (Mcdermott et al., 1998) has been pro-
posed which is employed as the input language by many planning tools.
As such, a planning problem can be converted into PDDL and solved
using AI planners.

Planners can be categorized into two groups based on the solution
they find for a planning problem (Minton et al., 1994): total-order
planners, and partial-order planners. Total-order planners return a strict
sequence of actions, which needs to be executed to reach the goal
while partial-order planners keep the order of planning as loose as

possible so the actions can be executed in different sequences or in
parallel.

Total-order and partial-order planners adopt different approaches
for finding a solution to a planning problem. Classical total-order
planners use forward or backward chaining to find a single path of
action from the initial state to the goal state. This path is represented by
a strict order of action executions and returned as the planning result.
Partial-order planners conversely focus on removing threats by in-
troducing partial-ordering to action executions. A threat is present when
there is a possible ordering of the partial-order plan which breaks the
precondition of an action. The threat would be in the form of adding a
partial ordering constraint, which prevents that specific order to be
executed. Therefore, the result of partial-order planning is a set of
partial order constraints. Although, partial-order planners offer more
flexibility for action execution, methods for generating partial-orders
are more complex; therefore, they do not scale well, which makes them
unsuitable for many problem domains (Nguyen and
Kambhampati, 2001b). Therefore, the focus in both research and in-
dustry has been on total-order planners. As such, we also use a total-
order planner for generating a service composition and then use con-
cepts from partial-order planning to optimize the returned total-order
plan.

4. Proposed approach

In this paper, we propose an automated service composition and
workflow optimization method which receives a set of functional re-
quirements in the form of a feature model configuration and auto-
matically builds fully executable WS-BPEL code. Fig. 3 shows the
overview of our proposed service composition and optimization pro-
cess. Our process adopts SPLE’s two-phase lifecycle (Pohl et al., 2005).

In the first phase, a feature model and the other related artifacts for
the variability intensive family of products are built based on the re-
quirements of that family. Here, the requirements of the family are
captured and modeled in the form of a set of models that are collec-
tively called domain models (Pohl et al., 2005). In our approach, the
domain model consists of five sub-models, namely the feature model,
the feature model annotation, the context model, the service model, and
the service model annotation. The feature model captures possible
variability in the service composition in terms of features. The service
model represents the services which are available for realizing different
variants of the service composition family. The context model provides
the means for representing the state of the service composition en-
vironment. The context model serves as a bridge, which links features
to services. Feature model annotations use the context model to de-
scribe how each feature affects the preconditions of a service compo-
sition and how it impacts the operating context. Similarly, service
model annotations describe the preconditions and effects of individual
services. On the basis of these models, the features in the feature model
are linked to services realizing them using a context model, feature
model annotations and service model annotations.

In the second phase, the feature model from within the domain
model is used to select the desired features that need to be included in
the final service composition through the Requirement Specification ac-
tivity. Once the features to be included are selected and a feature model
configuration is developed, the Automated Composition Construction ac-
tivity works with the feature model configuration as the input and
automatically generates the appropriate BPEL code for the service
composition. In this paper, we realistically assume that domain en-
gineering phase has already been performed and the features of the
feature model configuration have been connected to relevant services
based on existing techniques from the literature (Lee and
Kotonya, 2010); therefore, only the realization of the ‘automated com-
position construction’ activity is the focus of this paper.
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Our proposed automated service composition and optimization
process consists of three steps. In the first step, the problem of finding
the service composition which satisfies the selected features of the input
feature model configuration is reduced to an AI planning problem. The
result of this step is an intermediate model, which we refer to as the
workflow, which abstractly represents the final goal service composi-
tion. The second step is optimizing the generated workflow in order to
effectively use parallelism where possible. Although, this step is op-
tional, it significantly improves the efficiency of the workflow from
different perspectives. In the third step, the optimized workflow is
converted into a well-structured readable BPEL code which can be di-
rectly executed. Since, the three steps work with domain models, we
first formally define the domain models in the rest of this section and
then introduce the details of how each of these three different steps are
realized.

4.1. Domain models

As mentioned earlier, we define the domain model to consist of five
sub-models, namely the feature model, the service model, the context
model, the service model annotation, and the feature model annotation.
In addition to the domain models, our method works with two other
models, namely the feature model configuration and the workflow
model. A feature model configuration is a subset of features in the
feature model, which respect constraints enforced by the feature model
and is created by the end-user to specify a desired functionality for the
system. The workflow model is an internal model, which is generated
through an optimization process and is used to generate a BPEL code. In
essence, the workflow model is a graph representing the precedence
relations between service executions. This method enables us to sim-
plify the solution by separating the activities that are required for the
creation of a service composition from those activities that are required
for generating BPEL code from that service composition. In our work,
we formally define a feature model and feature model configuration as
follows:

Definition 1. (Feature model) A feature model is a tuple
� � �� �=fm F( , , , , ����, � ���� 	
�, , �
�
) where

• F is a set of features;

• � � �� ↦: is a function which maps an optional child feature to its
parent;

• � � �� ↦: is a function which maps a mandatory child feature to
its parent;

• � � ���� ↦: and � � ���� ↦: is a function which maps child
features and their common parent feature, grouping the child fea-
tures into optional and alternative groups, respectively;

• � � �↦: is a function which maps each feature to its parent and
hence we have � � � � �� � ��� ���= ∪ ∪ ∪ ;

• � � �	
� ⊂ × is a set of requirement relations which represents the
dependencies between features.

• � � �
�
 ⊂ × is a set of exclusion relations between features which
represents pairs of features which cannot be both simultaneously
selected in a valid feature model configuration.

For the feature model shown in Fig. 1, the set F would include all the
features in the model and the function �� will include relations such as
(ShippingScheduling, InvoiceCreation) which represents the constraint
that the ShippingScheduling feature should be in the configuration when
the InvoiceCreation feature is in that configuration. Other structural and
integrity constraints in the feature model can be defined similarly.
Using the above definition, a feature model configuration can defined
as follows:

Definition 2. (Feature model configuration) A feature model
configuration is a set C⊆F where

• if f∈ C then � � �∈( )
• if f′∈ C and ��′ ∈f f( , ) then f∈ C;

• if f, f′∈ F and � � � �″ = = ′f ( ) ( ) and ����″ ′ ″ ∈f f f f( , ), ( , ) then
f∈ C⇒f′∉ C

• f, f′∈ F and �	
�′ ∈f f( , ) then f∈ C⇒f′∈ C

• f, f′∈ F and �
�
′ ∈f f( , ) then f∈ C⇒f′∉ C

Based on this definition, a valid feature model configuration is a
subset of features that satisfy the structural and integrity constraints
expressed in the feature model. Now, given such a feature model con-
figuration, our objective is to develop a workflow that would realize the
feature model configuration using services. In order to represent how
requirements represented by a feature model configuration is fulfilled
using services, the specific orchestration of services that satisfy those
requirements is captured in a workflow model. A workflow specifies the
sequence of interactions between the services in a service composition.
We first formally define the service model, which is the basis for our
workflow model, as follows:

Definition 3. (Service model) A service model =s I O O( , , )c is a triple
where

• I is a set of entities that the service accepts as input when invoked.

• O is the set of entities that the service returns as output after being
invoked.

• Oc is the set of entities that is received in service callback.

Assuming �� � � �= ∪ ∪ for each entity ��∈i , � �( ) shows the
type of the entity.

In this definition, a service is defined by the entities that it takes as
input, the entities that it returns after invocation, and the entities that it
returns in its callback if it results in a callback. Each of these entities is
strictly typed. For example in Fig. 2, the service re-
questProductionScheduling can be defined with =I inputPurchaseOrder{ },
=O {}, and =O outputProductionSchedule{ }c where the type of entities

inputPurchaseOrder and outputProductionSchedule is PurchaseOrder and
ProductionSchedule, respectively. Using this definition, we define the
workflow model as:

Definition 4. (Workflow model) A workflow model is a triple
�=w E N( , , ) where

• E is a set of entities which can be used as input or output in the
operations of the workflow. Each entity e∈ E has a type.

• N is a set of operation nodes which can be:
– An invocation node represented as a triple � �s( , , ) where s∈ S
represents the invoked service and � and � specify the mapping
relation between the workflow entities, and the inputs and out-
puts of the services.

– A receive node is a pair �
s( , ) where s∈ S represents the invoked
service which has resulted in callback and �
 specifies the map-
ping relation between workflow entities and the outputs of service
callback.

• � � �⊂ × shows the dependencies between operation nodes such
that for each n, n′∈N , �′ ∈n n( , ) , the operation of node n should be
performed before n′ in the execution process.

Fig. 4 shows a graphical representation of a workflow model re-
presented as a directed graph in which nodes are operation nodes and
edges represent the dependencies between operation nodes. For ex-
ample, node A shows an operation node which involves the invocation
of requestInvoiceCreation service and the edge from node A to C shows
that the invocation of requestShipping should be performed after the
invocation of the requestInvoiceCreation service.

In order to be able to automatically make a transition from a feature
model configuration to a workflow model, we define the context model,
which represents the environment in which the service composition will
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operate in. Relations between the feature model, the service model and
the context model are represented with annotations on these models.
These annotations are used for creating a workflow from the feature
model configuration. We formally define a context model as follows:

Definition 5. (Context model) A context model is a triple =c c c S( , , )T E
where

• cT denotes context types, which is a tuple �(Θ, Φ, ) where
– Θ is a set of data types
– Φ is a set of fact types
– � ↦ × ⋯×: Φ Θ Θ is a function which specifies the data type of
entities that each fact type is defined on.

• cE is context entities which is a pair �E( , ) where
– E is a set of entities that exist in the context
– � � ↦: Θ is a function which defines the type of each entity

• S is a context state which is a set S⊂Φ× E× ⋅⋅⋅. × E such that for
each fact � � �= ⋯ ∈ ⇒ ⋯ ∈f ϕ e e S ϕ e e( , , , ) ( , ( ), , ( ))k k1 1 and shows
the facts which are true in that context.

In our context model definition, context entities are similar to object
instances passed between functions, and context types are used for
strictly specifying entity types. Furthermore, the context model also
consists of the context state, which is defined by facts. Facts can express
the relationship between zero or more context entities. Let us elaborate
on this using Fig. 5. In this example, c and po are two context entities,
which are of customer and purchase order types, respectively. Fur-
thermore, the fact ordered(c, po) expresses that customer c has ordered
the purchase order po. This fact is represented using the fact type or-
dered which relates an entity of type customer to an entity of type
purchase order. We will explain in the following how the context model
information will be used to annotate features and services.

Based on the context model, each feature in the feature model needs
to be annotated with three sets: (i) the set of entities that are required
for the execution of a service composition that includes this feature; (ii)
the set of facts that should be true in the current state of the context
model in order for the service composition that includes this feature to
safely execute, and (iii) the set of facts that will become true in the
context model once a service composition, which includes this feature is
executed. These annotations are formally defined in the feature model
annotation:

Definition 6. (Feature model annotation) The annotation for feature
model fm is a function ��� which maps each feature f in the feature
model to a triple � �� �E( , , )f where

• Ef⊂ E is the set of entities that must exist in a context model in
order to execute any service composition with feature f.

• � ⊂ × × ⋯ ×E EΦ .f is the set of facts which should be true in the
context model in order to execute a service composition with feature
f.

• � ⊂ × × ⋯ ×E EΦ .f is the set of facts that will be true in the context
model after executing a workflow with feature f.

Fig. 5 shows the annotations for our order processing feature model.
As seen in the figure, for each feature, � �� �E , ,f are defined as needed.
For instance, the figure shows that for the ‘Invoice Creation’ feature to
be included in the goal service composition, a context entity i of type
Invoice needs to be present in the context model. Furthermore, when the
service composition consisting of the ‘Invoice Creation’ feature is exe-
cuted, the fact hasInvoice(po, i) will become true as an effect, which
means purchase order entity po will have an invoice entity i.

In addition to feature model annotations, we also annotate services
in a similar vein. The annotation of services with pre-conditions and
post-conditions (effects) has been already widely used in the literature
(Hristoskova et al., 2013) and we adopt a similar strategy.

Definition 7. (Service model annotation) A service annotation for service
s is a tuple � � � �� � � �=( , , , � � �� � �, , ) where assuming
�� � � �
= ∪ ∪ we have

• � � �� ��⊂ × × ⋯ ×, Φ .I C are the facts that should be true over the
entities interacting with the service (including inputs, output, call-
back output) in order to invoke the service and receive any callback.

• � � �� ��⊂ × × ⋯ ×, Φ .I C are the facts that become true over the
entities interacting with the service after the service is invoked or
the callback has been received.

• � � �� ��⊂ × × ⋯ ×, Φ .I C are the facts that become false over the
entities interacting with the service after the service is invoked or
the callback has been received.

For example in the service requestProductionScheduling in Fig. 2,
assuming the input inputPurchaseOrder is of type PurchaseOrder and the
callback output outputProductionSchedule is of type ProductionSchedule
in the context model, one could define the annotations for this
service as � �	�
	
� 
�����
	���� �������	
� �
�	�
	� = { (? , )},
� � ��	���
����!
�
�� 
�={ ℓ (inputPurchaseOrder, outputProduction
Schedule)}, and the other annotation sets would be empty. This anno-
tation means that after the invocation of this service, the value of the
output would be the shipping information for the input customer and
after receiving the callback the value of the callback output would be
the shipping schedule for the input customer.

In our model, the feature and service annotations serve as a bridge
between the feature and service spaces, which allow us to automatically
generate a service composition. We will use this bridge in order to find
the workflow of a service composition, which satisfies the requirements
specified by the end-users’ feature selections.

4.2. Workflow generation

Using the definition for the domain model, the workflow generation
problem can be formally defined as: Given a context model type cT, a
feature model fm, a feature model configuration C, a feature model
annotation ��� , a set of services S, and their corresponding annota-
tions �!, the goal will be to generate a workflow w using services in S
which satisfies the requirements of feature model configuration C.

We propose to represent the above problem as a standard planning
problem and represent it using Planning Domain Definition Language
(PDDL) (Mcdermott et al., 1998) and then find a solution through AI
planning. A planning problem is defined by the initial context state as
the starting point of the planner and the expected context state as the
goal of the planner. A planning problem can be defined in different
domains. A domain defines a set of possible actions that can be applied
in order to change the state. A planner can find a sequence of actions,
which move from the initial state to a goal state for a given domain if
such sequence exists. Representing the problem of generating a desired
workflow as a planning problem allows us to take advantage of existing
highly optimized planners for finding a possible workflow solution.

In order to represent the desired workflow generation problem as a
planning problem, we first formally define the planning problem and
the planning domain and then discuss how generating a desired
workflow can be accomplished as a result. We adopt the widely used
STRIPS planning specification model to provide our problem for-
malization, which can easily be converted to a Planning Domain
Definition Language (PDDL) model (Mcdermott et al., 1998). A plan-
ning problem in STRIPS (Fikes and Nilsson, 1972) can be defined as
follows:

Definition 8. (Planning problem and domain) a planning problem is
=p S S( , )initial goal and problem domain is a set A where:

• Sinitial, Sgoal are the initial and goal states. These states are re-
presented by a set of atomic facts;
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• A is the set of available actions. This set includes all the actions that
can be done in order to change the state. Each action a∈A is a tuple
(I, Fpre, Fadd, Fdel) where
– I is the set of parameters that an action takes;
– Fpre is the set of atomic facts, which should be in a state in order
for that action to be applicable (i.e., action a is applicable in state
S where Fpre(a)⊆S);

– Fadd is a set of facts that are added to a state after the action has
been applied;

– Fdel is a set of facts that are deleted from the state after the action
has been applied. Therefore, if Ssucc is the state after applying
action a to state S then = − ∪S S F a F a( ) ( )succ del add .

Definition 9. (Planning problem solution) Sequence = < ⋯ >s a a, , k1 is a
solution to the planning problem =p S S( , )initial goal in a domain A if

• a1 is applicable on state Sinitial;

• for each 1< j≤ i action aj is applicable in state S which has been
resulted by consecutive application of actions ⋯ −a a, , j1 1 on the in-
itial state Sinitial;

• consecutive application of actions a1, ⋅⋅⋅, ak on initial state Sinitial will
result in a state S such that Sgoal⊆S.

In our proposed method, the initial state of the planning problem is
built using the sets of �� in the annotations of the selected features in
the feature model configuration. These are the facts, which are assumed
to be true before executing the workflow and therefore can be con-
sidered to be the initial state of the planning problem. Similarly, the
goal state can be built using the sets of �� in the annotations of the
selected features in the feature model configuration given that these are
the facts that are expected to be true after the execution of the work-
flow. This can be formally defined as:

Definition 10. (Planning problem based on feature model configuration)
For a feature model configuration C, the initial and goal states of a
planning problem =p S S( , )initial goal that are defined as follows:

• ��= ⋃ ∈Sinitial f C

• ��= ⋃ ∈Sgoal f C

Initial and goal states of the planner are built by aggregating the
annotations of the selected features from the feature model configura-
tion. Fig. 6-(a) shows the PDDL representation of a planning problem of
the feature model configuration shown in Fig. 1. Lines 13–17 show the
initial condition for the planning problem, created by unioning over all
�� sets of the selected features. For example, the fact on Line 15 has
been created as a consequence of the annotation on the Domestic fea-
ture, which enforces that the destination of the purchase order is Ca-
nada. Lines 19–26 show the goal condition for the planning problem,
which has been created in a similar vein using �� sets of the selected
features.

Considering the fact that the available services represent the pos-
sible actions in our problem definition, we model the problem domain
based on the available services. Therefore, the possible actions would
be the invocation of different services and receiving their callbacks.
This can be formally defined as follows:

Definition 11. (Planning domain based on services) In a domain where a
set of services S is available, and for each s∈ S its corresponding
annotation is � �! ( ), the problem domain would be the set of actions A.
For each service s∈ S, A includes an action ainvoke(s) and it includes
action acallback(s) if the service call results in a callback. These actions
can be defined as:

• Action ainvoke(s) is defined as a quadraple (I, Fpre, Fadd, Fdel) based on
the invocation of service = ∈s I O O S( , , )c with annotation
� � � � � � �� � � � � � �= ( , , , , , ) where
– input of the action is = ∪ ∪I I s O s O s( ) ( ) ( )c

– � ��=F ( )pre
– � ��=F ( )add and a predicate showing that service s has been in-
voked with parameters I and the callback is pending (invoked(s, I))
if it has a callback.

– � ��=F ( )del

• Action acallback(s) is defined as a quadraple (I, Fpre, Fadd, Fdel) based on
the callback for a service = ∈s I O O S( , , )c with annotation
� � � �� � � �=( , , , � � �� � �, , ) where
– input of the action is = ∪ ∪I I s O s O s( ) ( ) ( )c
– � � ��"�#
� � ��= ∪F ( ) { ( , )}pre
– � ��=F ( )add
– � � ��"�#
� � ��= ∪F ( ) { ( , )}del

The sets Fpre, Fadd, and Fdel for an action are built based on the set of
� � �, , of the corresponding operation in the related service. Fig. 6-(b)
shows parts of the PDDL representation of the planning domain based
on the services used for realizing the service composition satisfying the
requirements of the feature model configuration shown in Fig. 1. Lines
13–25 show the action representation of invoking the re-
questProductionSchedule service. Lines 15–19 shows the parameters for
the action which is made of inputs and callback output since invocation
of the service has no output. The precondition for service invocation
corresponding action (i.e., the set Fpre) is represented in Lines 20–22.
The effects of the services invocation corresponding actions (i.e., the
sets Fadd, Fdel) are represented in Lines 24–26.

Now that the planning goal and planning problem domain are
concretely defined, a planner can be used in order to find a solution for
the planning problem. The solution will be a sequence of actions with
input variable assignments, which would take us from the initial con-
text state to the goal context state. Fig. 7 shows the sequence of actions
which has been found by the FF planner (Hoffmann and Nebel, 2001) as
a solution for the example problem where each action and its input
assignment is represented in a separate line. In the following, we for-
mally define how the workflow can be built based on the planner so-
lution and prove that the generated workflow is a valid workflow and
satisfies the requirements specified in the feature model configuration.

Definition 12. (Workflow based on planning problem solution) Based on a
solution to a planning problem denoted as = < ⋯ >s a a, , k1 for an input
feature model configuration C, a workflow �=w E N( , , ) can be built
where:

• The workflow entities set = ⋃ ∈E Ef C f .

• The operation node set = ⋯N n n, , k1 is made from the action se-
quence where nj is built based on aj where the service for the op-
eration is the corresponding service for that action. Similarly, the
assigned input and output for the operation nodes are corresponding
entities assigned to the action parameters.

• The dependency set � is −n n{( , )j j1 such that 1< j≤ i} which means
the operation nodes should be executed in the order specified in the
action execution.

Lemma 1. (Soundness of the Workflow) Let C be a feature model
configuration. A workflow w is generated based on Definition 12. w is a
valid workflow in that the following conditions hold for it:

• Cond 1.1 For each operation node nj , all preconditions for it hold before
its execution.

• Cond 1.2 The receive operation node for each service is not executed
before the execution of the invoke for that service.

Proof Cond 1.1. The proof goes by contradiction. Assume that there
exists some nodes in w whose preconditions do not hold before their
execution. Therefore there must be an ith node in the workflow
execution sequence which is the first node in the sequence whose
precondition is not satisfied. We show that such node cannot exist. If
precondition for operation node ni does not hold, it means there is at
least one precondition p which does not hold. This operation node can
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be mapped to its corresponding planning action ai. According to
Definition 11, each precondition for ni can be mapped to a
precondition for ai. Therefore, if p does not hold after executing
operation nodes 1 to −i 1 then there exists a p′ which is a
precondition for ai that does not hold after executing actions 1 to
−i 1. The planner has chosen ai for the next action, meaning that the

planner has chosen an action whose preconditions are not satisfied. This
is not possible. □

Proof Cond 1.2. The proof goes by contradiction. Assuming there exists
a receive operation node ni whose corresponding invoke has not been
called. This operation can be mapped to its corresponding action ai.
According to Definition 11, one of the requirements of this action is a
condition which only becomes true when the corresponding invoke
action has been executed. Since the corresponding invoke action has
not been executed, the planner has chosen an action whose
preconditions are not satisfied. This is not possible. □

Lemma 2. (Completeness of the workflow) Let C be a feature model
configuration and w be a workflow generated based on Definition 12, the
execution of w requires only the conditions specified by the feature model
configuration and results in a state which satisfies all effects specified in the
feature model configuration.

Proof. We prove that the execution of the workflow results in all the
effects specified by the feature model configuration. Similarly it can be
proved that the workflow only requires preconditions specified by the
feature model. The proof goes by contradiction. Assuming that there is
a feature f in a feature model configuration whose required effects are
not satisfied by the workflow. This means that there exists an effect

��∈e which is not satisfied. The selection of f in the feature model
configuration means that e∈ Sgoal which would mean that the planner
has found a solution which does not satisfy all of its goal conditions,
which is not possible. □

Theorem 1. (Correctness of the workflow) Let C be a feature model
configuration and w be a workflow generated based on Definition 12, w is a
valid workflow and it consists of all the features specified in the feature
model configuration.

Proof. This theorem descends directly from Lemmas 1 and 2. □

It is important to mention that Lemmas 1 and 2 and Theorem 1
show that the service composition generated based on our proposed
method has two characteristics: (1) the proposed service composition
approach is guaranteed to find a service composition that would in-
clude all of the required functional requirements of the users if such a
solution exists; and (2) the service composition is executable in that it
respects the execution semantics of the services where by all required
preconditions of the services are satisfied before they are called.
Therefore, the generated service compositions satisfy both the ver-
ification and validation requirements of an executable service composi-
tion.

Since the planner returns the solution as a sequence, the generated
workflow dependency graph would be a chain of nodes. In the next
section, we will discuss how this workflow can be optimized to a more
efficient one that considers parallel execution as well.

4.3. Workflow optimization

Although the generated workflow can be used to generate BPEL
code, given that the AI planners produce strictly sequential plans, the
generated workflow could benefit from potentially more efficient and
valid plans which use parallel execution of operations when possible.
Using parallelism in a service workflow can significantly affect the ef-
ficiency of the composed service (Rodriguez-Mier et al., 2011). There-
fore, once a plan is generated by the AI planner, we take an additional
step to optimize the workflow.

Let us first provide an overview of how the optimization is per-
formed before providing the formal details. The idea of our proposed
approach for workflow optimization is to remove as many edges from
the workflow as possible in order to relax the execution sequence
without violating the semantics of the execution. In order to do this,
we assume each edge in our workflow is a candidate for being re-
moved from the workflow and evaluate whether it can be removed or
not. The condition for removal is that the required preconditions for
any forthcoming service execution in the workflow is not violated; in
other words, we can only remove an edge if its removal does not lead
to the premature execution of services whose preconditions are not
yet prepared. We refer to this as the safeness condition. Therefore,
simply stated, the process of workflow optimization is the iterative
removal of edges from the workflow that respect the safeness condi-
tion.

More formally, workflow optimization is performed by consecutive
removal of the dependency edges in the workflow, which do not affect
the safeness McAllester and Rosenblatt of the workflow. The details of
our method for optimization has been shown in Algorithm 1. In the
main loop in the algorithm (Lines 2–13), the dependency edges are
removed consecutively until the termination condition (Line 13) is met.
In each iteration of the loop, each dependency edge in the workflow is
examined (Line 4) to see whether the workflow stays safe even after the
removal of that dependency edge or not (Line 8). If so, the new work-
flow after removal of that edge is added to set W (Line 9). The new
workflow after removal of an dependency edge would be a revised
workflow which would not include the removed dependency edge but
instead new dependency edges are added to preserve the connectivity
of the workflow. This is done by adding edges from the start node of the
removed dependency edge to the immediate nodes after the end node of
the removed dependency edge and similarly the immediate nodes be-
fore the start node and the end node of the removed dependency edge
(Lines 5–6). This ensures that the order of execution for the nodes be-
fore and after stay the same. After all dependency edges are examined,
the best workflow is selected from the setW and the current workflow is
replaced by that workflow (Line 12).

The definition of SELECT and TERMINATIONCONDITION in Algorithm 1 de-
pends on the optimization method which has been selected. The defi-
nition for SAFE which is responsible for examining the safeness of a
workflow has been defined in Algorithm 2. The definition of this
function has been inspired by the safeness condition in partial order
planning McAllester and Rosenblatt. In this algorithm, the main loop
iterates over all operation nodes of the workflow (Lines 2–16) and its
immediate inner loop iterates over all of the facts that are required to be
true as the precondition of the node (Lines 3–15). For each precondition
fact p of each node n, this algorithm iterates over all the nodes in the
workflow (Lines 5–11) in order to find an operation node n′ which

Algorithm 1. Pseudo-code for workflow optimization.
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makes that fact true; meaning that � �∈ ′p ( ) and is executed before
node n ensured by calling AFTER(w, n′, n) (Line 6). The function AFTER(w,
n′, n) (Line 6) always looks for a path from n′ to n in the workflow. If
such path exists, it means that n will be executed after n′. The relation
between node n′ and n is called causal link for p. If such a node is found,
it is examined if a threat to that causal link exists (Line 7). If there is no
threat to the causal link between two nodes, a safe causal link has been
found (Line 8). If there exists no safe causal link for a precondition fact
of a node (Line 12), the workflow is not safe.

A threat exists for a causal link when there exists an operation node
that can be executed between the two nodes of the causal link and
makes the fact of the causal link false. The function which examines a
causal link for possible threat has been shown in Algorithm 2. This
algorithm works by iterating over all nodes in the workflow and ana-
lyzes if it can pose a threat to the causal link (Lines 2–6). A node can be
considered a threat to a causal link if it does not execute before the start
node or after the end node of the causal link and makes the related fact
to that causal link false (Line 3).

Theorem 2 (Validity of the workflow) Let w be a workflow and SAFE(w)
holds for it, then all preconditions for each operations node in w is satisfied
before its execution.

Proof. The proof goes by contradiction. Assuming there exists a
workflow w for which SAFE(w) does hold and there exists a sequence
of execution sw for this workflow such that there exists an operation
n∈ sw whose preconditions p do not hold. There could be two reasons
that such situation can happen: (1) There exists no operation in the
execution sequence sw which results in p before the of execution n (2)
there are nodes which result in p but there also exist nodes which result
in ¬p such that in this sequence ¬p would be true before execution of n.
We show that none of these situations is possible, as follows:

(1) If there exists no operation node in sw before n which results in p,
the condition for the if statement in Line 6 cannot be true for any n′∈N
because if this condition becomes true for a node n′ it means that there
exists a node which is always executed before n and results in p which
contradicts the assumption that in sequence sw there exists no operation
that makes p true before n. If the condition in the if statement is not true

for all the nodes in the workflow, true cannot be assigned to the variable
safeCausalLinkFound. Therefore, the condition on Line 12 would be true
and the function should have returned false which is a contradiction
with the assumption that SAFE(w) holds for this workflow.

(2) Assume that nj is the last node in sequence sw before n which
results in ¬p meaning � �$∈p ( ). Additionally, there should exist nodes
which result in p before execution of n based on (1). Assuming that ni is
the last one before n in sequence sw, we should have i< j in order for ¬p
to be true when n is executed. We show this is not possible by contra-
diction. Let N(n, p)⊂N be the set of nodes that satisfy the condition on
Line 6 which means that it is always executed before n and results in p.
Since ni is the last node before n which results in p and i< j, it can be
said AFTER(w, nj, n′) would return false for every n′∈N(n, p).
Additionally, it can be said AFTER(w, n, nj) would return false since n
should be executed before nj on all possible execution sequence of the
workflow in order for AFTER(w, n, nj) to be true and sw is one sequence
that nj did not execute after n. Using these two facts, it can be inferred
that THREATEXISTS(w, n, n′, p) on Line 7 would be true for every n′∈N(n,
p). This is because AFTER(w, nj, n′) and AFTER(w, n, nj) do not hold and we
have � �$∈p ( ) which causes the condition of the if statement on Line
20 to be true and consequently causes the THREATEXISTS(w, n, n′, p) to be
true. Since it is required for THREATEXISTS(w, n, n′, p) to be false for one
n′∈N(n, p) in order for a safe causal link to be found, SAFE(w) would
return false which is a contradiction. □

Although we prove that preconditions of all workflow operation
nodes will be satisfied, we still need to make sure that the whole
workflow precondition and effects stays the same during optimization.
This can be done by a small modification in the input workflow: a new
start operation node with workflow preconditions as its effects is added
to the beginning of the workflow and an operation node with workflow
expected effects as its preconditions is added to the end of the work-
flow. Considering that the optimization will not affect precondition
satisfaction, it can be easily proven that if the start and end node is
removed from the workflow after optimization, the resulting workflow
will satisfy its expected preconditions and effects.

4.4. Generating BPEL code

Two main approaches have been used in the literature for re-
presenting service compositions: approaches based on block structure
Microsoft; Thatte and graph-based approaches OMG; Leymann. In the
block structure approaches, the process is represented with hierarchical
blocks which decompose the process structure to smaller blocks that
can themselves be built of smaller blocks. Example of such models are
Windows Workflow Foundation (WF) Microsoft, Microsoft XLANG
(Thatte, 2001), and conventional programming languages. In the
graph-based models, the structure of the dependency between opera-
tions are represented using arcs between the operations similar to how
we represent workflow in our work. Example of such models are BPMN
(OMG, 2009) and IBM’s WSFL Leymann. BPEL has been built based on
IBM’s WSFL Leymann which is graph-based language and Microsoft
XLANG (Thatte, 2001), which is a block structured language. BPEL has
inherited from both these languages and therefore has the capability to
represent a service composition in both ways. The generated workflow
in our work can easily be represented in BPEL using a graph-based
structure using <link> tags. For example, Fig. 15-A shows the graphical
representation of a solely graph-based BPEL code for the workflow in
Fig. 4. However, the graph-based representation of a workflow is
usually hard to comprehend and is often not chosen as a way to re-
present a process (Aalst and Lassen, 2008; Reijers and Mendling, 2011).

In BPEL, the structured way to represent dependencies between
operations other than control operations are <flow> and <sequence>
structures. Therefore, some approaches have proposed methods for
building fully block structured BPEL using only those structures from
graph-based languages such as BPMN (OMG, 2009). However, the

Algorithm 2. Pseudo-code for examining safeness of a workflow.
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dependency in a graph-based language cannot be fully captured
through only hierarchical use of these two structs. That is the reason
why BPEL provides the link tag which allows the representation of
graph-like dependencies between nested children of the flow activity.
Considering that, it has been shown that using more graph-based
structures (i.e., link tags) in the BPEL process reduces its readability
(Reijers and Mendling, 2011). For this reason, we propose a method for
converting our generated workflow into a BPEL process which mini-
mizes the number of graph-based structures while preserving the actual
dependency represented in the workflow graph.

In our proposed approach, we build a BPEL process which is solely
graph-based using <link> structure of the BPEL process and then we
will take an incremental approach to find the part which can be re-
placed with one of the block structures types. Such parts will be re-
placed with the block structure activity and the process continues until
no more replacement is possible. In the following we will formally
define BPEL processes and then define our proposed approach.

Definition 10. (BPEL process) A BPEL process =p V a( , ) is a pair
where

• V is the set of variables used in BPEL operations;

• a is an activity which can be :
– A flow %A( , ) made of a set of sub-activities A such that these sub-
activities can be executed in any order. Synchronization between
descendant activities of a flow activity is done through links in % .
Each link %∈l is a pair (a, a′) that enforces the execution of a′
after a;

Fig. 1. A sample feature model for an order processing family.

Fig. 2. Graphical representation of a possible WS-BPEL process for order pro-
cessing.

Fig. 3. The proposed two phase process for service composition.
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– A sequence < a1, ⋅⋅⋅, an> which is an activity made of a se-
quence of sub-activities that should be executed in the order
specified in the sequence;

– An atomic activity which can be any of the BPEL atomic opera-
tions such as invocation of a service.

This definition of BPEL is abstract and has only been mentioned
here in order to capture the parts of a BPEL process which we focus on
in our approach. A BPEL process =p V a( , ) can be built from a work-
flow �=w E N( , , ) where the set V corresponds to the elements of the
entities set E and %=a A( , ) is a flow where A is a set of atomic ac-
tivities corresponding to operations in nodes in N and % is the
equivalent of � defined over atomic activities of the operation nodes.

We propose a process that takes a BPEL process as input and at-
tempts to reduce the number of graph-based structures in the process
and replaces them with block-based structures with the goal of reducing
the number of graph-based structures. This is done through a fold op-
eration in which the set of activities whose dependencies are re-
presented using link tags are replaced with a block structured activity.
This is similar to the work presented in Aalst and Lassen (2008).
However in Aalst and Lassen (2008), BPEL generation requires human
intervention during its process since that method is only able to fold
completely well-structured set of activities. A set of activities is called
well-structured when all of its members dependencies can be re-
presented using a block structure component and therefore all graph-
based structures (i.e., link structures) in which they are involved is
removed when it is folded into that component. Therefore, it requires
human intervention when such set of activities cannot be found. Our
proposed method is fully automated and continues to look for the set of

activities which are not well-structured but can be folded and their
folding reduces the graph-based structure.

Algorithm 3 shows the function for the proposed folding algorithm.
The algorithm finds the parts of the process which can be folded into a
block-structured activity by calling the FindFoldingCandidates function
(Line 2). This function gets a BPEL process as input and returns a set of
possible folding candidates which are block-structured activities. The
main loop of the function (Lines 3–7) repeats until there is no more
folding candidates for creating a block structure. In this loop, the most
suitable candidate for folding is selected by calling SelectBestCandidate
(Line 4). After the best folding candidate has been selected, the activ-
ities in BPEL process is folded by calling the Fold method (Line 5). We
are using the same folding mechanism as the one used in Aalst and
Lassen (2008) therefore we do not provide formal definition for the fold
method. After that, folding candidates in the result process are found
and the loop repeats.

The SelectBestCandidate function has been defined in Algorithm 3.
This algorithm uses two functions LINK (Line 8) and UNFOLDABLELINK (Line
9). The LINK function returns the total number of links which have been
used in the flow activity as well as the nested flows in it. The UN-

FOLDABLELINK function returns those links in the flow structure which
cannot be folded in the rest of the optimization. These are those links
which begin or end in an activity which is not the immediate child of
flow and nested in one of the activities of the flow. This algorithm
works by iterating over all folding candidates (Line 12–18). For each
folding candidate, the flow after folding that candidate is found (Line
11). In this new flow, the number of links and unfoldable links in that
flow structure is found (Line 14). If the number of unfoldable links in
this candidate is less the than best candidate which has been found till

Fig. 4. A workflow solution satisfying requirements of feature model configuration in Fig. 1.

Fig. 5. An annoated feature model for the order processing family.
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now or it has equal number of unfoldable links but less number of links,
the current candidate is selected as the best candidate (Lines 15–17).
This algorithm uses a greedy selection method whereby the candidate
which results in the least immediate unfoldable links and most reduc-
tion of the links is selected. The selection method has shown to be ef-
fective in our evaluations.

Algorithm 4defines the function for finding folding candidates. The
algorithm works by iterating over all activities in the main flow and
finding flow and sequence structures related to each activity (Line 2–5).
Specifically, for each activity a, it finds sequence structures which start
from a and the flows which a can be a part of. The algorithm then adds
all found structures to the set C which stores the potential candidates
(Line 4). Sequences starting from an activity are found by calling the
FindSequence function. In this function, for each link element starting
from an input activity, we find the sequences from the end activity of
the link and create a sequence by adding starting activity to all those
sequences (Line 9–11). Function FindFlow finds a flow activity that an
activity can be part of if such flow activity exists. This function starts
with result set F with the input activity as its only member (Line 14). It
then iterates over all the activities in the flow to find activities which
can form a flow structure with this activity (Line 15–19). An activity

can form a flow with the input activity when the set of all activities with
a link to and from it would be the same. The function Preceding and
Following return the set of preceding and following activities for an
activity, respectively (Line 16). If that is the case, then that activity will
be added to the result set F. After examining all activities, if the car-
dinality of the result set is less than two, it means that the input activity
cannot form a flow structure with any other activity and therefore the
function returns an empty set. Otherwise, it will create a flow structure
with the result set and with all the links in the main flow whose start
and end activities are in the sub-activities of the newly created flow
children.

5. Tooling support

The contributions of our work in the paper have been implemented
in a web-based tool suite1. Our tool suite relies on the FF planner
(Hoffmann and Nebel, 2001), which is a highly optimized PDDL-com-
pliant planner for finding a solution to a generated planning problem.

Fig. 6. Example of planning problem and planning domain in PDDL.

Fig. 7. Solution returned by a planner for our example problem.

1 The code for the tool suite is available at https://github.com/matba/magus

M. Bashari et al. The Journal of Systems & Software 146 (2018) 356–376

369

https://github.com/matba/magus


For optimization and BPEL generation, the Java implementation of the
proposed method is used in our tool suite. The tool suite support for the
proposed method consists of two main design tools. The first tool is the
Domain Design Tool. It is an Integrated Development Environment in
which designers can create new service families. First of all, it helps the
designer build the feature model and import services for the service
family. Second, it enables designers to define the context model and
annotate feature models and services using that context model. The tool
serializes the models and allows for their storage and retrieval. The
second tool is the Configuration Tool. It is a web application which
provides feature model configuration utility by which the end-user can
select the desirable features of the service composition. The service

composition is generated by this tool based on the input feature model
configuration and according the techniques presented in this paper. The
Configuration Tool can be accessed online2 and provides the following
functionalities:

• It enables users to load, view, and edit a service family;

• It allows configuration of a service family feature model and vali-
dation of the configuration;

• It allows for the generation of the workflow graph and BPEL process

Algorithm 3. Algorithm for BPEL process optimization.

Algorithm 4. Algorithm for Finding Folding Candidates.

2 Available at: http://magus.online/
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for a service composition with specific features;

• It visualizes the workflow graph and BPEL process and enables the
editing of the workflow graph and deploying of the BPEL process.

Fig. 8 shows the screenshot of the main page of this tool. The first
part is the service family loading toolbar. The user starts by loading a
service family. Users can load a service family to the tool using the URI
to family XML configuration file. A service family file contains in-
formation about the annotated feature model and the service re-
pository. After loading a service family, the feature model for that fa-
mily is visually presented in the feature model panel. This panel has
editing and configuration tabs. A user can select and deselect desirable
features by clicking on them in the configuration tab. For cases when
the existing feature model does not cover all the requirements of the
user, the feature model structure and annotations can be changed in the
feature model edit tab. In the editing tab, a set of possible actions for
each feature such as adding a child or editing annotations is displayed
by clicking on each feature.

Once the feature model configuration is completed, the users can
request service composition generation where the set of features are
processed. In the first step, the structural and integrity constraints are
examined. In the case of a conflict, a message showing the source of
conflict is displayed in the logging panel. Otherwise, three different
views of the generated composition is displayed in different tabs in the
process panel. In the workflow tab, the workflow graph which consists
of operation nodes and dependency edges are visually represented. The
user can modify this graph if necessary by adding or removing de-
pendency edges between operation nodes. In the BPEL schematic view
tab, the visual representation of the organization of the activities is
displayed. This visual representation can be used for understanding and
verifying the logic of the process since BPEL code is hard to read. In the
BPEL code tab, the readily executable BPEL code is displayed which can
be saved or deployed to a BPEL execution engine.

6. Experiments

The proposed work can be divided into three main parts, which are:
workflow generation, workflow optimization, and BPEL code genera-
tion. In the following, we go through these three parts and describe the

experiments which have been performed in order to evaluate them.
These experiments were performed on a machine with Intel Core i5 2.5
GHZ CPU, 6 GB of RAM, Ubuntu 14.04 and Java Runtime Environment
v1.8.

6.1. Workflow generation

We have already formally shown the soundness and correctness of
our proposed techniques; therefore, the main focus of our experiments
with regards to workflow generation is the assessment of the scalability
of the proposed method in terms of its running time. We evaluate the
efficiency of the method from two perspectives:

• Experiment 1.1 (Scalability in terms of the services repository size): How
does the workflow generation time increase as the number of ser-
vices in the repository grows?

• Experiment 1.2 (Scalability in terms of the feature model configuration
size): How does the workflow generation time increase as the size of
the feature model configuration grows?

In order to run the experiments, three models were required: con-
text model, services and their annotations, feature model and its an-
notations.

Context model: We developed an OWL ontology for the context
model with 30 entity types and 600 fact types. This context model is
used to annotate the services and the feature model.

Services and their annotations: In order to generate the services and
their annotations, we developed a random OWL-S service descriptions
generator which creates service descriptions with inputs, outputs, pre-
conditions, and effects randomly picked from our context model. This
OWL-S service description generator is highly customizable with dif-
ferent service model characteristics (e.g. number of inputs, outputs,
precondition, and effects). Three service repository sets have been
created where services in the repositories of different sets have different
numbers of precondition and effects. In our experiments, we used 3, 6,
and 9 as the number of preconditions and effects. Each of these re-
pository sets has 10 different repositories of sizes between 1000 to
10,000. Totally, 30 different service repositories have been created.

Feature model and its annotations: We used the SPLOT feature model

Fig. 8. The screenshot of the Configuration Tool.
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generator (Mendonca et al., 2009) to generate a feature model with
1000 features. In order to annotate this feature model, a customized
feature model annotation generator is developed which randomly picks
annotations from the context model and assigns them to the features of
the feature model. Using this annotation generator, three different an-
notation sets were created for the feature model where the number of
annotations for each feature was 2, 8 and 16. In the first experiment, a
feature model configuration with 50 features is selected and the time to
generate the workflow using service repositories of different sizes is
measured. This operation is done repeatedly 20 times with different
feature model configurations of the same size and the average time for
generating the workflow is calculated. This experiment is repeated for
all three repository sets. Fig. 9 shows how the workflow generation time
increases with the increase in the size of the service repository. As it can
be seen from the figure, the increase in time is linear and does not
significantly increase with the increase in the number of services in the
repository and remains practical (around 2.4 seconds for 9000 ser-
vices). In the second experiment, the service repository with 1000
services and an average sum of precondition and effects of 6 is selected.
In this setting, the time for generating workflows for feature model
configurations of different sizes is measured. The feature model con-
figuration is generated by randomly selecting features using a tool
based on FaMa suite (Benavides et al., 2007) which receives a feature
model and the desired number of features in the configuration and
returns a random valid feature model configuration with that size. For
each configuration size, 20 different configurations are generated. For
each number of annotations, the average time required for generating
the workflow is calculated for different configurations. Fig. 10 shows
the average workflow generation time with different feature model
configuration sizes for different number of annotations. As seen in the
figure, the generation time remains linear for various configuration
sizes when the number of annotations are 2 and 8 per feature. However,
when the number of annotations is increased to 16, the generation time
becomes exponential and shows rapid increase. It is important to note
that (i) even with the increase, the time is manageable for practical
purposes, i.e., 2 seconds for 1000 services and 500 requirements. (ii)

Literature suggests that the number of annotations is typically in the
range of 5–6 annotations per feature (Asadi et al., 2014), in which case,
the performance of the generation algorithm is linear.

6.2. Workflow optimization

The focus of the second set of experiments is on the investigation of
the scalability of the optimization method. We explore the optimization
method scalability when the size of workflow increases. In addition, we
explore whether the optimization method is able to decrease the time-
to-completion of the workflow.

• Experiment 2.1 (Optimization scalability in terms of workflow size):
How does the workflow optimization time increase with the increase
in the size of workflow (in terms of growth in the number of
workflow nodes)?

• Experiment 2.2 (Effectiveness of the optimization in terms of workflow
time-to-completion): How much does the time-to-completion of a
workflow decrease as a result of the optimization?

For the sake of the experiments, the models from the previous ex-
periment were reused. The service repository with 1000 services and an
average number of preconditions and effects of 6 were employed. The
services were annotated with random time-to-completion with a normal
distribution of � ��(200 , 50).

For the first experiment, 20 different configurations in each work-
flow size category was randomly selected and the average time for
workflow generation and optimization is calculated. Fig. 11 shows how
workflow generation and optimization time increases as the size of
workflow grows. This shows that the workflow optimization method is
considerably slower than the planning method. However, given the fact
that the optimization method is only a one time task, its benefits in
terms of reducing the time-to-completion is noticeable.

In the second experiment, the objective was to measure whether the
optimization method is able to generate workflows that have a lower
time-to-completion compared to the original non-optimized workflows.

Fig. 9. Workflow generation time in terms of service repository size.

Fig. 10. Workflow generation time in terms of feature model configuration size.

Fig. 11. Workflow optimization time in terms of workflow size.

Fig. 12. Time to completion in terms of workflow size.
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For this purpose, the time-to-completion of the generated workflow
were calculated both before and after the optimization. Fig. 12 shows
the result of the optimization. As seen in the figure, the time-to-com-
pletion of a non-optimized workflow increases as the size of the
workflow increases. However, the optimization method has been able
to maximize parallelism in the workflow such that there is no notice-
able growth with the increase in the workflow size. For instance, for a
workflow with 100 activities, which on average take 20 s prior to op-
timization, the optimization method has been able to reduce the time-
to-completion to 1 s.

6.3. BPEL process generation

The focus in the experiments in the BPEL generation part is on
comparing the proposed method with two other BPEL generation
methods in terms of structuredness of the result workflow. In addition,
we compare the time required for the generation of BPEL in the pro-
posed method with two other methods.

• Experiment 3.1 (Process structuredness in terms of the number of block-
structure activities): How well does the proposed method take ad-
vantage of block-structured activities in the generated BPEL code
compared to other methods of BPEL generation?

• Experiment 3.2 (BPEL process generation scalability in terms of process
size): How does the BPEL process generation time increase with the
increase in the size of input workflow (in terms of growth in the
number of workflow nodes)?

In order to run these experiments, the workflow models from pre-
vious experiments were re-used. In order to compare our proposed
method with other existing methods, the method proposed in
Ning et al. (2007) and a method based on the idea in Aalst and
Lassen (2008), were implemented. In Ning et al. (2007), an algorithm,
known as BPELGEN, for converting a service workflow represented by a
directed acyclic graph to BPEL is proposed. The resulting process is a
fully blocked-structured process built only using flow and sequence
activities. However, this method adds some execution constraints since
a graph-based structure cannot be fully captured using block-based
structure. For example in Fig. 4, the workflow graph generated by our
approach for the example feature model configuration shown in Fig. 1
is presented. Fig. 15-B shows the result BPEL process generated by
executing the BPELGEN algorithm. Although, this BPEL process is fully
block-structured, it imposes some new constraints such as enforcing the
execution of operation I after D or F after D which is not enforced in the
workflow graph. In Aalst and Lassen (2008), a method for converting
workflow-net which is a petri-net based language to BPEL process has

been proposed. In this method workflow-net is converted into a BPEL
process by consecutive folding of structures of workflow-net into BPEL
activities. However, this method requires human intervention when it
could not find any well-structured set of activities for folding as we
discussed it before. Fig. 15-C shows the result of this method for the
example in Fig. 4 before requiring human intervention. Fig. 15-D shows
the resulting BPEL process generated by our proposed approach.

In order to perform the two experiments of this section, 50 different
workflows are randomly selected and converted to BPEL using the three
different methods. For the first experiment, the number of flow activ-
ities, sequence activities and link tags are collected and for the second
experiment, the time to generate that BPEL is collected. For the method
proposed in Aalst and Lassen (2008), the BPEL code right before re-
quiring human intervention was considered to be the result.

Fig. 13 shows the average number of flows, sequence activities and
link tags for BPEL code generated by the different methods. It can be
seen that the number of links and total number of elements are highest
for the method proposed in Aalst and Lassen (2008), which is expected
considering the fact that this method cannot proceed when there is no
well-structured set of activities in the BPEL code. Our proposed method
creates processes with significantly smaller number of activities and
smaller number of links compared to this method. Additionally, the
BPELGEN method creates no links and a fewer number of activities
compared to our proposed method. However as we mentioned before,
this algorithm imposes dependencies which are not in the workflow
graph which can negatively affect understandability of the workflow as
well as some quality of service attributes such as time-to-completion.

Fig. 14 shows the average time required for generating BPEL pro-
cesses using the different algorithms. Our proposed method and the
method in Aalst and Lassen (2008) are able to generate the BPEL pro-
cess in a very fast time (<10ms). The BPELGEN algorithm shows ex-
ponential increase in BPEL generation time which is expected

Fig. 13. Comparison between different BPEL generation methods in terms of element distribution.

Fig. 14. Comparison between different BPEL generation methods in terms of
generation time.
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considering that it requires depth-first traversal over the workflow
graph in each iteration. Still, the time required for generating BPEL
using this method remains acceptable (<200 ms) for the processes sizes
tested in our experiments.

6.4. Threats to validity

In this subsection, we discuss the validity of the observations that
were made in the experiments by discussing issues related to internal
validity and also discuss threats that can affect the generalization of the
observations by analyzing external validity.

6.4.1. Internal validity
In the following, we highlight some of the threats related to the

internal validity of our experiments:

• All the models which are used in these experiments are synthetically
generated. While the models are synthetic, we have been rigorous in
capturing and reporting all of the statistical distributions that were
used in our tools for generating these models. Despite this, there can
still be some unconfigurable parameters in these tools which could
result in bias when creating the synthetic models, hence indirectly
impacting the experimental results.

• In Experiment 2.1, planning was performed using the FF planner,
which is a highly optimized planner written in C; however, for the
sake of consistency, we have implemented the optimization logic
using the Java programming language. The programming language
as well as the optimization method can affect time-to-completion.

Therefore, the reported values could change based on a different
implementations.

• The implementation for the two methods used as baseline for BPEL
process generation has not been publicly released by the authors.
Therefore, we have implemented these two methods based on the
algorithms provided in their corresponding papers. These im-
plementations may have minor differences with the actual im-
plementation of the authors, which may result in slightly different
outputs. We have made the implementation of the baselines as well
as the implementation of our proposed method available on the
magus.online source repository for replication purposes.

6.4.2. External validity
In the following, we report on the issues which threaten the gen-

eralization of the observations made in the experiments.

• The results of our experiments may be different when applied on
real-world domains considering the fact that we used synthetic do-
main models in our experiments, which may not truly capture the
properties of a real problem domain. Therefore, evaluating the
proposed method by addressing real-world problems has to be
considered as a next step for our work.

• Experiment 2.2 assumes that the time-to-completion of all services
has the same distribution. However, this may not be the case in real-
world scenarios, which may affect the efficiency of the optimization
method. Similar to the previous issue, evaluating the optimization
method on a workflow defined over actual services may be able to
better capture the efficiency of this method. Furthermore, the

Fig. 15. Possible BPEL representation of workflow in Fig. 4.
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optimization method is only evaluated for optimizing time-to-com-
pletion that may not have the same efficiency for other properties of
the workflow such as parallelism.

• In Experiment 3.1, it has been shown that the proposed method
results in more structured BPEL processes compared to other
methods. Considering that structuredness is used as a measure for
understandability of a process, we concluded that our method re-
sults in more understandable processes. This cannot always be the
case considering that the process can be structured in a way which is
confusing for the user. This conclusion can be further examined
through a user-study, which evaluates the understandability of the
generated processes by actual users.

7. Concluding remarks

In this paper, we have proposed an effective approach for the au-
tomated generation of service compositions for variability-intensive
domains. Our work is positioned within the intersection of service-or-
iented architecture and software product line engineering. We benefit
from the formal representation of feature models from the software
product line engineering domain to represent the possible requirements
space of the end users and feature model configurations to represent
exact user requirements. We have benefited from the integration of
feature models and services to translate functional requirements ex-
pressed as feature model configurations into service selections. The
selected services are then automatically composed based on AI planning
so that a workflow is generated. The generated workflow is not guar-
anteed to have desirable properties such as execution time. For this
purpose, we have proposed a method that introduces parallelism into
the workflow while maintaining its validity. The optimized workflow is
then converted into WS-BPEL that is directly executable.

7.1. Future work

In the following, we discuss potential areas for our future work and
the limitations that each area will be addressing.

• As a next step, we are planning to apply the proposed method in
real-world problem domains. This includes the generation of the
domain models based on the requirements of the environment and
the automated generation of processes for specific application do-
mains. This will enable us to perform more extensive evaluation of
the practicality and usefulness of the proposed method, which can
point to the limitations of our proposed method.

• One of the limitations of the proposed approach is that the process
of linking services and features with appropriate annotations can be
a complex and error prone process. As a next step, we will in-
vestigate the possibility of developing automated or semi-automated
tools, which use existing information such as textual descriptions of
the features to aid domain designers in developing domain models.

• Another limitation of the proposed method is that it assumes that
the impact of features and services on the environment can be
captured using a set of predicates, which may not always be the
case. By applying the proposed method on real-world problems, we
can evaluate how this assumption can affect the applicability of the
proposed method. The result of such evaluation can be used to im-
prove the proposed method.

• Given the fact that our work is based on software product line fea-
ture models, in our future work, we are interested in exploring the
possibility of re-generating the workflow at runtime to support dy-
namic runtime self-adaption of the composition. This would provide
the means to ensure that the workflow does not only respect func-
tional requirements but is also aware of non-functional and quality
of service requirements. We will investigate how runtime re-

configuration of the feature model can enable us to find alternative
service compositions that satisfy functional and non-functional re-
quirements.
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