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A B S T R A C T   

Predicting the performance of a retrieval method for a given query is a highly important and 
challenging problem in information retrieval. Accurate Query Performance Prediction (QPP) 
plays an important role in real time handling of queries with varying levels of difficulty. While 
there have been several successful query performance predictors, no predictors have yet been 
introduced within the context of the ad hoc table retrieval task, which is concerned with an-
swering a query with a ranked list of tables. In this paper, we propose to perform query per-
formance prediction based on neural embedding techniques for ad hoc table retrieval and in-
troduce three neural features. The neural features are based on neural embedding techniques and 
leverage the distance between tokens in the embedding space in order to capture their semantic 
similarity. We evaluate our proposed work based on a gold standard test collection and compare 
it with the state-of-the-art post-retrieval query performance prediction methods. We find that our 
neural features (1) are effective for predicting the performance of content-based ranking func-
tions; and not as effective for feature-based ranking functions, and (2) show a synergistic impact 
on existing QPP methods and hence are able to increase their performance in practice.  

1. Introduction 

Within the context of ad hoc retrieval, the effectiveness of information retrieval (IR) methods can significantly vary across 
different sets of queries and hence the quality of the results returned for some queries can be poorer compared to others. Such queries 
are often known as ‘difficult’ queries. Thus, early and real-time determination of those queries that are more difficult than others can 
help IR systems choose appropriate strategies for dealing with them through techniques such as query reformulation (Diaz, 2016). 

Query Performance Prediction (QPP) methods are specifically designed to identify the difficulty of a query by estimating the 
performance of a retrieval system for that given query in the absence of relevance judgments. Query performance prediction has been 
studied well in the past few years most specifically for the task of ad hoc document retrieval (Arabzadeh, Zarrinkalam, Jovanovic, Al- 
Obeidat, & Bagheri, 2020; Shtok, Kurland, Carmel, Raiber, & Markovits, 2012; Zhou & Croft, 2007). Empirical studies have shown 
that the quality of existing predictors can still be improved specially when considering factors such as query ambiguity, missing 
content, and vocabulary mismatch (Carmel & Kurland, 2012), which are often hard to address because most predictor models are 
based on features such as the frequency of query terms (He & Ounis, 2004) or the average IDF of query terms in the collection 
(Tomlinson, 2004). These features are primarily frequency-based term-dependent features and cannot address issues such as voca-
bulary mismatch. 
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While existing work in query performance prediction has been predominantly focused on various statistical measures based on term 
frequency and lexical matching, the information retrieval community has recently embarked on exploring the impact and importance of 
neural information retrieval techniques (Bagheri, Ensan, & Al-Obeidat, 2018; Mitra, Craswell et al., 2018; Zuccon, Koopman, Bruza, & 
Azzopardi, 2015) or latent models (Furnas et al., 2017; Shen, He, Gao, Deng, & Mesnil, 2014) where a document that does not overlap in 
terminology with the query can still be retrieved. The benefit of such methods is that they consider semantic association between the 
document and query spaces and hence are able to bridge the gap between these two spaces when the vocabulary mismatch problem is 
observed (Furnas et al., 2017; Mitra et al., 2018; Shen et al., 2014; Zuccon et al., 2015). Empirical experimentation has shown that such 
features are strong complementary features for term-based features and can lead to noticeable improvement in ad hoc retrieval (Ensan & 
Bagheri, 2017). While such features have been widely adopted in the recent years for performing retrieval, they have only been in-
vestigated in the context of ad hoc document retrieval or QPP for ad hoc document retrieval. 

In this paper, we are interested specifically in query performance prediction in ad hoc table retrieval (Bagheri & Al-Obeidat, 2020; 
Zhang & Balog, 2018a). The task of ad hoc table retrieval is concerned with the identification of the most relevant full tables to a 
given input query. The effective retrieval of relevant tables is important as it facilitates the identification of information that are 
structured in tabular form. These include tabular data from the financial sector, demographic information, catalogues and even 
database relational tables, just to name a few. As argued by Zhang and Balog (2018a), the effective retrieval of tables has strong 
impact on other dependent tasks such as table completion and table mining. While ad hoc table retrieval is a subset of the ad hoc 
retrieval task, it can be considered to be more challenging than ad hoc document retrieval, as unlike documents, data in a table lack 
continuity and context that would be helpful for measuring relevance. Therefore, ad hoc table retrieval has been gaining increasing 
attention from the research community in the recent years (Bagheri & Al-Obeidat, 2020; Deng, Zhang, & Balog, 2019; Gentile, 
Ristoski, Eckel, Ritze, & Paulheim, 2017; Herzig, Nowak, Muller, Piccinno, & Eisenschlos, 2020; Zhang & Balog, 2018a; 2020). 

Recent work in ad hoc table retrieval (Bagheri & Al-Obeidat, 2020) has shown that various retrieval methods can have com-
plementary behavior. In other words, the best table retrieval methods in the literature do not necessarily perform better on all range 
of queries. Therefore, it is essential to be able to predict which method has the best performance on any given input query to be able 
to effectively route the query to the best retrieval method. As such, our work in this paper is focused on query performance prediction 
in the context of ad hoc table retrieval, which has not been explored in the literature. We will investigate how existing post-retrieval 
query performance predictors perform in the context of ad hoc table retrieval and subsequently systematically propose to integrate 
semantic neural information into performance prediction for building stronger predictors. 

To this end, our work rests on and explores a fundamental idea that given the user’s query and a retrieved document set, features 
that are based on some notion of frequency would not be sufficient features for predicting the performance of the retrieval method. It 
is our hypothesis that performance is appropriately estimated if semantic features are also taken into consideration. For this purpose, 
we predict query performance based on well-known neural embedding techniques (Mikolov, Chen, Corrado, & Dean, 2013a; Mikolov, 
Sutskever, Chen, Corrado, & Dean, 2013b; Pennington, Socher, & Manning, 2014) to measure the neural characteristics of the 
retrieved document set and the query. 

Our proposed neural predictors have two main components: 1) in the first component, we define a representation function to 
transform the raw content of queries and tables into a bag of tokens (tokens can be keywords or entities), and 2) in the second 
component, various neural features based on neural embedding techniques are proposed and integrated into the state-of-the-art post- 
retrieval predictor models. The key contributions of our work can be summarized as follows:  

1. We systematically investigate the impact of the state-of-the-art post-retrieval query performance prediction methods in the 
context of ad hoc table retrieval;  

2. We show how neural features derived from neural embedding techniques can be integrated into existing query performance 
predictors, leading to neural predictors;  

3. We evaluate our proposed neural predictors on a gold standard test collection derived from Wikipedia tables. We further analyze 
our findings from various perspectives and identify areas where neural predictors are able to provide effective performance 
improvements. 

In our experiments, we will explore and systematically answer four research questions, including (1) whether the representation 
of table content in the form of keywords or entities have an impact on determining query difficulty; (2) would it be possible to 
improve the estimation power of existing post-retrieval query performance predictors using neural predictors that are proposed in 
this paper; (3) Would the proposed neural predictors have a complementary impact on existing QPP methods; and (4) Whether the 
consideration of table specific structural characteristics such as table cells, rows and columns have any impact on the performance of 
our proposed neural predictors. 

The rest of this paper is organized as follows. In the next section, we review the related work in two subsections covering pertinent 
work in ad hoc table retrieval and query performance prediction techniques. Section 3 provides the technical details of our proposed 
neural predictors. The details of our experiments, gold standard test collection, baselines and our findings are presented in Section 4. 
Finally, the paper is concluded in Section 5 with a summary of our findings. 

2. Related work 

In this section, we first review prior work on ad hoc table retrieval, and then present the related literature on query performance 
prediction. 
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2.1. Ad hoc table retrieval 

Tables are suitable tools for grouping large volumes of information in one simplified structure. They are widely adopted for 
reporting data on the Web and have found a special place on Wikipedia. Various researchers have already explored various aspects of 
table analytics such as mining (Bhagavatula, Noraset, & Downey, 2013), searching (Cafarella, Halevy, Wang, Wu, & Zhang, 2008; 
Pimplikar & Sarawagi, 2012; Zhang & Balog, 2018a), extracting (Cafarella et al., 2008), completing (Zhang & Balog, 2019) and 
generating (Zhang & Balog, 2018b) tables in Web documents. The focus of our paper is on the task of searching for and retrieving 
tables in response to a given unstructured query, often known as ad hoc table retrieval. A full account of the relevant state of the art 
can be found in a very recent paper on this topic (Zhang & Balog, 2020). Existing work in ad hoc table retrieval can be categorized 
from two perspectives: (1) the types of the ranking function used for ranking tables, and (2) the features used in the retrieval methods. 
We review the related literature from these two views: 

Ranking Functions. The objective of a ranking function is to rank a set of documents based on their relevance to the query, which 
can be in the form of feature-based learn to rank methods (Capannini et al., 2016; Tax, Bockting, & Hiemstra, 2015), statistical and 
probability techniques such as language models (Metzler & Croft, 2004), entity linking-based techniques (Das Sarma et al., 2012; 
Limaye, Sarawagi, & Chakrabarti, 2010), models that rely on diversity of table content (Nguyen, Nguyen, Weidlich, & Aberer, 2015), 
network properties (Yakout, Ganjam, Chakrabarti, & Chaudhuri, 2012) or knowledge graph-based similarity (Zhang & 
Chakrabarti, 2013). More recent techniques capture the semantic aspect of the tables and queries in the process of ranking. For 
instance, Zhang and Balog (2018a) were the first to develop a ranking method to match queries and tables based on their semantic 
association where both queries and tables were represented using semantic concepts (bag-of-entities and bag-of-categories) as well as 
continuous dense vectors (word and graph embeddings). Additional work was then subsequently developed to learn neural re-
presentations for tables for the purpose of retrieval (Deng et al., 2019). 

Features. Ranking functions rely on a set of features extracted from the query and table spaces. Some of these features are table- 
specific, which means that they represent the specific properties of a table such as the number of empty table cells in the table or the 
number of times a table has been viewed in the past (Bhagavatula et al., 2013). Another group of features are table-query inter-
dependent features, which measure the association of query and table pairs, e.g., total query term frequency in the table body 
(Cafarella et al., 2008). The third type of feature focuses on measuring query-specific characteristics such as the length of the query 
(Tyree, Weinberger, Agrawal, & Paykin, 2011). This third type of feature is often the least discriminative form of features for ranking. 

2.2. Query performance prediction 

Query performance prediction models can be classified into pre-retrieval and post-retrieval models (Carmel & Yom-Tov, 2010). 
Pre-retrieval models predict the quality of the search results using only the raw query, and its descriptive features gathered at 
indexing time, e.g., the frequency of individual query terms in the target corpus (He & Ounis, 2004). Unlike pre-retrieval models 
where the predictions take place before the retrieval process, post-retrieval models analyze the search results of a query after retrieval 
in order to make a judgement about the difficulty of the query. Extensive research in the literature has already shown that post- 
retrieval methods for QPP are much stronger compared to pre-retrieval methods (Cummins, Lalmas, O’Riordan, & Jose, 2011b; 
Déjean, Ionescu, Mothe, & Ullah, 2020). As such, the focus of our work in this paper will be on post-retrieval models. 

There are three broad categories of post-retrieval QPP models in the literature, namely Clarity-oriented models, Robustness- 
oriented models and Score-oriented models. 

Clarity-oriented models (Cronen-Townsend, Zhou, & Croft, 2002) predict query performance by measuring the clarity of the 
returned results with respect to the corpus. The hypothesis of these models is that users expect the results to focus on the specific 
topics covered by the query; thus, the more related keywords to the query are observed in the result set, the less difficult the query 
would be. To this end, Clarity computes the difference between the likelihood of the most frequent keywords in the results and their 
likelihood in the whole corpus using measures such as the Kullback-Leibler divergence. If the language model of the results are 
similar to the language model of the whole corpus, then one can conclude that the query is difficult as it is not discriminatory enough. 

Robustness-oriented models estimate query performance by measuring robustness with respect to perturbations in the query 
(Zhou & Croft, 2007), in the documents (Zhou & Croft, 2006), and in the retrieval method (Aslam & Pavlu, 2007). Intuitively, the 
more robust the result list is, the higher the performance of the query would be. One of the most popular robustness models is Query 
Feedback (QF) (Zhou & Croft, 2007) that rebuilds a new query based on the result list. The correlation between the previous result list 
and the retrieved result list for the new query is an indication of robustness, which is then used to estimate query performance. 

Measuring clarity and robustness is often a time-consuming process, which is due to the need to analyze the content of the result 
list. Less expensive alternatives include Score-oriented models, which use the score distribution of the retrieved documents. The basic 
idea behind these models is that the more a document is similar to a query, the higher the score of the document would be. Therefore, 
high scores in the top ranked documents are an indication of better retrieval performance and lower query difficulty. Weighted 
Information Gain (WIG) (Zhou & Croft, 2007) and Normalized Query Commitment (NQC) (Shtok et al., 2012) are two popular 
measures based on retrieval score. WIG essentially measures the divergence between the mean retrieval score of the top ranked 
documents and that of the whole corpus. It was shown that WIG is very effective for performing QPP on an MRF-based retrieval 
framework (Metzler & Croft, 2005). On the other hand, NQC measures the standard deviation of the retrieval scores normalized by 
the corpus score. Another Score-oriented model is Score Magnitude and Variance (SMV) (Tao & Wu, 2014) that considers both 
magnitude and variance of scores of the ranked list of results to measure the performance of a query. 

In addition to the above three types of predictors, there are also other works, such as fusion based retrieval (Shaw & Fox, 1994), 
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wherein several ranked lists, each one retrieved by a different ranking function, are combined into a single fused ranked list by a 
fusion method (Markovits, Shtok, Kurland, & Carmel, 2012; Roitman, 2018). NeuralQPP, from Zamani, Croft, and Culpepper (2018), 
integrates three neural components, the component for top-k retrieval score, another for term distribution in the top retrieved 
documents and the last for representation of documents in the semantic space. 

We would like to note that our work distinguishes itself from the existing literature as it (1) considers predicting query perfor-
mance for ad hoc table retrieval, which has not been investigated in the past; and (2) it integrates information from neural em-
beddings and integrates it with existing QPP predictors, which is also a novel aspect of our work that has not been explored in the 
past. 

3. Proposed neural query performance predictors 

Let us begin by setting out the notation. Let q, C and R denote a query, a corpus, and a ranking function, respectively. A ranking 
function maps each table in C and query q into a real number, which represents the relevance degree. We use q C( ; )R

k to denote the 
list of the top k tables ranked by R in response to the query q. Our goal is to establish a neural predictor, NP, to quantify the 
effectiveness of q C( ; )R

k when no relevance judgments are available: 

= =NP q C P q C P q C( ( ; )) ( ( ; )) ( ( ( ; )))R
k

base
NF

R
k

base
NF

R
kdef

(1)  

NP q C( ( ; ))R
k is based on a function composition and quantifies the effectiveness of q C( ; )R

k based on some form of semantic 
information that can give way to inexact matching. The outer function, denoted as P ,base

NF can be any state-of-the-art post-retrieval 
query performance predictor. The predictor Pbase

NF operates upon q C( ( ; ))R
k by employing semantic features. In our work, semantic 

features are implemented as neural features (NF) based on neural embedding techniques (Mikolov et al., 2013a). The inner function, 
denoted by φ, is a representation function that transforms query q and the tables in q C( ; )R

k to tokens such as keywords or entities. In 
the following subsections, we describe (1) the representation function φ, and (2) the connection between existing query performance 
predictors and neural features in more detail. 

3.1. Representation function φ 

In this subsection, we introduce the representation function φ to model the raw content of queries and the corpus as a bag of 
tokens where each token can be either a keyword or an entity. In the context of ad hoc retrieval, corpus C is a collection of documents, 
where documents can be web pages (Cummins, Jose, & O’Riordan, 2011a), news articles (Cummins et al., 2011a), web tables 
(Cafarella et al., 2008), or images (Siddiquie, Feris, & Davis, 2011), among others. In this work, the documents are tables 
(Bhagavatula, Noraset, & Downey, 2015). Also, query q represents the information need of the user. 

Keyword-based representation. Given q C( ; ),R
k for each table T q C( ; ),R

k function φ takes the keywords in T and represents them 
as a bag of words (BOW). 

Entity-based representation. In contrast to keyword-based representation, it is also possible to represent a table as a set of entities. 
Zhang and Balog show that some tables have an entity focus (Zhang & Balog, 2017), which means that significant portions of the table 
have corresponding entity representations. Therefore, function φ uses entities of each table T q C( ; )R

k to represent the content of T 
as a bag of entities (BOE). The function φ can also transform query q to a bag of entities. 

3.2. The connection between QPP and neural features 

As mentioned earlier, query performance predictors, such as WIG and Clarity, utilize term probability, which we denote as p(ω), 
where ω is considered in the context of a query, table or corpus in a strict term matching sense and disregard semantically related 
terms when computing term probability. As a result such predictors can suffer from not paying attention to the semantic association 
between terms, queries and tables. The objective of the outer function in Eq. (1), i.e., P ,base

NF is to enable the inclusion of such semantic 
associations through measuring term similarities based on neural features. 

In this paper, we introduce three main neural features (NFs) by using neural embedding techniques: (1) Neural Matching (NM), 
(2) Neural Aggregated Matching (NAM) and (3) Neural Distance (ND) and explain them in more detail in the following. 

3.2.1. The neural matching (NM) feature 
One of the important applications of embedding techniques in IR is to employ the dense vector representations that they offer to 

model queries and documents (tables in our case) from the embeddings of the individual tokens that appear in each of them. This 
requires a systematic way to aggregate the embeddings of the individual tokens in the queries or documents (tables) to represent the 
whole query or document. Average Word (or token) Embedding (AWE) is a popular way for performing the aggregation (Le & 
Mikolov, 2014; Nalisnick, Mitra, Craswell, & Caruana, 2016; Vulić & Moens, 2015). Given table T and query q, AWE defines their 
aggregated representations as follows: 

=
T

t
t

T 1
| ( )| t T

T

T( )T (2)  

M. Khodabakhsh and E. Bagheri   Information Processing and Management 58 (2021) 102399

4



=
q

t
t

q 1
| ( )| t q

q

q( )q (3) 

where φ(T) and φ(q) are the output of the representation function φ that can be either bag of words or bag of entities for table T and 
query q, respectively. The table vector, denoted by T , is the centroid of all the normalized vectors for token tT in the table and serves 
as a single embedding for the whole Table. Similarly, q is the query vector. 

Inspired by Eq. (2), we define the corpus vector as =C C t C
t
t

1
| ( )| ( )C

C

C
where φ(C) is the tokens of corpus C denoted as 

=C T( ) ( )T C . In other words, φ(C) is a bag of all of the table tokens. 
In ad hoc table retrieval, the relevance of the retrieved tables to the input query is of foremost importance. Now, given that we 

have built vectors for both tables as well as queries, our objective is to measure the degree of relevance between them. Therefore, it is 
possible to directly calculate the similarity between a given table and the query vector representation. We assume table T is related to 
query q if the table vector is semantically similar to the query vector. Our proposed Neural Matching (NM) feature measures this 
semantic similarity using a vector similarity metric, such as cosine similarity or dot-product. 

The intuition behind this feature is based on how tokens are adopted to express the content of a table. The assumption is that if the 
set of tokens representing a table is accurately selected, then any other query submitted from the users will use tokens that will be 
semantically close to the table representation in the embedding space. Therefore, given the fact that the position of a table can be 
determined based on the centroid of the position of its constituent tokens within the embedding space and also the position of a query 
can be determined in the same way in the same space, it is possible to measure the relevance of the tables to the queries using our 
proposed Neural Matching (NM) feature as follows: 

Definition 1 (Neural Matching Feature). Given q and T , neural matching is equivalent to the cosine similarity between q and T and 
formally denoted as NM(q, T). 

It is worth mentioning that the neural matching feature can be used for measuring the relevance of corpus C to query q given q
and C , denoted as NM(q, C) or any two arbitrary vectors. 

Now, given the neural matching feature, we are interested in using it in post-retrieval predictors in order to define Pbase
NF . For this 

purpose, we adopt the widely used post-retrieval predictors reported in the literature as shown in Table 1 where NM has been 
integrated into the base post-retrieval predictors. 

As shown in Table 1, Clarity (Cronen-Townsend et al., 2002) and WIG (Zhou & Croft, 2007) require the probability of the query or 
corpus tokens in the tables or the corpus. Our proposed Neural Matching feature is an appropriate alternative for this probability as it 
measures the degree of relevance of each term to the table or the corpus. Other predictors based on standard deviation, such as NQC 
(Shtok et al., 2012) and SMV (Tao & Wu, 2014), employ a Score-oriented approach Score(q, T), which indicates the score of table T for 
query q. By considering the fact that if a table achieves high relevance score for a given query, then the keywords or entities of the 
table will be semantically close to the keywords or entities used in the query in the embedding space, we revise these predictors by 
using NM(q, T) instead of Score(q, T). 

It is worth noting that the vectors of the tables and the corpus can be calculated offline. Therefore, we will only need to measure 
the neural matching feature at runtime. 

3.2.2. Neural aggregated matching (NAM) feature 
In this feature, we model each table as a bag of token vectors where vectors of tokens incorporate both syntactic and semantic 

aspects of the table content and therefore show to be effective for measuring the relevance degree. We adopt the same consideration 
for queries and the corpus and model them as a bag of token vectors. This is unlike the proposed NM feature where the queries, tables 
and the corpus are represented by a vector in embedding space. Now, based on the bag of token vectors, we formally define the 

Table 1 
The neural matching feature integrated into post-retrieval query performance predictors. T is a table in corpus C and V(φ(C)) is the vocabulary of the 
unique tokens in the corpus C. λ(tq) reflects the relative weight of the tokens type tq and is inversely related to the square root of the number of query 
tokens of that type. μ is the mean score of tables in q C( ; )R

k . In the main Clarity formula Cronen-Townsend et al. (2002), term q CPr( | ( ; ))R
k is the 

language model induced from the result list q C( ; )R
k and equals the sum over all tables in the result list. Here, it is replaced with NM t q C( , ( ; ))C R

k in 
PClarity

NM . = ( )NM t q C NM t T NM t T( , ( ; ) ( , ) ( , )C R
k

T R
k q C C tq q q( ; ) ( ) .    

Base QPP Method Pbase
NM : Revised Post-retrieval Query Performance Predictors with Neural Matching Feature (NM)  

Clarity Cronen-Townsend et al. (2002) 
=P q C NM t q C( ( ( ; ))) ( , ( ; ))logClarity

NM R
k

tC V C C R
k NM tC R

k q C
NM tC C( ( ))
( , ( ; ))

( , )
WIG Zhou and Croft (2007) =P q C t( ( ( ; ))) ( )logWIG

NM
R
k

k T R
k q C tq q q

NM tq T
NM tq C

1
( ; ) ( )

( , )
( , )

NQC Shtok et al. (2012) 
=P q C( ( ( ; )))NQC

NM
R
k k T R

k q C NM q T µ

NM q C

1
( ; ) ( ( , ) )2

| ( , ) |
SMV Tao and Wu (2014) 

=P q C( ( ( ; )))SMV
NM

R
k k T R

k q C NM q T NM q T
µ

NM q C

1
( ; ) ( ( , ) | ln ( , ) |)

( , )
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Neural Aggregated Matching (NAM) feature as follows: 

Definition 2 (Neural Aggregated Matching Feature). Given φ(q) and φ(T), neural aggregated matching is the maximum cosine of the 
token vector pairs in the φ(q) and φ(T) denoted as NAM(q, T): 

=NAM q T cos t t( , ) max ({ ( , )})
t q t T

q T
( ), ( )q T (4)  

In this feature, the pairwise similarities between all table and query token vectors are computed and aggregated by a maximum 
function, which is a common approach to predict similarity (Kenter & De Rijke, 2015). Our assumption is that the maximum si-
milarity captures the minimum cost required to match the query to the table. 

The adopted formulation of the post-retrieval predictors based on NAM are provided in Table 2 where NAM is placed in the base 
post-retrieval predictors. This feature can determine the relevance between a query q and corpus C by giving φ(q) and φ(C), as NAM 
(q, C). In some cases, e.g., Clarity (Cronen-Townsend et al., 2002) and WIG (Zhou & Croft, 2007), where the calculation of the 
probability of a token in the table or corpus is required, neural aggregated matching feature computes the cosine similarity between 
the token vector and all the table or corpus token vectors first, and then aggregates those through a maximum function. 

3.2.3. Neural distance (ND) feature 
An alternative approach to estimate the relevance of a table and a query is based on the distance between them (Bagheri et al., 

2018; Galke, Saleh, & Scherp, 2017) by considering the fact that the lower the distance between a query and a table is, the greater 
their similarity would be and the more relevant they would be to each other. A recent method, based on Earth Mover’s Distance 
(EMD) (Rubner, Tomasi, & Guibas, 1998), involves estimating the similarity between pairs of documents by minimizing the amount 
of distance that each embedded term in the first document needs to ‘travel’ to reach the embedded terms in the second document. 
This measure, referred to as the Word Mover’s Distance (WMD), was proposed by Kusner, Sun, Kolkin, and Weinberger (2015). In this 
feature, given T and q, the distance between them will be based on tokens traveling from q to tokens in T. As defined in  
Kusner et al. (2015), the transportation matrix θ is a flow matrix in which θi,j shows to what degree token i in q is transported to token 
j in T. Matrix θi,j, which essentially determines what token pairs from the two documents should be connected to each other, needs to 
be learnt based on a linear optimization program. The distance between two documents can be calculated by minimizing the fol-
lowing linear optimization function: 

=
= =

WMD q T d i j( , ) ( , )
i

q

j

T

i j
1

| ( )|

1

| ( )|

,
(5) 

where d(i, j) is the distance between the vector of token i in q and the vector of token j in T in the embedding space. Our proposed 
Neural Distance (ND) feature estimates the relevance degree of table T to query q based on the minimum value computed from 
optimizing Eq. (5). As such, we formally define the Neural Distance (ND) feature as follows: 

Definition 3 (Neural Distance Feature). Given q and T, neural distance feature is equivalent to the Word Mover’s Distance between the 
vectors of tokens in q and the vectors of tokens in T, denoted as ND(q, T). 

Table 3 shows how to integrate the Neural Distance feature in post-retrieval predictors. 

4. Experiments 

The objective of our experiments is to evaluate the effectiveness of our proposed neural predictors on the task of query perfor-
mance prediction for ad hoc table retrieval. To this end, we define four research questions that will be answered through performing 
empirical experimentation. More specifically, we address the following research questions in our experiments: 

RQ1 Given the Representation function φ, which can provide tokens in the form of either keywords or entities to represent queries 
and tables, which type of token would be most effective for determining query difficulty? 

Table 2 
The neural aggregated matching feature integrated into post-retrieval query performance predictors. Table format is similar to Table 1. Also, 

= ( )NAM t q C NAM t T NAM t T( , ( ; ) ( , ) ( , )C R
k

T R
k q C C tq q q( ; ) ( ) .    

Base QPP Method Pbase
NAM : Revised Post-retrieval Query Performance Predictors with Neural Aggregated Matching Feature (NAM)  

Clarity Cronen-Townsend et al. (2002) 
=P q C NAM t q C( ( ( ; ))) ( , ( ; ))logClarity

NAM R
k

tC V C C R
k NAM tC R

k q C
NAM tC C( ( ))

( , ( ; ))
( , )

WIG Zhou and Croft (2007) =P q C t( ( ( ; ))) ( )logWIG
NAM

R
k

k T R
k q C tq q q

NAM tq T
NAM tq C

1
( ; ) ( )

( , )
( , )

NQC Shtok et al. (2012) 
=P q C( ( ( ; )))NQC

NAM
R
k k T R

k q C NAM q T µ

NAM q C

1
( ; ) ( ( , ) )2

| ( , ) |
SMV Tao and Wu (2014) 

=P q C( ( ( ; )))SMV
NAM

R
k k T R

k q C NAM q T NAM q T
µ

NAM q C

1
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RQ2 Based on the three proposed neural features, would it be possible to improve the estimation power of existing post-retrieval 
query performance predictors? 

RQ3 Would the proposed neural predictors have a complementary impact on existing QPP methods and hence lead to improved 
performance when systematically interpolated with baseline methods? 

RQ4 Whether the consideration of table specific structural characteristics such as table cells, rows and columns have any impact 
on the performance of our proposed neural predictors? 

Summarily, RQ1 will be investigating which form of query, table and corpus representation, through either keywords or entities, 
be more effective in the context of the QPP task. RQ2 explores whether the integration of the proposed neural features into existing 
QPP methods leads to improved performance prediction. RQ3 will explore the synergistic nature of the neural features and existing 
keyword-based QPP methods to see whether their interpolation will lead to improved performance and RQ4 investigates whether the 
explicit consideration of table characteristics will lead to improved performance by the QPP method. 

In the following, we first introduce the experimental settings, including the ranking functions, the test collection and the eva-
luation metrics. We then report and analyze our results and present the most important findings in order to answer the research 
questions. 

4.1. Test collection 

We employed the test collection introduced in Zhang and Balog (2018a) in our experiments. This test collection includes three 
main components, namely the table corpus, the query set and the relevance judgments. The table corpus is composed of the Wiki-
Tables corpus (Galke et al., 2017) containing over 1.6M tables. For each table, five information fields are provided: table caption, 
column headings, data rows, page title, and section title. To represent the tables as the bag of entities, we use the same entities that 
were extracted by Zhang and Balog (2018a). The query set consists of 60 queries, which were sampled from two independent sources. 
We also used query entities as provided in Bagheri and Al-Obeidat (2020). The relevance judgments consist of 3120 query-table pairs. 
Out of these, 377 are labeled as highly relevant, 474 as relevant, and 2269 as non-relevant. 

4.2. Ranking functions 

Given a query q, a ranking function R assigns a real number to each table T ∈ C that represents the relative relevance of T with 
respect to q. In the experiments, we use seven different ranking functions to serve as R. These ranking functions can be broadly 
classified as (1) content-based ranking functions that focus on table content for measuring relevance between the query and table 
spaces; and (2) feature-based ranking functions that define table and query characteristics that take the structural characteristics of 
tables into account.  

1. Content-based Ranking Functions:  
(a) STR ranking (Zhang & Balog, 2018a) models both the table and the query as sets of semantic vectors and then uses two general 

strategies (early and late fusion), for computing the similarity between queries and tables based on their semantic re-
presentations.  

(b) Single Field ranking (Cafarella, Halevy, & Khoussainova, 2009) represents tables as an ordinary document and adopts ad hoc 
document retrieval, in the form of a language model with Dirichlet smoothing, for ranking tables.  

(c) Table2VecW and Table2VecE (Deng et al., 2019) are content-based ranking functions that learn neural representations for 
tables. The difference between the two ranking functions is based on the content they consider in the table to learn the neural 
representation. Table2VecW benefits from title, section title, table caption, table headings, and all table cells, while Ta-
ble2VecE employs the sequence of all entities that appear within table cells.  

2. Feature-based Ranking Functions:  
(a) LTR ranking (Zhang & Balog, 2018a) uses the full set of features listed in (Bhagavatula et al., 2013; Cafarella et al., 2008) and 

trains a Random Forest (Breiman, 2001) regression as the learner with 1000 trees. 

Table 3 
The neural distance feature integrated into post-retrieval query performance predictors. Table format is similar to Table 1. Also, 
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(b) WebTable ranking (Cafarella et al., 2008) employs the features mentioned in Cafarella et al. (2008) for each table and trains 
linear regression as the ranking function with 5-fold cross validation.  

(c) WikiTable ranking (Bhagavatula et al., 2013) considers a Lasso model (Tibshirani, 1996) with coordinate ascent as the ranking 
function, which is trained on the features from Bhagavatula et al. (2013) with 5-fold cross validation. 

We note that the selected ranking functions are either (1) state of the art (SOTA) methods in ad hoc table retrieval such as STR and 
Table2VecW and Table2VecE, (2) have been used as baseline in several recent publications such as WikiTable and WebTable or (3) 
are standard information retrieval methods that have shown robust retrieval performance across different tasks such as Single Field. 
The run files for all the ranking functions, including content-based and feature-based functions are readily available1 Accordingly, the 
result list length per query provided by the run files is 20. We report the performance of the ranking functions based on the run files in  
Table 5. 

4.3. Evaluation metrics 

The prediction quality of a QPP method is evaluated by measuring Pearson and Kendall Correlations between the predicted 
ranking of the queries against the actual ranking of the queries according to their observed performance measured on NDCG and AP  
Järvelin and Kekäläinen (2002). 

4.4. Baselines 

For comparative analytics, we adopt Clarity (Cronen-Townsend et al., 2002), WIG (Zhou & Croft, 2007), NQC (Shtok et al., 2012) 
and SMV (Tao & Wu, 2014), which are among the most widely used query performance predictors. The detailed formulation of these 
predictors is provided in Table 4. We note that these metrics are implemented according to the detailed description provided in  
Carmel and Yom-Tov (2010) and do not include any relation to neural embeddings. 

Unlike these four baseline predictors that are based on a completely unsupervised formulation of the predictor, the most recent 
post-retrieval query performance predictor is work by Zamani et al. (2018) that uses a weak supervision strategy to learn query 
rankings. As such, while we will compare our work with this baseline QPP method, we cannot use it to integrate our approach with it. 

It should be noted that given our approach requires neural embeddings, in our experiments, we use the pre-trained embedding 
vectors from Li et al. (2016) for neural embeddings of entities and the Google News embeddings2 for neural embeddings of keywords. 
For BERT, we use the pretrained model offered by HuggingFace with 12 layers, 768 hidden layers, 12 heads, and 110M parameters 
trained on cased English text, often known as BERT-Base Cased. For ELMo, we have used the model provided by Flair Akbik, Blythe, 
and Vollgraf (2018). 

4.5. Analysis 

We present the findings of our experiments based on the four research questions introduced earlier. 

4.5.1. RQ1. Impact of the representation function φ 
The objective of the first research question is to determine which token representation is most suitable for modeling tables and 

queries when performing query performance prediction in the context of ad hoc table retrieval. The representation function φ can 
represent tables and queries in the form of keywords or entities. The idea behind a bag of words representation is that lexical 
similarity between tables and queries can be considered to be an indication of relevance. On the other hand, the intuition behind the 
bag of entities representation is that the relevance of a table to a query can be captured beyond mere keywords and can depend on the 
semantic association between the two, which might not necessarily have much lexical overlap. Bagheri and Al-Obeidat have already 
shown this by providing examples of where queries and tables that do not have any lexical overlap are considered to be relevant as 
assessed in human judgements (Bagheri & Al-Obeidat, 2020). For instance, for Query 30, ‘pain medication’, in the query set of our test 
collection, the human judgements had determined that Table 0520-188 ‘diseases and condition’ was relevant but the query and table 
did not have any shared keywords. Therefore, there is existing evidence to support that the representation of tables as bag of entities 
can be beneficial. In this research question, we are interested in understanding the impact of each representation on query perfor-
mance prediction. 

To this end, we compare the performance of our neural predictors on different ranking functions by using two different re-
presentations: bag of words and bag of entities. The results are shown in Tables 6–9. The tables present the results for NDCG and AP 
for both Kendall and Pearson correlations. In these tables, the best predictor for the combination of each QPP method and ranking 
function is shown in bold. As seen in the table, performances for both measures, i.e., NDCG and AP, as well as correlations, i.e., 
Kendall and Pearson, are consistent. 

First, we compare the quality of our proposed neural predictors for both bag of words and bag of entities representations. The 

1 The runs for STR, LTR, WikiTable, WebTable and Single Field ranking functions can be obtained from https://github.com/iai-group/www2018- 
table while the runs for Table2VecW and Table2VecE can be accessed at https://github.com/iai-group/sigir2019-table2vec. 

2 https://code.google.com/archive/p/word2vec/ 
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results reported in Tables 6–9 show that while the bag of entities representation is computationally expensive, it results in weaker 
quality compared to the bag of words representation for most neural predictors and ranking functions, regardless of being content- 
based or feature-based (except for the WebTable ranking function). The main reason that we find for this is that it may be due to the 
fact that many of the tables in the test collection do not contain a noticeable number of entities. This was a finding by Bagheri and Al- 
Obeidat (2020) as well who reported that an entity-based retrieval method is only effective for those tables that consist of a sizeable 
number of entities; otherwise, a sparse entity representation for the tables, resulting from the lack of a sufficient number of entities, 
would lead to poor performance. Similarly to Bagheri and Al-Obeidat (2020), we find that the lack of entities to represent tables leads 

Table 4 
The state-of-the-art post-retrieval query performance predictors used as baselines in our work. T is a table in corpus C and V 
(φ(C)) is the vocabulary of the unique tokens in the corpus C. λ(tq) reflects the relative weight of the tokens type tq and is 
inversely related to the square root of the number of query tokens of that type. μ is the mean score of tables in q C( ; )R

k . 
= ( )t q C t T t TPr( | ( ; )) Pr( | ) Pr( | )C R

k
T R

k q C C tq q q( ; ) ( ) .    
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=Clarity q C t q C( ( ( ; ))) Pr( | ( ; ))logR

k
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k tC R
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tC C( ( ))
Pr( | ( ; ))
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1
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NQC Shtok et al. (2012) 
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SMV Tao and Wu (2014) 
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Table 5 
Performance of the ranking function on the ad hoc table retrieval task in terms of NDCG@10 and @20.       

Method NDCG@10 NDCG@20  

Content-based STR 0.6293 0.6825 
Single Field 0.4860 0.5473 
Table2VecW 0.6096 0.6505 
Table2VecE 0.5569 0.6161 

Feature-based LTR 0.5456 0.6031 
WikiTable 0.4766 0.5206 
WebTable 0.2992 0.3726 

Table 6 
The results of various neural predictors with different ranking functions for both bag of words and bag of entities based representations in terms of 
Pearson Correlation. The bold values show the largest value in each rectangle related to a ranking function and a QPP method. For instance, 0.172 is 
largest value related to STR and Clarity.                  

NDCG@20 Pearson Ranking Function   

Content-based Feature-based   

STR Single Field Table2VecW Table2VecE WikiTable WebTable LTR   

Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity  

Clarity PClarity
NM 0.138 0.114 0.237 0.106 0.154 0.204 0.129 0.168 0.169 0.228 0.159 0.244 0.034 0.167 

PClarity
NAM 0.172 0.115 0.2 0.097 0.168 0.188 0.032 0.18 0.025 0.186 0.039 0.25 0.098 0.142 

PClarity
ND 0.051 0.068 0.115 0.094 0.059 0.099 0.059 0.05 0.031 0.026 0.079 0.036 0.018 0.069 

WIG PWIG
NM 0.085 0.087 0.009 0.106 0.009 0.126 0.043 0.119 0.025 0.136 0.049 0.131 0.003 0.053 

PWIG
NAM 0.387 0.021 0.457 0.101 0.339 0.046 0.389 0.031 0.42 0.034 0.111 0.177 0.341 0.008 

PWIG
ND 0.032 0.016 0.103 0.056 0.009 0.169 0.013 0.119 0.182 0.042 0.037 0.032 0.06 0.087 

NQC PNQC
NM 0.177 0.007 0.107 0.172 0.032 0.071 0.017 0.031 0.063 0.059 0.003 0.097 0.114 0.062 

PNQC
NAM 0.015 0.025 0.173 0.16 0.173 0.056 0.109 0.012 0.285 0.059 0.089 0.116 0.163 0.06 

PNQC
ND 0.08 0.021 0.08 0.112 0.228 0.173 0.01 0.01 0.006 0.081 0.1 0.075 0.021 0.062 

SMV PSMV
NM 0.161 0.006 0.115 0.203 0.006 0.055 0.013 0.01 0.025 0.091 0.009 0.088 0.087 0.039 

PSMV
NAM 0.042 0.029 0.136 0.244 0.175 0.085 0.063 0.012 0.266 0.11 0.131 0.06 0.164 0.011 

P SMV
ND 0.053 0.02 0.085 0.063 0.306 0.161 0.017 0.007 0.029 0.124 0.079 0.112 0.003 0.02 
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to poorer performance by our proposed neural predictors when using the bag of entities representation. 
We further study the effectiveness of bag of words and bag of entities based representations on two state-of-the-art post-retrieval 

QPP methods in Table 10, namely Clarity and WIG. We cannot include SMV and NQC in this table as they rely on table relevance 
scores and do not depend on whether the table representation is based on entities or keywords. As such, they are not applicable to 
RQ1. As seen in this table, in the majority of the cases, the bag of words based representation shows a superior performance compared 
to the bag of entities based representation on both NDCG and AP for both Kendall and Pearson correlations. We again note consistent 
observations across NDCG and AP for both correlation measures. Therefore, we conclude that in the context of ad hoc table retrieval, 
and for both when our neural predictors are present and otherwise, using a bag of words representation for both tables and queries is 
sufficient for performing the QPP task.  

Finding 1. In the context of ad hoc table retrieval, a bag of words representation of tables and queries is the more efficient form of 
representation compared to the bag of entities representation as it provides stronger performance for the QPP task.  

Table 7 
The results of various neural predictors with different ranking functions for both bag of words and bag of entities based representations in terms of 
Pearson Correlation. The bold values show the largest value in each rectangle related to a ranking function and a QPP method.                  

AP@20 Pearson Ranking Function   

Content-based Feature-based   

STR Single Field Table2VecW Table2VecE WikiTable WebTable LTR   

Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity  

Clarity PClarity
NM 0.156 0.114 0.242 0.115 0.182 0.257 0.17 0.196 0.157 0.22 0.199 0.278 0.013 0.207 

PClarity
NAM 0.186 0.104 0.189 0.094 0.172 0.188 0.067 0.163 0.01 0.196 0.066 0.272 0.049 0.157 

PClarity
ND 0.131 0.102 0.152 0.218 0.136 0.031 0.167 0.022 0.036 0.079 0.14 0.078 0.004 0.095 

WIG PWIG
NM 0.03 0.096 0.066 0.114 0.042 0.153 0.002 0.168 0.008 0.136 0.064 0.162 0.021 0.068 

PWIG
NAM 0.362 0.012 0.4 0.055 0.32 0.015 0.365 0.036 0.388 0.047 0.097 0.23 0.327 0.017 

PWIG
ND 0.065 0.049 0.151 0.01 0.018 0.187 0.024 0.152 0.137 0.039 0.073 0.245 0.037 0.116 

NQC PNQC
NM 0.19 0.003 0.134 0.152 0.005 0.037 0.007 0.04 0.022 0.013 0.056 0.092 0.047 0.035 

PNQC
NAM 0.113 0.028 0.162 0.128 0.306 0.042 0.192 0.009 0.317 0.033 0.17 0.095 0.277 0.022 

PNQC
ND 0.103 0.013 0.087 0.085 0.209 0.15 0.007 0.006 0.051 0.039 0.152 0.084 0.009 0.025 

SMV PSMV
NM 0.171 0.0001 0.143 0.185 0.021 0.019 0.018 0.021 0.07 0.051 0.058 0.089 0.015 0.01 

PSMV
NAM 0.074 0.039 0.1 0.218 0.288 0.067 0.12 0.014 0.301 0.081 0.221 0.054 0.26 0.021 

P SMV
ND 0.108 0.005 0.11 0.12 0.274 0.143 0.006 0.019 0.084 0.083 0.134 0.126 0.018 0.008 

Table 8 
The results of various neural predictors with different ranking functions for both bag of words and bag of entities based representations in terms of 
Kendall Correlation. The bold values show the largest value in each rectangle related to a ranking function and a QPP method.                  

NDCG@20 Kendall Ranking Function   

Content-based Feature-based   

STR Single Field Table2VecW Table2VecE WikiTable WebTable LTR   

Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity  

Clarity PClarity
NM 0.094 0.127 0.153 0.018 0.188 0.134 0.177 0.165 0.134 0.111 0.078 0.187 0.084 0.123 

PClarity
NAM 0.087 0.117 0.156 0.047 0.139 0.058 0.06 0.064 0.005 0.099 0.127 0.21 0.067 0.097 

PClarity
ND 0.144 0.045 0.208 0.017 0.144 0.012 0.133 0.001 0.107 0.003 0.078 0.053 0.158 0.106 

WIG PWIG
NM 0.109 0.043 0.009 0.006 0.036 0.115 0.016 0.037 0.019 0.0001 0.003 0.119 0.046 0.056 

PWIG
NAM 0.234 0.048 0.28 0.082 0.26 0.081 0.264 0.043 0.2 0.072 0.019 0.122 0.212 0.042 

PWIG
ND 0.055 0.0001 0.1 0.004 0.005 0.074 0.024 0.045 0.146 0.064 0.033 0.142 0.03 0.004 

NQC PNQC
NM 0.081 0.081 0.036 0.207 0.034 0.09 0.008 0.009 0.046 0.034 0.041 0.068 0.077 0.036 

PNQC
NAM 0.06 0.069 0.137 0.2 0.13 0.067 0.148 0.063 0.153 0.075 0.088 0.081 0.16 0.024 

PNQC
ND 0.014 0.036 0.004 0.134 0.061 0.104 0.031 0.008 0.037 0.038 0.095 0.1 0.031 0.067 

SMV PSMV
NM 0.042 0.063 0.029 0.214 0.006 0.077 0.01 0.008 0.028 0.072 0.054 0.067 0.068 0.033 

PSMV
NAM 0.049 0.071 0.13 0.242 0.136 0.108 0.114 0.037 0.167 0.088 0.112 0.032 0.161 0.014 

P SMV
ND 0.024 0.041 0.006 0.181 0.1 0.108 0.041 0.006 0.032 0.08 0.079 0.125 0.027 0.026 
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4.5.2. RQ2. Performance of the neural predictors 
In the second research question, we aim at exploring the impact of the proposed neural features on query performance prediction. 

We expect that the impact of the neural predictors would be different for the various ranking functions especially because the ranking 
functions consider a different set of features when determining relevance and performing ranking, i.e., content-based ranking 
functions compared to feature-based ranking functions. For instance, a content-based ranking function such as STR (Zhang & 
Balog, 2018a) measures the similarity between tables and queries based on their semantic associations, which means that such a 
method would be able to retrieve relevant yet lexically non-overlapping tables for an input query. In contrast, a feature-based ranking 
method such as LTR (Zhang & Balog, 2018a) is based on a set of structural features and hence would be sensitive to how information 
is spread within the table structure. As such, given the fact that the performance of the ranking functions are different, we expect that 
the performance of the QPP methods would also be different. 

In our experiments, we compare the performance of the four baseline QPP methods and our proposed neural predictors over all 
ranking functions. The results are reported in Table 11. In this table, the best performing QPP method for each of the ranking 
functions has been shown in Bold. Furthermore, given the findings from RQ1, we report the results of the QPP methods based on the 
bag of words representation noting the weaker performance of the bag of entities representation for this task. We also note that we 
resort to reporting NDCG using Kendall correlation as we already showed in Tables 6–9 that AP and NDCG values with both Kendall 
and Pearson correlations have consistent behavior. 

Our first observation is that our proposed PWIG
NAM predictor has the best performance for content-based ranking functions, i.e., the 

Table 9 
The results of various neural predictors with different ranking functions for both bag of words and bag of entities based representations in terms of 
Kendall Correlation. The bold values show the largest value in each rectangle related to a ranking function and a QPP method.                  

AP@20 Kendall Ranking Function   

Content-based Feature-based   

STR Single Field Table2VecW Table2VecE WikiTable WebTable LTR   

Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity  

Clarity PClarity
NM 0.087 0.144 0.166 0.049 0.206 0.162 0.195 0.174 0.104 0.17 0.101 0.17 0.087 0.135 

PClarity
NAM 0.079 0.048 0.151 0.023 0.126 0.087 0.053 0.025 0.007 0.184 0.115 0.184 0.078 0.056 

PClarity
ND 0.128 0.086 0.202 0.001 0.146 0.068 0.166 0.058 0.173 0.038 0.117 0.038 0.187 0.099 

WIG PWIG
NM 0.016 0.056 0.041 0.0001 0.028 0.159 0.001 0.086 0.026 0.119 0.007 0.119 0.018 0.06 

PWIG
NAM 0.225 0.004 0.232 0.059 0.252 0.063 0.251 0.005 0.258 0.133 0.033 0.133 0.235 0.028 

PWIG
ND 0.048 0.03 0.117 0.007 0.019 0.099 0.022 0.058 0.091 0.176 0.065 0.176 0.019 0.037 

NQC PNQC
NM 0.143 0.032 0.093 0.166 0.013 0.034 0.002 0.003 0.02 0.082 0.038 0.082 0.049 0.02 

PNQC
NAM 0.127 0.041 0.095 0.143 0.224 0.016 0.145 0.05 0.193 0.083 0.124 0.083 0.205 0.007 

PNQC
ND 0.063 0.002 0.028 0.108 0.083 0.082 0.038 0.04 0.054 0.079 0.094 0.079 0.018 0.034 

SMV PSMV
NM 0.112 0.027 0.094 0.175 0.032 0.026 0.011 0.011 0.051 0.081 0.052 0.081 0.034 0.018 

PSMV
NAM 0.119 0.06 0.074 0.197 0.225 0.057 0.116 0.047 0.209 0.042 0.149 0.042 0.199 0.034 

P SMV
ND 0.083 0.03 0.05 0.124 0.103 0.098 0.04 0.017 0.058 0.102 0.078 0.102 0.029 0.002 

Table 10 
The results of baseline predictors with different ranking functions for both bag of words and bag of entities based representations in terms of Pearson 
and Kendall Correlation on both NDCG and AP. Bold values show the larger value based on the pair of ranking fuction and QPP method for word vs 
entity.                      

Ranking Function    

Content-based Feature-based    

STR Single Field Table2VecW Table2VecE WikiTable WebTable LTR    

Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity Word Entity  

Pearson NDCG@20 Clarity 0.174 0.006 0.14 0.063 0.051 0.072 0.285 0.037 0.004 0.108 0.17 0.003 0.293 0.157 
WIG 0.209 0.004 0.275 0.0001 0.149 0.075 0.283 0.08 0.205 0.053 0.2 0.224 0.272 0.119 

AP@20 Clarity 0.202 0.027 0.157 0.06 0.029 0.098 0.244 0.06 0.082 0.141 0.191 0.022 0.263 0.175 
WIG 0.231 0.032 0.353 0.071 0.197 0.143 0.283 0.089 0.232 0.028 0.194 0.211 0.291 0.137 

Kendall NDCG@20 Clarity 0.079 0.055 0.041 0.01 0.055 0.094 0.119 0.045 0.003 0.074 0.094 0.05 0.166 0.031 
WIG 0.098 0.056 0.176 0.057 0.089 0.015 0.171 0.024 0.133 0.028 0.106 0.067 0.16 0.04 

AP@20 Clarity 0.08 0.015 0.02 0.011 0.062 0.063 0.131 0.033 0.011 0.047 0.106 0.069 0.153 0.013 
WIG 0.148 0.047 0.239 0.002 0.158 0.043 0.176 0.011 0.169 0.02 0.107 0.051 0.196 0.027 
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STR, Single Field, Table2VecW and Table2VecE ranking functions. In contrast, in the feature-based ranking functions, the baseline 
predictors without the integration of our proposed neural features are more successful. This observation confirms the relationship 
between the query performance predictors and the characteristics of the ranking functions for bag of word based representation in the 
table retrieval task. The impact of our proposed neural predictors are most visibly observed when the ranking functions consider the 
similarity between the contents of tables and the queries. Given our proposed neural predictors employ neural embeddings to capture 
the semantic association between keyword vectors and the distances between the embedded keyword vectors, they are able to model 
and capture semantic relationships, which are primarily content-based in nature. This reflects itself in developing stronger QPP 
methods for content-based ranking functions that are based on query and table semantic associations or similarity through language 
models.  

Finding 2. For the purpose of predicting the performance of ranking functions that are primarily based on the content value of the 
tables (content-based ranking functions), while the neural predictors do not always improve the performance of the baselines, the 
integration of one of our proposed neural predictors with the WIG metric leads to consistent and noticeable performance im-
provement over all baselines.  

For the feature-based ranking functions such as LTR, WikiTable and WebTable that are primarily based on structural features of 
the table, the base QPP methods without the integration of our proposed neural features show better performance. The structural 
features of the table include features, such as the number of rows, columns, and empty cells, and the query word frequency in specific 
parts of the table, such as the leftmost column, or second-to-left column, that cannot be effectively captured by our proposed neural 
predictors. As such, the baseline QPP methods show better performance compared to our proposed neural predictors.  

Finding 3. Traditional QPP methods that do not account for the semantic association between the table and query spaces are more 
effective for determining query difficulty of feature-based ranking functions that consider table-specific structural features.  

As mentioned earlier, one of the strongest state of the art post-retrieval query performance prediction methods in the literature for 
document retrieval is the work by Zamani et al. (2018), which uses weak supervision to rank queries. Given this method requires 
training and is not fully unsupervised, our proposed predictors cannot be integrated into its formulation. However, we compare our 
work against this baseline as well in Table 12. For easier comparison to the performance of our own work, we have included PWIG

NAM in 
this table; however, comparison against other variations of our work can be done according to performance values reported in  
Tables 6–9. As shown in Table 12, the only case where the weakly supervised method by Zamani et al. shows better performance 
compared to PWIG

NAM is on the STR method (and only on Pearson correlation). However, for all other ranking functions, it shows a 
consistently weaker performance. We also note that while all the baseline QPP methods as well as our proposed neural predictors are 
fully unsupervised, the work proposed in Zamani et al. (2018) requires a training process but even so, while shown to be effective for 
QPP in document retrieval, it is not as effective for the context of table retrieval. 

4.5.3. RQ3. Synergistic impact of the neural predictors 
The main objective of the third research question is to investigate whether the interpolation of neural predictors with base QPP 

Table 11 
The quality of different query performance predictors for each ranking function in terms of Kendall’s correlation. The best value for each ranking 
function is specified in boldface.           

NDCG@20 Kendall Ranking Function   

Content-based Feature-based   

STR Single Field Table2VecW Table2VecE WikiTable WebTable LTR  

Clarity Clarity 0.079 0.041 0.055 0.119 0.003 0.094 0.166 
PClarity

NM 0.094 0.153 0.188 0.177 0.134 0.078 0.084 

PClarity
NAM 0.087 0.156 0.139 0.06 0.005 0.127 0.067 

PClarity
ND 0.144 0.208 0.144 0.133 0.107 0.078 0.158 

WIG WIG 0.098 0.176 0.089 0.171 0.133 0.106 0.16 
PWIG

NM 0.109 0.009 0.036 0.016 0.019 0.003 0.046 

PWIG
NAM 0.234 0.28 0.26 0.264 0.2 0.019 0.212 

PWIG
ND 0.055 0.1 0.005 0.024 0.146 0.033 0.03 

NQC NQC 0.076 0.041 0.229 0.252 0.318 0.165 0.338 
PNQC

NM 0.081 0.036 0.034 0.008 0.046 0.041 0.077 

PNQC
NAM 0.06 0.137 0.13 0.148 0.153 0.088 0.16 

PNQC
ND 0.014 0.004 0.061 0.031 0.037 0.095 0.031 

SMV SMV 0.084 0.055 0.219 0.239 0.303 0.17 0.308 
PSMV

NM 0.042 0.029 0.006 0.01 0.028 0.054 0.068 

PSMV
NAM 0.049 0.13 0.136 0.114 0.167 0.112 0.161 

P SMV
ND 0.024 0.006 0.1 0.041 0.032 0.079 0.027 
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methods will enhance the quality of the state-of-the-art predictors or not. Our hypothesis is that the neural and baseline predictors 
can produce overlapping results while in many cases a subset of their correct results is distinct and non-overlapping. For this reason, 
we believe that the interpolation of these predictors can result in synergy between the correctly identified results of each predictor 
and hence lead to improved quality. For this purpose, we employ the CombSum approach Shaw and Fox (1994) and form three 
variations, referred to as (1) Best Baseline + Best Neural, (2) Best of each Predictor - Best Neural + Baseline and (3) Best Word + Best 
Entity. In all of three variations, first, the scores generated by each predictor is normalized and then, linear interpolation is performed. 

Best Baseline + Best Neural. In this variation of our interpolations, for each ranking function, the best neural predictor and the 
best baseline QPP method are selected to be interpolated through CombSum. The quality of the final CombSum predictor in terms of 
Kendall correlation and the amount of achieved improvement over the baseline (ΔBaseline) and neural predictors (ΔNeural) are reported 
in Table 13. The first observation based on ΔBaseline is that the best neural predictors have been able to improve the best baselines that 
they have been interpolated with in content-based ranking functions. Another observation here is with regards to the performance of 
the interpolated QPP method for content-based ranking functions. The observed performance is consistent for these ranking functions 
where the best neural predictor is PWIG

NAM for all content-based methods. Furthermore, the interpolation has been able to consistently 
improve the best baseline QPP method. 

This indicates that:  

1. the best non-neural baseline QPP methods cannot provide synergistic support for our proposed neural predictors when applied to 
methods that are solely based on table and query content (content-based ranking);  

2. the proposed neural predictors in this paper are able to provide additional complementary performance over baseline QPP 
methods when dealing with feature-based ranking functions.  

Finding 4. The linear interpolation of the best baseline QPP method with our best neural predictor leads to improved performance 
over the best baseline QPP method for content-based ranking functions. In contrast, improvements are observed over the best 
neural predictors when the ranking functions are feature-based in nature (LTR, WebTable, WikiTable).  

An important point to mention here based on ΔBaseline is that the degree of improvement over the baselines in content-based 
ranking function is more than other ranking functions and we conclude that the neural predictor is more effective in increasing the 
quality of the baselines when dealing with content-based ranking functions. This confirms our findings with regards to the re-
lationship between the ranking functions and query performance predictors concluded in RQ2. 

Best of each Predictor - Best Neural + Baseline. In this variation of our interpolations, we study the performance of interpolation 
for each predictor individually. For this purpose, in each ranking function, the best neural predictor is selected to be interpolated with 
the baseline of the same predictor through the CombSum approach. Table 14 shows the interpolation performance and the im-
provement percentages over the baseline and neural predictor for Clarity. As shown in Table 14, interpolating the best neural 

Table 12 
Comparative performance of the work by Zamani et al. (2018) with PWIG

NAM . Please note P stands for Pearson and K stands for Kendall correlation. The 
only places where the baseline is better than our proposed approach is marked with boldface.              

PWIG
NAM Zamani et al   

NDCG@20 AP@20 NDCG@20 AP@20   

P K P K P K P K  

Content-based STR 0.387 0.234 0.362 0.225 0.322 0.295 0.338 0.271 
Single Field 0.457 0.280 0.400 0.232 0.289 0.209 0.307 0.228 
Table2VecW 0.339 0.260 0.320 0.252 0.104 0.089 0.011 0.001  
Table2VecE 0.389 0.264 0.365 0.251 0.037 0.009 0.087 0.041 

Feature-based WikiTable 0.420 0.200 0.388 0.258 0.060 0.086 0.010 0.016 
WebTable 0.111 0.019 0.097 0.033 0.124 0.085 0.113 0.073 
LTR 0.341 0.212 0.327 0.235 0.110 0.116 0.150 0.138 

Table 13 
The evaluation results for the interpolation of the best neural predictor with the best baseline for each ranking function individually.         

NDCG@20 Kendall Ranking Function Best Baseline Best Neural Predictors CumbSum ΔBaseline ΔNeural  

Content-based STR WIG PWIG
NAM 0.169 7.1% −6.5% 

Single Field WIG PWIG
NAM 0.269 9.3% −1.1% 

Table2VecW NQC PWIG
NAM 0.257 2.8% −0.3% 

Table2VecE NQC PWIG
NAM 0.298 4.6% 3.4% 

Feature-based WikiTable NQC PWIG
NAM 0.311 −0.7% 11.1% 

WebTable SMV PClarity
NAM 0.1273 −4.27% 0.03% 

LTR NQC P WIG
NAM 0.311 −2.7% 9.9% 
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predictor with Clarity will not lead to improved performance over the Clarity method itself in WebTable. The results from ΔNeural 

show that the quality of the best neural predictors are better than the interpolated methods (except on the STR and LTR ranking 
functions). Therefore, we find that the interpolation of our proposed neural predictors with Clarity can potentially lead to im-
provements over Clarity (except WebTable) but not over the neural predictors; therefore, showing non-synergistic overlapping be-
havior between them. 

We report the quality of CombSum approach and the improvements over the best neural predictors and baseline for WIG in Table 15. 
The main observation here is that the neural aggregated matching feature when applied to WIG is the best neural predictor for all ranking 
functions (except WebTable). Another observation is that the interpolation of PWIG

NAM with WIG improves the performance of WIG in all 
ranking functions except for WebTable. Also, the results show that when PWIG

NAM is interpolated with WIG, the estimation quality of PWIG
NAM is 

increased in feature-based ranking functions while this increase cannot be observed for content-based ranking functions. 
NQC and SMV are score-oriented models and consider the variance of the returned table scores for measuring the performance of 

a query as described earlier in Table 4. Tables 16 and 17 show the quality of CombSum after interpolation with the best neural 
predictor with NQC and SMV, respectively. For both NQC and SMV, the overall performance of CombSum is not comparable to our 
proposed neural baselines nor to other CombSums such as with WIG. As such, we conclude that the interpolation of the best neural 
predictors with NQC and SMV is not an effective strategy.  

Finding 5. The linear interpolation of each base QPP method with its best neural predictor does not necessarily lead to improved 
performance over the base QPP method. However, the WIG method shows to be the strongest baseline method over all ranking 
functions, which is significantly improved as a result of interpolation with its best neural predictor (except WebTable).  

Best Word + Best Entity. In the last variation of our interpolations, we investigate, while we already found that bag of words 
based representation is superior to bag of entities representation, whether the interpolation of the two representations leads to 
increased performance for QPP. To this end, the results of the best neural predictor for the bag of words and bag of entities re-
presentations are selected and interpolated through CombSum for each ranking function separately. Table 18 reports the degree of 
improvement over the best bag of words and bag of entities representations. 

We observe that in most ranking functions, there are no consistent improvements observed over the bag of words based re-
presentation or bag of entities based representation. We find there were no performance changes in LTR and WikiTable, which is due 
to the fact that the best predictors in the bag of words and bag of entities based representations are the same and therefore no 
improvements could be observed. Overall, when considering improvements obtained through the interpolation of the best predictors 
from bag of words and bag of entities representations in comparison with the best predictor from the bag of words representation, 
described by ΔWord in Table 18, we conclude that the bag of entities representation does not contribute to meaningful improvements 
for the QPP task. This reinforces our findings in RQ1.  

Finding 6. The best predictors for each of the ranking functions obtained through bag of words and bag of entities representations 
exhibit overlapping behavior and hence their interpolation does not lead to meaningful improvements over the best predictor 
from the bag of words representation. 

Table 14 
Evaluation results for clarity.        

NDCG@20 Kendall Ranking Function Best Neural Predictors CumbSum ΔBaseline ΔNeural  

Content-based STR PClarity
ND 0.245 16.6% 10.1% 

Single Field PClarity
ND 0.197 15.6% −1.1% 

Table2VecW PClarity
NM 0.147 9.2% −4.1% 

Table2VecE PClarity
NM 0.136 1.7% −4.1% 

Feature-based WikiTable PClarity
NM 0.057 5.4% −7.7% 

WebTable PClarity
NAM 0.058 −3.6% −6.9% 

LTR P Clarity
ND 0.261 9.5% 10.3% 

Table 15 
Evaluation results for WIG.        

NDCG@20 Kendall Ranking Function Best Neural Predictors CumbSum ΔBaseline ΔNeural  

Content-based STR PWIG
NAM 0.169 7.1% −6.5% 

Single Field PWIG
NAM 0.269 9.3% −1.1% 

Table2VecW PWIG
NAM 0.198 10.9% −6.2% 

Table2VecE PWIG
NAM 0.248 7.7% −1.6% 

Feature-based WikiTable PWIG
NAM 0.209 7.6% 0.9% 

WebTable PWIG
ND 0.049 −5.7% 1.6% 

LTR P WIG
NAM 0.229 6.9% 1.7% 
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We would like to report further on our findings by reviewing our observations across the three types of interpolations reported in 
this section. We find that the neural aggregated matching (NAM) feature achieves noticeable performance improvements when 
interpolated with baseline QPP methods. Based on the results of the first variation of our interpolations shown in Table 13, we can 
observe that the best neural predictor is built using NAM in seven of the ranking functions. This observation is confirmed based on the 
second variation of our interpolation that in most cases, NAM has been selected as the best neural predictor for the different base QPP 
methods. Finally, the results of the last variation show that NAM is the variation of our proposed neural predictors to appear the most 
in Table 18.  

Finding 7. From amongst the three variations of our proposed neural predictors, the Neural Aggregated Matching (NAM) feature, 
which considers the maximum similarity obtained from the neural representations of the tokens in the table and query spaces, has 
the best overall performance.  

Furthermore, as neural embeddings play a central role in our proposed neural predictors, it is important to also understand 
whether the choice of neural embedding representations impact the performance of our neural predictors. There have recently been 
several variations of embeddings such as BERT Devlin, Chang, Lee, and Toutanova (2019) and ELMo Peters et al. (2018), that have 
shown impressive performance for tasks such as question answering and language understanding. For the sake of comparison, we 
compare the performance of the best interpolated variation of our neural predictor, i.e., P ,WIG

NAM for cases when Word2vec-based  
Mikolov et al. (2013b) Google News word embeddings are adopted to when embeddings from BERT and ELMo are used. The results 
are shown in Table 19. 

As seen in the table,the obtained results do not show one particular type of embedding outperforming the other by a significant 

Table 16 
Evaluation results for NQC.        

NDCG@20 Kendall Ranking Function Best Neural Predictors CumbSum ΔBaseline ΔNeural  

Content-based STR PNQC
NM 0.08 0.4% −0.1% 

Single Field PNQC
NAM 0.085 4.4% −5.2% 

Table2VecW PNQC
NAM 0.017 −21.2% −11.3% 

Table2VecE PNQC
NAM 0.015 −23.7% −13.3% 

Feature-based WikiTable PNQC
NAM 0.11 −20.8% −4.3% 

WebTable PNQC
ND 0.107 −5.8% 1.2% 

LTR P NQC
NAM 0.048 −29% −11.2% 

Table 17 
Evaluation results for SMV.        

NDCG@20 Kendall Ranking Function Best Neural Predictors CumbSum ΔBaseline ΔNeural  

Content-based STR PSMV
NAM 0.041 −4.3% −0.8% 

Single Field PSMV
NAM 0.116 6.1% −1.4% 

Table2VecW PSMV
NAM 0.02 −19.9% −11.6% 

Table2VecE PSMV
NAM 0.009 −23% −10.5% 

Feature-based WikiTable PSMV
NAM 0.086 −21.7% −8.1% 

WebTable PSMV
NAM 0.186 1.6% 7.4% 

LTR P SMV
NAM 0.014 −29.4% −14.7% 

Table 18 
Evaluation results for the interpolation of the best predictors in the both word and entity representations with each other.         

NDCG@20 Kendall Ranking Function Best Predictor in Word based 
Representation 

Best Predictor in Entity based 
Representation 

CumbSum ΔWord ΔEntity  

Content-based STR PWIG
NAM PClarity

NM 0.23 −0.4% 10.3% 

Single Field PWIG
NAM PSMV

NAM 0.162 −11.8% −4.5% 

Table2VecW PWIG
NAM NQC 0.257 −0.3% 2.8% 

Table2VecE PWIG
NAM NQC 0.298 3.4% 4.6% 

Feature-based WikiTable NQC NQC 0.318 - - 
WebTable SMV PClarity

NAM 0.112 −5.8% −9.8% 

LTR NQC NQC 0.338 - - 
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margin. While the Word2vec embeddings show favorable performance on the Table2VecW and WikiTable, it is BERT that shows a 
better performance on STR, Table2VecE, and WebTable. Also, ELMo shows the best performance on Single Field and LTR ranking 
functions We note that except for WebTable where the performance of BERT and ELMo is substantially better than word2vec, the 
results on other ranking functions are comparable.  

Finding 8. The performance of the best interpolated variation of our neural predictor when customized based on either Word2vec, 
BERT or ELMo neural embeddings does not seem to depend on the type of the ranking function and in principal one embedding 
type does not outperform the other (except by BERT on WebTable).  

4.5.4. RQ4. Impact of table characteristics on the neural predictors 
The objective the last research question is to understand whether the consideration of table-specific characteristics such as table 

rows, columns, and cells have any impact on the quality of query performance prediction. In the previous research questions, we have 
considered each table to be a single document and hence all the content in the table cells were concatenated for the sake of query 
performance prediction. In this research question, we investigate whether the consideration of each of these table elements leads to 
any impact on QPP performance. 

In order to consider table elements for performing QPP, we develop embedding representations for each table element, i.e., cell, 
column or row, by taking the average of the embeddings of the content observed in that element. For instance, the representation for 
a table cell is the average of the embedding representations of the content in that cell. We adopt these table element representations 
to compute our proposed neural predictors by averaging over table element embeddings. Without loss of generality, we report our 
findings on the best interpolated variation of our neural predictor, i.e., PWIG

NAM in Table 20. As seen in the table, the last row is the 
situation where the whole table is considered to be a single document. We find that the consideration of the whole table as a single 
document produces the best performance for the QPP task on all ranking functions except for WebTable. This seems to be inline with 
the findings reported by Deng et al. (2019) who found that the consideration of a table as a document leads the improved retrieval 
performance for the ad hoc table retrieval task as well.  

Finding 9. While table-specific characteristics such as rows, columns and cells provide richer content presentation and better 
interpretability, they do not necessarily lead to improved QPP performance. The consideration of the whole table as a document 
shows the best QPP performance over all ranking functions (except WebTable).  

Table 19 
Impact of embedding type on the performance of PWIG

NAM for each ranking function in terms of Kendall’s correlation. Bold values show the largest value 
per ranking function.          

NDCG@20 Kendall Ranking Function 

Content-based Feature-based 

STR Single Field Table2VecW Table2VecE WikiTable WebTable LTR  

Word2vec 0.234 0.28 0.26 0.264 0.2 0.019 0.212 
BERT 0.268 0.262 0.208 0.289 0.19 0.388 0.23 
ELMo 0.246 0.296 0.25 0.246 0.157 0.231 0.25 

Table 20 
The impact of table characteristics on the performance of PWIG

NAM for each ranking function in terms of Kendall’s correlation. Bold values show the 
largest value per ranking function.          

NDCG@20 Kendall Ranking Function 

Content-based Feature-based 

STR Single Field Table2VecW Table2VecE WikiTable WebTable LTR  

Row-based 0.188 0.194 0.158 0.114 0.028 0.118 0.095 
Column-based 0.183 0.202 0.165 0.092 0.07 0.081 0.108 
Cell-based 0.157 0.165 0.169 0.097 0.021 0.05 0.069 
Unstructured 0.234 0.28 0.26 0.264 0.2 0.019 0.212    
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5. Concluding remarks 

The main objective of our work in this paper has been to explore how neural embedding techniques can be exploited to predict 
query performance in the ad hoc table retrieval task. Our motivation is that neural embedding techniques enable us to estimate the 
performance of a table ranking function based on the semantic content of the query and the retrieved table list. Neural embedding 
techniques assign a low-dimensional vector to each token in a new space such that the properties of, and the relationships between, 
the tokens are preserved. In this space, the vectors of tokens that are semantically or syntactically similar tend to be close. 

We proposed a set of neural predictors that represent the content of tables and queries as bag of tokens, which are then sys-
tematically integrated into existing state-of-the-art post-retrieval query-performance predictors. The proposed neural features employ 
neural embeddings to capture the semantic relationship between the representation of tables and queries based on their relationship 
in the embedding space. 

We evaluated the effectiveness of the neural predictor through a complete set of experiments on a test collection that consists of 
1.6M WikiTables and 60 queries. We compared the ranking of queries by the neural predictor and actual performance measured 
according to their true NDCG using Pearson’s correlation to assess the neural predictor quality. We summarize our key findings from 
the results of the experiments as follows:  

• A bag of words representation is the more suitable representation for tables and queries in the context of QPP for ad hoc table 
retrieval. A bag of entity representation does not show equally effective performance especially because of the sparsity of table 
entity representations;  

• Our proposed neural predictors are effective in improving the performance of existing QPP methods when predicting query 
difficulty for content-based ranking function. The proposed predictors do not contribute to better QPP performance for feature- 
based ranking functions;  

• From among the proposed neural features, NAM, which captures the maximum similarity between the query and table tokens in 
the embedding space, leads to a more accurate estimation of query performance compared to other proposed neural features. 

Finally, we would like to highlight that as this work is among the very first attempts to perform query performance prediction for 
ad hoc table retrieval, the prediction performances would not be considered suitable to be used in production. Our work shows that 
while the consideration of neural predictors do provide better performance prediction results compared to existing state of the art 
QPP methods, the absolute correlation values are still low (for both our approach and existing QPP methods in the literature). As 
such, we believe there is optimistically room for much better work to build on the foundations of our work. 
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