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a b s t r a c t 

The wide adoption of social networking and microblogging platforms by a large number of users across 

the globe has provided a rich source of unstructured information for understanding users’ behaviors, 

interests and opinions at both micro and macro levels. An active area in this space is the detection of 

important real-world events from user-generated social content. The works in this area identify instances 

of events that impact a large number of users. However, a more nuanced form of an event, known as life 

event, is also of high importance, which in contrast to real-world events, does not impact a large number 

of users and is limited to at most a few people. For this reason, life events, such as marriage, travel, 

and career change, among others, are more difficult to detect for several reasons: i) they are specific to 

a given user and do not have a wider reaching reflection; ii) they are often not reported directly and 

need to be inferred from the content posted by individual users; and iii) many users do not report their 

life events on social platforms, making the problem highly class-imbalanced. In this paper, we propose a 

semantic approach based on word embedding techniques to model life events. We then use word mover’s 

distance to measure the similarity of a given tweet to different types of life events, which are used as 

input features for a multi-class classifier. Furthermore, we show that when a sequence of tweets that have 

appeared before and after a given tweet of interest (temporal stacking) are considered, the performance 

of the life event detection task improves significantly. 

Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved. 

1. Introduction 

Social networking platforms are considered to be among the 

foremost means of communication and social interaction. The pop- 

ularity of these platforms leads to the fast and real-time spread of 

information. Twitter is a popular platforms with special character- 

istics that makes it ideal for the fast and wide distribution of in- 

formation. Users tweet in various domains such as daily activities 

[58] , life events [18,20,21] , and the latest local and global news 

[34,35,54,56] , just to name a few. Several authors have already 

shown that the consideration of Twitter content leads to faster ac- 

cess to news compared to traditional news outlets [23,32] . For in- 

stance, on the day of the 2016 U.S. presidential election, Twitter 

proved to be among the largest sources of breaking news with 40 

million tweets sent on the topic by 10 p.m. that day. As another 

example, there were many user tweets about the death of the 

celebrity singer Whitney Houston before it was even mentioned on 

traditional media [2,57] . Many users even exploit Twitter for more 
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personal purposes and share their daily activities, life happenings, 

feelings and opinions. 

The focus of our work in this paper is on life events, which is 

a subset of events that affect an individual’s life. Marriage, grad- 

uation, career change, travel, and job promotion are examples of 

life events. Li et al. [36] have extensively identified a set of forty 

two life events in their work while the work by Glück and Bluck 

[30] provides a set of life events from an autobiographical mem- 

ory perspective. It is also worth mentioning that life events can in 

some cases intersect with general broader events. For instance, an 

award ceremony can be considered to be a public event but at the 

same time it can be regarded as a personal event for the award 

recipients. 

Lin et al. [37] believe that people have become more inclined 

to share their life events via social media such as Twitter making 

it is possible to identify signs of personal experiences, emotions, 

and life decisions from users’ social traces. Therefore, the identifi- 

cation of life event information from social networks can have im- 

portant practical applications. For instance, banks can recommend 

appropriate loans to couples who have just recently become en- 

gaged or real-estate agents could identify and engage with cus- 

tomers who are about to have a new baby to explore the possibil- 

ity of moving into a larger house. Advertising companies can also 
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benefit from the identification of life events whereby they can pro- 

mote rings to-be-wed couples or baby care products to expecting 

mothers. Customer insight gathering is an additional form of ex- 

ploiting life event information. One way in which marketers gain 

insight about consumers is by identifying the occasions in which 

consumers use their products. Identifying occasions, such as birth- 

days, helps in consumer segmentation, answering why consumers 

purchase a product, and where and when they use it [9] . Hav- 

ing mentioned these applications, it is of significant importance 

to highlight the privacy implications of these applications. The re- 

spect for user privacy needs to be taken with utmost considera- 

tion and these applications are to be exercised only when explicit 

permission has been granted by the user. For instance, often times, 

users grant permission for companies to access their social content 

and only under such consent can these applications be executed. 

From an entertainment perspective, projects such as Museum 

of Me (MoM), Facebook Lookback (FL) and Google Awesome try 

to produce video clips for users to summarize and visualize in- 

teresting and important moments in their life. These projects un- 

derstand the necessity of the existence of methods for life event 

detection from personal yet social content. The detection of life 

events allows such platforms to augment user profiles with infor- 

mation that might not be explicitly available or provided by the 

users [31] . 

The information retrieval community has seen abundant tech- 

niques that identify events from social content. The primary 

method for identifying events has been to monitor surge in spe- 

cific categories of content in order to pick up mentions of real 

world events. Event detection methods based on Graph theory [41] , 

Wavelet and Fourier transform [59] , and term frequency changes 

[49] are among the methods that primarily rely on changes in the 

volume of social content for identifying real world event mentions. 

While these methods have shown impressive performance, they 

are not well-suited for the identification of life event mentions 

from personal social timelines for several reasons: i) Life events 

have very low frequency in a person’s social stream and happen 

sporadically; therefore, relying on volume surge would not be an 

effective method to identify life event mentions; ii) Life events are 

personal events that appear on a single person’s social stream (ei- 

ther through content posted by that person or other users). There- 

fore, methods that focus on content that is generated by a large 

user base would not be suitable for the detection of life events; 

and iii) There is no guarantee that every user will post about her 

life events and in fact it has been reported that life event men- 

tions are not very frequent, making them harder to identify. For 

these reasons, existing event detection methods are not applicable 

for identifying life events. 

Another aspect of life event detection that makes it even 

more challenging is the prevalence of social content that are 

similar in nature to life events but are in fact not mentions 

of life events. For instance, there are many travel agencies, 

event planners and employment companies that post promo- 

tional content on Twitter that look very similar to life events. 

For instance, ‘#blackfriday offer get our prewedding 

Diet Plan for #brides’ is a tweet that has all the right 

components of a life event but is in fact the promotion of a Black 

Friday deal and not the report of a personal life event. Therefore, 

the identification of life events would also need to consider the 

personal self-report aspect of content as well [36] . 

In this paper, we address the problem of identifying personal 

self-report mentions of life events on Twitter. The objective of our 

work is to determine whether a given tweet of a user includes a 

mention of a life event and if so which specific life event it refer- 

ences. To this end, our work rests on and explores two fundamen- 

tal ideas: 

1. Given the sporadic and low occurring nature of life events, fea- 

tures that are based on some notion of frequency would not be 

suitable features for determining life events. It is our hypothesis 

that life events are appropriately identified if semantic features 

are taken into consideration. For this purpose, we model life 

events based on well-known word embedding techniques such 

as GloVe [47] to create a representation for life events. This rep- 

resentation is then used to determine whether a tweet is dis- 

cussing a certain life event or not. 

2. Furthermore, we hypothesize that life events have a certain 

build up nature to them in that people who are about to or 

are reporting a life event usually show signs of that life event 

in their past posts and continue to discuss this event in the 

future. Therefore, a temporal consideration of a user’s social 

stream could serve as a good indication of a life event. Such 

an approach will be able to discriminate between personal self- 

reported life events and mentions of ‘pseudo-life event men- 

tions’ coming from advertising companies given the different 

nature of reporting behavior. For instance, a user reporting his 

wedding plans will not constantly and solely talk about the 

wedding and might post other content as well whereas a wed- 

ding planning company will solely post about weddings. 

The work proposed in this paper consists of two layers: 1) In 

the first layer, we build a multi-label classifier to identify men- 

tions of personal life events on Twitter. The distinguishing aspect 

of our work from the work in the literature is that our work ex- 

plores the possibility of using features based on word embeddings. 

In the experiments, we will show that using such features signif- 

icantly improve the quality of the results in terms of recall; how- 

ever, this comes at the cost of precision. 2) In the second layer, 

we propose the idea of temporally stacking the classifier learnt in 

layer 1 to improve performance. Our experiments show that the 

proposed temporal stacking model improves both precision and re- 

call of layer 1 classifiers. 

More specifically, the key contributions of our work can be 

summarized as follows: 

1. We show that a semantic feature derived based on the idea 

of representing life events through word embeddings provides 

strong discriminatory power that can be used for the purpose 

of detecting self-reported mentions of life events. 

2. We introduce the concept of temporal stacking to show that 

when weaker life event classifiers are applied to a certain set 

of tweets prior to or after a given tweet and the generated la- 

bels are used as features of a second layer classifier that the life 

event detection performance improves significantly. 

3. We demonstrate the performance of our work on a gold stan- 

dard dataset that consists of six distinct life events and com- 

pare our work with the state of the art and show that our work 

outperforms the state of the art in both precision and recall 

metrics after temporal stacking. 

The rest of this paper is organized as follows. In the next sec- 

tion, we review the related work. The overview of the proposed 

framework for detecting self-reported life event mentions is intro- 

duced in Section 3 . Section 4 provides the technical details of our 

proposed work. Section 5 is dedicated to the details of our experi- 

mentation and our findings. Finally, in Section 6 , we conclude the 

paper. 

2. Related work 

Event detection from within a stream of document collections 

is one of the active research topics in information retrieval [4] and 

is considered to be one of the main five central themes within the 

Topic Detection and Tracking (TDT) domain [5] . Document streams 
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can be collected using social streams, online conversations, email 

exchanges, blog posts, or corporate communication. There is signif- 

icant research work being conducted in event detection with spe- 

cial focus being given to streaming corpora as well as emerging 

forms of content including microblog posts such as Twitter. 

Within the literature, events are considered to be real world 

incidents that occur in a specific time [55,61] and are attributed 

to particular locations [60] and agents who are affected by or af- 

fect the outcome [17] . As such, events on social media are a reflec- 

tion of real world events through the content generated by users, 

e.g., by the tweets that are published to describe or react to a real 

world event [22] . Event detection on Twitter has been more chal- 

lenging due to the special characteristics of tweets being short in 

nature and the prevalence of misspelling, abbreviations, slangs and 

the invention of Twitter-specific jargon, e.g., adventuritter is a new 

term on Twitter used to refer to a twitterer who is adventurous. 

Also as discussed in the literature the syntax structure as well as 

semantics of content shift given the nature of the Twitter platform 

[24,26,27] ; therefore, existing methods for event detection for clas- 

sic corpora would not work too well for microblogging platforms. 

Aiello et al. [3] have compared several techniques for event 

detection on Twitter, and promoted a technique based on term 

clustering for finding trending topics. The six techniques intro- 

duced in their work fit into two main categories: document clus- 

tering versus term clustering, where a cluster represents a poten- 

tial topic of interest. These approaches can be further categorized 

into three different classes: probabilistic models, e.g., Latent Dirich- 

let Allocation (LDA), classical Topic Detection and Tracking meth- 

ods, e.g., Document-Pivot Topic Detection, and feature-pivot meth- 

ods, e.g., n-gram clustering. Abdelhaq et al. additionally discuss the 

role of spatio-temporal features for event detection in their Even- 

Tweet work [1] . Their work is based on an initial clustering of key- 

words according to their spatial signature. Keywords that appear 

in the same location will be included into the same cluster. These 

keywords receive a score according to their level of burstiness, 

their spatial distribution and other temporal features. Closer to the 

theme of our paper that focuses on the role of word embeddings, 

the recent work by Ertugrul et al. [25] introduces a method that 

benefits from the embedding representation of words in tweets. In 

their work, the representation of each tweet is developed based on 

the vector representations of its constituting words, which is then 

used to calculate the distance between pairs of tweets to be used 

in hierarchical clustering. 

Within the event detection literature, a significant amount of 

work has been dedicated to extracting features that can be used 

for modeling and detecting events. One of the most common fea- 

tures is the 1-gram (bag of words) feature that models a tweet 

as a collection of words that have appeared in it. For instance, Di 

Eugenio et al. [20] and Dickinson et al. [21] have examined var- 

ious types of features and found that n-grams are amongst the 

most discriminative features for a host of tasks. However, the au- 

thors have also reported that the use of n-grams and bag of words 

models suffer from the curse of dimensionality, which is aggra- 

vated within the context of Twitter given the wide range of slangs, 

acronyms and abbreviations. Another downside to these types of 

features is that they overlook the temporal evolution of n-grams 

and hence significant information could be lost in the process. Sev- 

eral researchers have moved beyond n-grams and used named en- 

tity mentions to model events on Twitter. The objective has been 

to extract the four main WH questions related to events through 

named entity recognition [21] and semantic role labeling [20] : 

who, what, when and where. If properly extracted, named entity 

mentions can be strong indicators for events in the real world 

as repeated mentions of unique locations, organizations, time and 

date, among others could lead to the detection of an event. In 

addition to named entities, depending on the event that is being 

tracked or identified, users’ sentiments can also point to mentions 

of events [18] . 

Syntactic features, for example those extracted through part of 

speech tagging, have also been widely used for modeling and de- 

tecting events on traditional corpora; however, such syntactic fea- 

tures are not the best features for user generated content on mi- 

croblogging platforms given the predominant informal language 

used in these platforms [20,36] . More specific to microblogging 

and messaging platforms, users can include related keywords or 

topics in the form of hashtags or express their emotions through 

the use of emoticons. The use of hashtags and emoticons had also 

been shown to have strong discriminative power for classification 

purposes on social network data [18] . Furthermore, activity fea- 

tures are a novel set of features that account for the activities of 

users in specific time intervals on social networks. For example, 

the number of tweets posted by a user, number of replies given 

by the user to other users and the number of retweets posted by 

a user are some examples of activity features. The motivation for 

using activity features is based on the simple logic that important 

events are bound to generate more attention and activity within 

the immediate personal network of an individual [17,18,21] . 

Attention features [17] are a different set of features that can be 

defined as signs of notice taken by other users expressed through 

reply and retweets that the user has received. These features re- 

flect how many times the user is addressed/talked about by other 

users in a given time interval. Similarly, Dickinson et al. [21] have 

referred to attention features as interaction features; however, 

rather than just considering the number of retweets, favorites or 

replies, they consider who are the users performing these actions 

and their interaction patterns with the user of interest. While these 

features capture an important aspect of user activity, these au- 

thors found almost no effect of interaction features on life event 

detection when applied to Twitter. Choudhury and Alani [17] in- 

vestigated a number of user activity and attention features to de- 

tect personal life events in tweets. The focus of their work was on 

identifying whether the daily collection of tweets from a user con- 

tained the reporting of any personal events. Contrary to [21] , they 

concluded that life event detection based on attention features per- 

formed best, followed by activity based features. In another work 

by the same authors [18] , they used activity and attention features 

along with n-gram sentiment, and emoticons to detect life events 

and found that activity and attention features did not yield sub- 

stantial improvement contrary to the expectation. 

It is common to identify events from social network data based 

on supervised or unsupervised classification techniques. Based on 

a recent survey by Atefeh and Khreich, [6] , the most widely 

used techniques for unspecified event detection from Twitter rely 

primarily on clustering approaches. In this context, unspecified 

events are typically expressed as emerging events, breaking news, 

and general topics that attract the attention of a large number 

of Twitter users. By considering studies on life event detection 

[12,13,18,20,21] , it can be said that using supervised techniques is 

common for life event detection similar to unspecified event de- 

tection. One of the main obstacles in building models for life event 

detection is the curation of labeled life event datasets, which is a 

time consuming and laborious task. Li et al. [36] identified com- 

mon categories of major life events by leveraging large quanti- 

ties of unlabeled data and obtained a collection of tweets corre- 

sponding to each type of life event. By using the idea that ma- 

jor life events will elicit signs of congratulations or condolences 

from the user’s followers, they collected large volumes of high- 

precision personal life events which can be used to train models 

to recognize the diverse categories of major life events discussed 

by social media users. An LDA based topic model was then used 

to cluster the gathered tweets to automatically identify impor- 

tant categories of major life events in an unsupervised way. Also 
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they adopted a semi-supervised bootstrapping approach to expand 

event-related tweets. In contrast, the work in [21] has used Crowd- 

flower 1 as an annotation tool to curate their training life event 

dataset. Crowdflower is an online crowdsourcing platform, where 

uploaded datasets are annotated by a large audience. 

While most previous works predominantly focus on the use of 

machine learning techniques for life event detection, Cavalin et al. 

[13] have been among the few to propose a hybrid life event de- 

tection approach, which introduces the role of rules. Their system 

is composed of three modules, namely Ingest, Filter, and Detect. 

The first Ingest module captures a database of tweets to be used 

for the search of life events. This is done by considering a set of 

words that can possibly relate to all life events of interest in the 

system. The Filter module selects the set of tweets that is more 

likely to contain life events. That is, by considering a set of sim- 

ple rules such as a combinations of words, the posts that match 

these rules are marked with the corresponding possible life events. 

The Detect phase is then carried out to validate the identified life 

events. For each tweet found in the Filter phase, the authors then 

applied a machine learning classifier to compute the probability of 

each tweet belonging to a given life event. 

It is also worth noting that the body of literature on event de- 

tection from multimedia content also cover similar work to the 

work in event detection. For instance, Chen and Roy [16] and 

Becker et al. [7] focus on identifying a group of photos from 

Flickr that collectively represent a real-world event. Their work 

is primarily based on the temporal and spatial distributions of 

tags associated with photos, which are employed within a wavelet 

transform-based method to find tags with significant peaks. These 

tags are then used to cluster the associated photos into event- 

related groups. In another work [48] , the authors also aim at iden- 

tifying social events based on multimedia content on Flickr. The 

authors move beyond the work of Chen and Roy in that they ad- 

ditionally benefit from visual descriptors to cluster images into 

groups related to real-world events. Ma et al. [39] also address the 

issue of multimedia event detection with special focus on identify- 

ing rare events in video content. The novel aspect of this work is 

to use a variation of transfer learning for using partially overlap- 

ping features given there is usually insufficient positively labeled 

instances for rare events. Finally, the work by Chang et al. [15] ad- 

dresses the problem of pooling frames of a long untrimmed video 

such that only relevant video frames to a specific event are re- 

trieved and ordered. 

3. Approach overview 

The main objective of our work is to identify personal reports 

of life events of users on Twitter. To this end, we propose to turn 

the life event detection problem into a supervised machine learn- 

ing problem where information extracted from the social feed of 

the users would be used to form discriminative and indicative fea- 

tures for life events. The overview of the components and flow of 

our proposed approach is shown in Fig. 1 . As seen in the figure, 

our approach consists of two main layers. The first layer is respon- 

sible for detecting whether a tweet is a self-reported case of a spe- 

cific life event by training a multi-label classifier. In order to build 

such a classifier, we use the Word Mover’s Distance (WMD) be- 

tween the tweet and the different set of life events and use these 

distances as input features for training the classifier. We employ 

a word embedding-based representation of both tweets and life 

events that capture the semantics of the content and at the same 

time allow us to measure distance between the tweet and the life 

event space. In order to learn the word embedding-based vectors, 

1 https://www.crowdflower.com/ . 

the Skip-gram model is employed and applied on a large corpus 

of tweets. Based on the produced word vectors and an initial set 

of seed words representing life events, we model each life event 

as a collection of word vectors. In the next step, the similarity of 

each life event and an input tweet is computed by using the WMD 

measure. We will discuss in the experiments section of this pa- 

per that the state of the art baseline methods have very low recall 

rates but reasonable precision. These methods use features such 

as hashtags, emoticons, and sentiments, among others. In contrast, 

our proposed features set based on the WMD measure results in 

higher recall at the cost of precision. 

In the second layer, our aim is to improve the precision of the 

life event classification process by proposing the idea of temporal 

stacking . In temporal stacking, we propose that if features are ex- 

tracted and used from a certain time period before and after the 

date in which the input tweet is posted that a more precise predic- 

tion of the life event can be achieved. To do so, we build a second 

layer classifier based on the information of the first layer classi- 

fier and the tweets from before and after the tweet of interest. We 

show in our experiments that regardless of the features used in 

the first layer classifier (our proposed WMD feature versus other 

baseline features, e.g., hashtags or emoticons), the performance of 

the life event classifier improves significantly and hence addresses 

the issue of low precision in the first layer life event classifier. 

4. Proposed approach 

Let us first provide some preliminary definitions that will help 

us formalize our approach. 

Definition 1 (Tweet) . A tweet t w 

t 
u = (text , u, t) is a triple where 

t w 

t 
u .text , t w 

t 
u .u and t w 

t 
u .t denote the tweet content, the user who 

posted the tweet and its posting time, respectively. 

Now, given the objective of our work is to identify life event 

mentions, we formalize a concrete representation of a life event as 

a set of word vectors that represent that life event in a discrimina- 

tive way. In our model, each life event is demarcated using a set of 

words. For instance, a set of words such as ‘marriage, engagement, 

bride, groom, honeymoon’ could form the representation of the 

Wedding life event. However, in order to go beyond a bag of words 

representation of each life event, we employ the vector-based word 

embedding representation of each of these words. This way, a life 

event such as Wedding will be represented as a set of vectors de- 

noting each of the discriminative words computed through a word 

embedding mechanism. 

Definition 2 (Life event likelihood) . Let t be a specific timestamp, 

given LE = { l e 1 , l e 2 , . . . , l e k } , which denotes a collection of k life 

events and tw 

t 
u , the life event likelihood of user u in time t , called 

LEL t u , is represented by a set of probabilities { p t u, 1 
, p t 

u, 2 
, . . . , p t 

u,k 
} 

where p t 
u,k 

denotes the likelihood of life event k for user u in time 

t . 

One of the underlying assumptions of our work is that in any 

given timestamp, there is a likelihood distribution over the life 

event set for each user. In other words, it is possible to calculate a 

likelihood distribution over the life events for each user in times- 

tamp t . It should be noted that we also include a no-event situa- 

tion, which shows that the user is not engaged with any life events 

in timestamp t . Now, based on these definitions, we can formally 

define our problem statement as follows: 

Definition 3 (User life event detection) . Let t be a specific times- 

tamp, given the set LE = { l e 1 , l e 2 , . . . , l e k } and tw 

t 
u , the goal of the 

User Life Event Detection problem is to find LEM 

t 
u , which is the life 

event that user u is engaged with at time t , from the set LE . 

https://www.crowdflower.com/
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Fig. 1. Overview of the proposed approach. 

We divide this problem into three sub-problems: Life Events 

Modeling (extracting LE ), Tweet Modeling and Life Event Detection 

(determining LEM 

t 
u ). 

4.1. Life event modeling 

The first step of our work is to produce a concrete representa- 

tion for each life event. As mentioned earlier, we represent each 

life event as a set of word vectors that correspond to discrimina- 

tive words related to the life events. We refer to these words as 

life event features. 

Definition 4 (Life event features) . Let LE be a list of k life events, 

i.e., LE = { l e 1 , l e 2 , . . . , l e k } , Life Event Features for le n ∈ LE , denoted 

by LEW n = { w 1 ,n , w 2 ,n , . . . , w N,n } , is a set of words that describe life 

event le n . 

As already discussed by Choudhury and Alani [18] , it is possible 

to identify the set of such discriminative words for each life 

event. In order to identify such words, we manually curate a set 

of hashtags related to each of the life events. For instance, the 

Wedding life event would be related to a set of hashtags such as 

#wedding, #engagement, #bride, #groom, #bridal, 

and #weddingdress , among others. We then use snowballing 

to identify other related and relevant hashtags for each life event. 

Once a comprehensive set of hashtags are identified, we retrieve 

a set of tweets that are tagged with these hashtags. Based on 

this process, we collect a set of tweets for each life event type. 

Once the tweets are collected, they are reviewed to ensure that 

they are in fact self-reporting tweets about life events. There 

are many cases where tweets such as ‘Don’t forget 20% 

off our wedding photography packages this winter 

#uksmallbiz #wedding #weddinghour #bride #groom 

#offer #savings’ are retrieved because they have relevant 

hashtags, but they are not about life events. Such tweets are man- 

ually removed from our set . Now based on the filtered collection 

of tweets, we use term frequency and inverse document frequency 

of terms within the context of each life event and across all life 

events to identify terms that are specific to each life event. We 

select top-5 words for each life event based on this process as 

shown in the second column of Table 1 . An interesting observation 

is that the word ‘I’ is seen in all life event types showing its 

significance as an indicator for the self-reporting aspect that is of 

interest to our work. 

Once the top-5 words are identified, we use the word embed- 

ding approach to identify highly similar words from within our 

tweets collection to the set of top-5 words in each life event. In 

other words, we look for words based on their similarity in the 

vector space that are collectively closest to the set of five words 

for each life event. Various models have already been introduced 

for learning word embeddings including neural network language 

models [8,43] and spectral models [19] . More recently, Mikolov 

et al. [42] have proposed two log-linear models, namely the Skip- 

gram and CBOW models to efficiently learn word embeddings. 

These two models have a low time complexity and hence can be 

efficiently applied on large-scale corpora. The geometric properties 

of the semantic space prove to be semantically and syntactically 

meaningful, that is, words that are semantically or syntactically 

similar tend to be close in this space. Given the fact that the ex- 

periments in [42] have shown that the Skip-gram model outper- 

forms CBOW in identifying semantic relationships among words, 

we employ the Skip-gram model for discovering similar words in 

our study. On this basis, LEW n is finally built by including the top- 

5 words identified in the previous step and the most semantically 

similar words to the collection of top-5 words for each life event 

based on the Skip-gram model. The collection of words is shown 

in Table 1 . 

As a final step, we represent each life event as a set of word 

vectors where each of the vectors represent the individual words 

shown in Table 1 . We transform LEW n to a set of words vectors 

le n = { v (w ) | w ∈ LEW n } where v is a function that computes the 

vector of word w in life event le n using the Skip-gram model. 
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Table 1 

The list of life events and LEW n for each life event. 

Life event Most co-occurring terms (top-5) Most semantically similar terms to the top-5 

Broken Device Phone, I, Break, Drop, iPhone shatter, deraydailydose, detection, Smartphone, varsityblue, skip, device, protector 

Device Upgrade Phone, I, Time, Wait, iPhone out-of-pocket, upgrade, engadgetce, thunderbolt, thetekguy, overdue, tech, itox 

Moving Move, I, House, Hunting, Wait move, happen, break, highschoolmemory, stairmaster, property, rent, place 

New Job Job, I, Start, Excite, Hire job, itjdb, parttime, overlandpark, practice, rehearsal, work, collegeperk 

Travel I, Vacation, Book, Trip, Holiday travel, tripadvisor, heybackpacker, inclusive, frommer, traveltip, agent, package 

Wedding Wedding, I, Party, Plan, Husband bride, groom, engagement, bridal, bhldn, dress, shower, ring 

4.2. Tweet modeling 

The objective of this step of our work is to extract features from 

tweets that could be used for determining whether a life event 

is being mentioned or discussed in the tweet or not. It is com- 

mon practice to represent a tweet as a bag of words or a bag of 

n-gram [13,44] . In such approaches, both the life event and the 

tweets are considered to be a bag of words or bag of n-grams and 

hence matching between life events and tweets can happen natu- 

rally. However, such a modeling approach, often known as textual 

features, often faces problems due to the need to deal with slangs, 

acronyms, abbreviations, and misspelling errors that are prevalent 

in tweets. Extracting syntactic features such as part of speech tag- 

ging [36] is another method for modeling tweets. While such fea- 

tures can show reasonable performance on well-structured textual 

content, they are less accurate in the context of tweets where ob- 

serving correct grammatical rules is less common due to the in- 

formal language that the users adopt. One of the more effective 

set of features for modeling tweets is semantic features such as 

named entities [36] , semantic role labels [20] , and sentiments [18] . 

This is particularly true for determining life events given the fact 

that life events are often associated with certain named entities 

as well as emotions that can be effectively extracted from tweets 

using named entity recognition and sentiment analysis. 

While textual, syntactic and semantic features are the primary 

set of features used for the classification of pure textual content- 

based corpora, as mentioned earlier, some additional features can 

be defined based on the nature of social microblogging platforms 

such as activity or term features. Activity features [17,21] are based 

on the actions that users can perform on the social network such 

as retweeting, replying or favoriting a certain tweet, which can in 

itself carry significant context and meaning that can hence be used 

as features. Other features such as hashtags and emoticons are 

known as term features. Hashtags are often known to represent 

the core topic or sense of a tweet and can therefore be consid- 

ered to be quite a powerful feature. Furthermore, there are many 

emoticons, which are topic-specific (specific life events) and also 

can carry sentiment value. 

Now while many of these features are expected to have good 

discriminative power, but as we will show later in the experiments, 

they do not perform too well for life event detection given the 

informal and short nature of tweets that lead to feature sparsity. 

Therefore, while we will adopt these features to build baselines for 

comparison as suggested in [18,36] , in our own work, we use the 

word vector representation of tweets that can be obtained from 

word embedding techniques. These features incorporate both syn- 

tactic and semantic aspects of the content and therefore show to 

be effective features for identifying life events. 

Definition 5 (Tweet word vectors) . Given tw 

t 
u , a Tweet Word Vec- 

tor, denoted by twV t u , is a set of word vectors, each representing 

the words in tw 

t 
u . 

We model each tweet as a bag of word vectors where vectors 

of words are computed using the Skip-gram model. 

4.3. Life event detection 

Now, given that we have built representations for both life 

events as well as user tweets, our objective is to identify mentions 

of life event self-reports on Twitter. Both of the representations 

that we have adopted are based on the word embedding technique 

where words are represented through their vector model from the 

embedding space. Therefore, it is possible to directly calculate the 

similarity between a given tweet and the life event vector repre- 

sentation. Let tw 

t 
u be a tweet written about a life event le n by user 

u at time t , we consider the tweet tw 

t 
u to be related to life event 

le n if the word vectors in tw 

t 
u are semantically similar to the word 

vectors of le n . 

The intuition behind our approach is based on how users adopt 

terminology to express their intent. The assumption is that if the 

set of word vectors representing a life event is accurately selected, 

then any other life event self-report observed from the users will 

use words or terminology that will be semantically close to the life 

event representation in the embedding space. Therefore, given the 

fact that the position of a life event can be determined based on 

the position of its constituent words within the embedding space 

and also the position of a tweet can be determined in the same 

way in the same space, it is possible to calculate the distance of 

each tweet to the set of life events under consideration. For this 

reason, we define similarity between tw 

t 
u and life event le n by a 

Tweet-Life Event Similarity function as follows: 

Definition 6 (Tweet-life event similarity) . Given twV t u and le n ∈ LE , 

Tweet Life Event Similarity is equivalent to the inverse of the Word 

Mover’s Distance between the vector representations of the words 

in twV t u and le n and formally denoted as sim (twV t u , le n ) . 

By considering the fact that the less the distance of two vec- 

tors is, the greater their similarity would be, we have adopted the 

inverse of the Word Mover’s Distance (WMD) as a way to calcu- 

late similarity [33] . WMD is an instance of the Earth Mover’s Dis- 

tance and measures distance between twV t u and le n as the mini- 

mum amount of distance that the embedded words of twV t u need 

to ‘travel’ to reach the embedded words of le n . In WMD, the dis- 

tance between two documents is calculated by the minimum cu- 

mulative distance of the best matching embedded word pairs in 

the two documents. In the context of our work, the distance be- 

tween twV t u and le n will be based on transporting words in twV t u to 

words in le n . The transportation matrix T is a flow matrix in which 

T i, j shows to what degree word i in twV t u is transported to word 

j in le n . Matrix T i, j , which essentially determines what word pairs 

from the two documents should be connected to each other, needs 

to be learnt based on a linear optimization program. The distance 

between two documents can be calculated by minimizing the fol- 

lowing linear optimization function: 

distance (twV t u , le n ) = min 

| twV t u | ∑ 

i =1 

| le n | ∑ 

j=1 

T i, j × d (i, j ) (1) 

where d ( i, j ) is the distance between word i of twV t u and word j of 

document le n . 
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Fig. 2. Schema of different life event detection approaches. 

In order to build LEL t u and considering 0 ≤ sim (twV t u , le n ) ≤ 1 , 

sim (twV t u , le n ) , which is the inverse of distance (twV t u , le n ) , can be 

the appropriate representation for p t u,n in Definition 2 . 

As mentioned above, using the Skip-gram model helps to pre- 

serve the semantic relationship between word vectors and the dis- 

tances between the embedded word vectors. WMD utilizes this 

property of word embeddings and therefore translates this into the 

relationship between the vector-based representation of tweet and 

life events. The distance between a tweet and life event is the min- 

imum cumulative distance between the words in the tweet to their 

matching words in the life event representation. 

After computing LEL t u , we need to find LEM 

t 
u , i.e., the life event 

that user u reported in tweet tw 

t 
u . Our solution for finding LEM 

t 
u is 

to train a classifier, named life event classifier, with the set of LEL t u 
as its input and the detected life event of interest as output. The 

reason we adopt a classifier to predict the life event is that the 

event with the highest p t u,n does not necessarily point to the life 

event being discussed. The detection of the correct LEM 

t 
u depends 

not only on the LEL t u for each individual life event but also on the 

distribution of LEL t u over the whole set of life events. Another im- 

portant consideration is the ‘no-event’ label that needs to be pre- 

dicted. If only the set of life events and their LEL t u are considered, 

we will end up selecting one of the life events that has the high- 

est similarity to the tweet under consideration even if the tweet is 

not discussing any life events. Therefore the life event classifier is 

effective in helping not only identify the correct life event but also 

prevents us from producing too many false positives. 

Fig. 2 shows a schematic overview of our proposed approach 

compared to other state of the art baselines. We use classical 

supervised learning techniques such as Support Vector Machine 

(SVM), Random Forest (RF) and Gradient Boosting Tree (GBT) in 

order to train various classifiers for the life event classifier. SVM 

[14] is one of the most effective supervised classification methods. 

Given a set of training data as input, the SVM training algorithm 

builds a model that assigns new examples into one label, based on 

the margin maximization strategy. Choudhury and Alani [18] have 

already used classifiers such as SVM, Naive Bayes, and Decision 

Tree for life events detection on Twitter [18] . In their experiments, 

SVM showed the best performance in 4 out of 5 life events. 

Random Forest and Gradient Boosting Tree are ensemble learn- 

ing methods. Ensemble methods use multiple learning algorithms 

to obtain better predictive performance than could be obtained 

from any of the constituent learning algorithms alone [53] . Fried- 

man [28] has shown that gradient boosting trees compete with 

the state-of-the-art machine learning algorithms such as SVM with 

much smaller models and faster decoding time [29] . The main idea 

in boosting is that a set of weak learners create a single strong 

learner. This improves accuracy by reducing bias, and also vari- 

ance. Gradient boosting trees have already been applied as a high- 

precision classifier for event detection on Twitter [50,51] . Pennac- 

chiotti and Popescu [46] also used gradient boosting decision trees 

in order to build a general and robust machine learning framework 

for large-scale classification of social media data especially from 

Twitter users posts. 

Bootstrap aggregating (bagging) is another method built on top 

of the random forest idea to improve stability and accuracy of clas- 

sification by reducing variance and helping to avoid over-fitting 

[10] . Castillo et al. [11] have proposed a supervised learning ap- 

proach for the automatic discovery of relevant and credible news 

events from Twitter [11] and studied how different learning algo- 

rithms perform in their particular learning scenario and found that 

random forests achieve high accuracy rates. Liu and Huet [38] also 

propose an event-based media classification framework in order to 

study feature importance for modeling the relation between events 

and media, and how to deal with missing and erroneous meta- 

data often present in social media data [38] . Their experimental 

results show that the best model is learned by Random Forests in 

combination with spatio-temporal and tag features. Furthermore, 

Meij et al. [40] have proposed to combine high-recall concept rank- 

ing and high-precision machine learning methods including ran- 

dom forests and gradient boosted regression trees for automati- 

cally mapping tweets to Wikipedia articles. 

While the above examples show that various classification algo- 

rithms have been effective for different tasks on Twitter data; nev- 

ertheless, as demonstrated in [12,13] , the life event detection task 

seems to be among the more difficult tasks as it is categorized as 

an unbalanced classification problem, which means that the num- 

ber of tweets that does not contain any life events is much higher 

compared to the number of tweets that do in fact talk about life 

events. The main reason is that, besides the actual life events, a 

lot of non-personal content is generally posted on social networks, 

such as advertisements, comments related to celebrities and jokes. 

As a result the training of a machine learning classifier to detect 

actual life event self-reports with a reasonable precision and recall 

rates is challenging. 
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4.4. Temporal stacking 

As we will see later in the experiments section, although the 

life event classifier built in the previous section outperforms the 

state of the art baseline in terms of F-score, it is still far from 

being a strong classifier. We further endeavour to build a stronger 

classifier by temporally stacking the weaker classifier (life event 

classifier) built in the previous step. Our intuition is based on how 

people react and report life events. We hypothesize that users re- 

port personal life events through a sequence of messages. In other 

words, observations of life event mentions on social networks 

has a trajectory. For instance, if someone is about to get married, 

they are very likely to post several messages on their social feed 

or their friends’ social feeds. This could be messages about how 

they are preparing for the wedding, and all the related activities. 

As an example, a Twitter user reporting his marriage on Twitter 

says: ‘Holy [... ] I am getting married Today!!!! 

-Maught’ . When looking at the previous and next message on 

this user’s social stream, one would find the following tweets as 

well: ‘Best ring bearer ever!’ , ‘Having fun at the 

wedding’ and ‘Seeing you two happy makes me the 

happiest person alive. Congratulations to my two 

favourite people’ . As seen here, there are indications of the 

life event in the post and pre related content. Based on this, we 

hypothesize that it might be possible to build a stronger classifier 

by temporally stacking the classifier from the previous step. 

In order to utilize the life event classifiers from the previous 

step for building a stronger classifier, we use them to label tweets 

before and after the tweet of interest up to a maximum of m 

tweets. We use the labels produced by the weaker life event clas- 

sifiers to train a new classifier with the goal of predicting the life 

event class labels. More concretely, we employ the classifier built 

in the previous step for the various life events to label tweets be- 

fore and after the life event of interest. We use these labels as the 

input features of a second classifier, which we call a stacked clas- 

sifier. 

In a study of trends on Twitter, Kwak et al. [34] discovered that 

most trends last for one week once they become ‘active’. Since we 

follow a similar intuition, we select a time period of one week 

prior and one week after the date that a given tweet has been 

posted. We chose not to use a fixed number of tweets within the 

temporal stacking process because the frequency of tweeting dif- 

fers from one user to another. For example, while one user might 

tweet 20 times in one day, another user might take two months 

to tweet the same number of tweets. Therefore, for the latter type 

of user, taking 20 tweets would mean that information from two 

months ago would be considered when deciding on a recent life 

event, which is not relevant. Therefore, tweets from a one week 

time period were considered in our work so as to ensure their rel- 

evance to the current life event. 

The schematic view of the temporal stacking model is shown in 

Fig. 3 . We will show that when such temporal model is built based 

on the weaker life event classifiers, it will produce very strong 

classifiers of life event mentions on Twitter reinforcing our hypoth- 

esis that the temporal stacking of the results of a weak classifier 

on a sequence of social content can lead to the development of a 

strong classifier. Fig. 4 shows an example case for when temporal 

stacking was effective. In this case, the proposed life event detec- 

tion method detected the tweet of interest (in the green box) as a 

tweet containing the wedding life event. However, it is clear that 

this is a promotional material. When temporal stacking was used, 

i.e., the weak life event classifier was applied to tweets from one 

week before and after the tweet of interest, and those labels were 

used to predict the life event, it was correctly determined that the 

tweet does not contain any life events. The reason that the tem- 

poral stacking method is able to determine that this is not a per- 

Table 2 

Specification of the corpus and the gold standard dataset. 

Life event Number of tweets 

Corpus N/A 10 million 

Gold Standard Dataset Broken Device 5768 8.69% 

Device Upgrade 2822 4.25% 

Moving 4001 6.03% 

New Job 4001 6.03% 

Travel 3480 5.24% 

Wedding 4015 6.05% 

Negative Samples 42,275 63.7% 

sonal life event is that all tweets mentioned in this Twitter time- 

line are all related to weddings, which is a typical pattern observed 

when promotional material are presented; however, for an actual 

user who reports his/her wedding, it is likely that they would dis- 

cuss other topics other than their wedding on their timeline or be 

engaged with responding to other users (congratulatory) messages 

about their wedding, which would have a different pattern than 

that of the promotional material which is consistently focused on 

wedding content across time. 

5. Experiments 

We perform extensive experimentation to answer the following 

research question: ‘given a certain tweet, would it be possible to 

determine whether the tweet is about a self-reported life event or 

not?’ In this section, we describe the experimentally obtained re- 

sults and evaluate the proposed models for life event detection. 

5.1. Dataset 

In our experiments, we benefited from three sources of tweets: 

(1) The first set of tweets was a collection of 10 million En- 

glish language tweets that were selected from the Spritzer Twit- 

ter stream grab, which is publicly available. 2 The first 10 million 

tweets from this tweet collection were selected. The purpose of 

this first corpus was to learn the word embeddings; therefore, we 

initially preprocessed the tweets in this corpus by removing URLs 

as well as reposting marks such as RT and //. We then removed 

all English stop words from the tweets. Finally, we benefited from 

the Stanford CoreNLP package to lemmatize all the words in the 

tweets. Once the preprocessing was completed, the cleaned set 

of 10 million tweets was used for learning the vector represen- 

tation of the words used in tweets as well as learning the vec- 

tor representation of the life events as explained earlier using the 

Deeplearning4J framework. 3 (2) Furthermore, and in order to eval- 

uate our work, in collaboration with our industrial partner, we de- 

veloped a second corpus in the form of a gold standard dataset of 

tweets that included instances of different types of life events as 

well as negative samples. This gold standard 4 consists of 66,362 

tweets that are either labeled with a specific life event or labeled 

as ‘no-life event’. The no-life event tweets were a collection of 

tweets that were reviewed by the experts and determined not to 

be a mention of a life event. The details of the distribution of the 

life events in the gold standard are shown in Table 2 . (3) Finally, 

and for the purpose of accessing the tweets from one week be- 

fore and after the tweet of interest, we used Twitter API to retrieve 

tweets from this two week time frame per tweet in the gold stan- 

dard dataset. 

2 https://archive.org/details/archiveteam-twitter-stream-2012-01 . 
3 https://deeplearning4j.org/ . 
4 Could be available after signing NDA. 

https://archive.org/details/archiveteam-twitter-stream-2012-01
https://deeplearning4j.org/
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Fig. 3. Schematic view of the proposed temporal stacking model. 

Fig. 4. Sample tweets prior to and after the tweet of interest used for temporal stacking. 

As shown in Table 2 , we have preserved the significant class 

imbalance that is prevalent in life events on Twitter in this dataset. 

Given most tweets do not necessarily talk about a life event on 

Twitter, in our gold standard dataset, we have over 63% of no life 

event labeled tweets. 

5.2. Benchmarks, features and metrics 

In order to benchmark our work, we use the most related and 

state of the art work in the literature to compare with our work. 

We adopt the work by Li et al. [36] to serve as the baseline. 

The authors have proposed a pipeline system to detect major self- 

reported life events on Twitter. Given the code for this work was 

not publicly available, we replicated their work based on the de- 

tails provided in their paper with the exact same settings men- 

tioned by the authors where appropriate. To do so, we have ex- 

tracted features as described in that paper such as sequence of 

words, named entity mentions, and the top-40 most relevant terms 

to the life event. For the top-40 most relevant terms, we follow 

the details provided by the authors to automatically create a dic- 

tionary based on topic models. Now, if a dictionary word exists in 

a tweet then the left and right context words within a window of 

size three along with their part of speech tags are considered as 

well. In order to generate the named entity mentions and the part 

of speech tags, we use Ritter et al.’s [52] Twitter NER system and 

Twitters POS package [45] for this purpose. We train a multi-class 

maximum entropy classifier with all these features as proposed by 

Li et al. [36] , which showed the best performance in their experi- 

ments. 

In addition and in order to build additional baselines beyond 

the one proposed in [36] , we have adopted other features as ex- 

plained earlier in the paper, namely semantic and term features 

based on the work in [18] . The classification of these features is 

shown in Table 3 . The table shows the feature classes, types and 

the methods with which they were extracted. Finally and in order 

to train our own proposed model, we implement the feature de- 

scribed based on the Word Mover’s Distance (WMD) formalized in 
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Table 3 

Types of features and their extraction methods. 

Features Type Tools 

Semantic Named entities TAGME, TextRazor 

Sentiment analysis Stanford CoreNLP 

Term Hashtag not required 

Emoticon not required 

Our Feature Word Movers Distance Gensim 

Definition 6. We use these features to train several machine learn- 

ing methods such as random forests, gradient boosted trees and 

SVM to detect life event mentions in tweets. 

In the next subsection, we will show that while the classifier 

built based on the WMD feature outperforms all the other base- 

lines in terms of F-score, it would still be considered to be a weak 

classifier. Therefore, as explained earlier, we use this classifier to 

train stronger classifiers by temporally stacking the results applied 

to a certain time interval of tweets before and after the tweet of 

interest. 

In terms of evaluation metrics and as proposed in [36] , we 

compare the performance of our work with the baselines using 

standard information retrieval measures including precision (how 

many of the life events detected by our method were part of the 

ground truth set), recall (how many life events in the ground truth 

set were detected by our method) and F-Score. In calculating the 

metrics, we employ a 10-fold cross validation strategy for both the 

experiments of the first layer classifier as well as the temporal 

stacking. 

5.3. Experiment setup 

5.3.1. Life event modeling 

We model life events as bag of word vectors where each word 

vector has been derived from a Skip-gram model that we im- 

plemented using Deeplearning4j. 5 In order to run the Skip-gram 

model on our corpus, we used the default parameter settings of 

the Deeplearning4j library and set the layer size to 100, which 

means that the length of the word vectors will be equivalent to 

100. Further, the learning rate is set to 0.025, the value of window 

size is set to 6 because the average number of words in a tweet 

is close to 6 based on an experiment that we did on 1 million 

tweets. Also, words are ignored if they have been observed less 

than 5 times. 

5.3.2. Life event detection 

In our experiments, we apply SVM, Random Forest and Gra- 

dient Boosting Tree classifiers implemented in LIBSVM, 6 Java Ma- 

chine Learning 7 and Sklearn 8 packages, respectively. For SVM, the 

Radial Basis Function (RBF) kernel is used and the parameter c and 

gamma are set to 1 and 0.5, respectively. Learning rate and Maxi- 

mum of depth of tree parameters are set to 0.01 and 3 respectively 

in Gradient Boosting Tree. For Random Forest, we set parameters to 

default values used in the Java-ML package. 

5.4. Results and discussion 

5.4.1. Life event detection 

We used our ground truth annotations to evaluate the life event 

detection models with 10-fold cross-validation. That is, the anno- 

tated instances are randomly split into 10 subsets: 9 subsets were 

5 http://deeplearning4j.org/ . 
6 http://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/ . 
7 http://java-ml.sourceforge.net/ . 
8 http://scikit-learn.org/stable/modules/generated/sklearn.ensemble. 

GradientBoostingClassifier.html . 

Table 4 

Performance of the proposed life event detection classifiers 

based on WMD. 

Life event/classifier RF GBT RBF SVM 

Broken Device Precision 0.62 0.57 0.34 

Recall 0.56 0.54 0.61 

F-Score 0.58 0.55 0.43 

Device Upgrade Precision 0.63 0.72 0.31 

Recall 0.33 0.32 0.64 

F-Score 0.43 0.44 0.41 

Moving Precision 0.64 0.66 0.36 

Recall 0.47 0.46 0.54 

F-Score 0.54 0.54 0.43 

New Job Precision 0.74 0.76 0.54 

Recall 0.67 0.65 0.77 

F-Score 0.70 0.70 0.63 

Travel Precision 0.76 0.73 0.61 

Recall 0.71 0.75 0.73 

F-Score 0.73 0.74 0.66 

Wedding Precision 0.51 0.57 0.02 

Recall 0.21 0.11 0.64 

F-Score 0.29 0.18 0.03 

used to train a classifier and the remaining subset used as test 

data. The final result is averaged over 10 iterations so that each 

subset can be used as a test case once. We used three classifiers, 

Gradient Boosting Tree, Random Forest and Support Vector Ma- 

chine. These classifiers took the word movers distance as the input 

feature set and classified a given tweet as either one of the six life 

events or no life event at all. Table 4 shows the precision, recall ob- 

tained for the classifiers individually for each life event. As shown 

in Table 4 , there is a clear trade-off between precision and recall. 

RF and GBT produce better quality results compared to SVM; while 

there are no significant differences between RF and GBT. Given RF 

and GBT provide comparative and similar results, we adopt GBT to 

further compare our work with the baseline methods and also to 

build the temporal stacking model. 

The results of comparing our proposed approach to the baseline 

proposed in [36] for each life event is reported in Table 5 in terms 

of precision, recall and F-score. As shown in this table, our layer 

1 approach shows superior performance compared to the baseline 

in the F-score measure in all life event classes. However, the table 

also shows that the baseline has better precision in 5 out of the 6 

life event classes. 

As mentioned, the baseline method uses four features, namely 

word, named entity mentions, dictionary and context window. 

Among these features, named entity mentions and context win- 

dow capture semantic and syntactic aspects of tweets respectively, 

while, word and dictionary models capture the textual aspects of 

tweets. One of the main reasons for the high precision of the base- 

line can be attributed to the top-40 word dictionary that is built 

based on topic models; however, this is also the explanation for 

the low recall of the baseline as it restricts its search space to the 

words in the dictionary. 

Furthermore, the problem of detecting personal life event de- 

tection from a tweet can also be viewed as a text classification 

task. Therefore, we used a strong end-to-end deep learning based 

convolutional neural network model, known as Crepe, that has al- 

ready shown to be an accurate text classifier as another baseline 

[62] . We train and evaluate the deep learning model based on a 

10-fold cross validation strategy with 7 classes including six life 

event classes and one non-life event class. The results are included 

in Table 5 , which shows that the performance of the end-to-end 

deep learning-based classifier is comparable to the baseline and 

http://deeplearning4j.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://java-ml.sourceforge.net/
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
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Table 5 

Comparison between our proposed approach and the baseline method inspired by [36] . All 

results are statistically significant at p-value < 0.01 9 . 

Life event/classifier Baseline [36] Crepe [62] Our proposed approach 

Broken Device Precision 0.67 0.66 0.57 

Recall 0.33 0.22 0.54 

F-Score 0.44 0.327 0.55 

Device Upgrade Precision 0.70 0.29 0.72 

Recall 0.19 0.29 0.32 

F-Score 0.30 0.29 0.44 

Moving Precision 0.67 0.3 0.66 

Recall 0.24 0.15 0.46 

F-Score 0.35 0.2 0.54 

New Job Precision 0.13 0.78 0.76 

Recall 0.57 0.07 0.65 

F-Score 0.66 0.09 0.70 

Travel Precision 0.79 0.61 0.73 

Recall 0.59 0.19 0.75 

F-Score 0.68 0.29 0.74 

Wedding Precision 0.63 0.54 0.57 

Recall 0.04 0.18 0.11 

F-Score 0.07 0.27 0.18 

Table 6 

Comparison between our proposed approach and the baseline method inspired by Chaudury and Alani [18] . 

Life event/classifier NER Emoticons HashTag Hybrid of NER, Sentiment, Hashtag, Emoticons Our approach 

Broken Device Precision 0.61 0.43 0.82 0.63 0.57 

Recall 0.35 0.001 0.05 0.39 0.54 

F-Score 0.45 0.001 0.09 0.48 0.55 

Device Upgrade Precision 0.64 0.2 0.81 0.72 0.72 

Recall 0.16 0.001 0.12 0.26 0.32 

F-Score 0.26 0.001 0.20 0.38 0.44 

Moving Precision 0.71 0.62 0.86 0.74 0.66 

Recall 0.1 0.01 0.02 0.14 0.46 

F-Score 0.17 0.02 0.04 0.24 0.53 

New Job Precision 0.66 0.48 0.79 0.7 0.76 

Recall 0.27 0.01 0.1 0.36 0.65 

F-Score 0.39 0.02 0.16 0.47 0.7 

Travel Precision 0.57 0.52 0.84 0.77 0.73 

Recall 0.06 0.025 0.14 0.2 0.75 

F-Score 0.10 0.05 0.24 0.32 0.74 

Wedding Precision 0.56 0.42 0.82 0.74 0.57 

Recall 0.09 0.01 0.13 0.24 0.21 

F-Score 0.15 0.03 0.22 0.36 0.31 

our proposed approach in terms of precision; however, Crepe suf- 

fers from low recall rates similar to the baseline. 9 

Now as proposed in [18] , we further build more baselines for 

comparison with our layer 1 work based on additional features not 

considered in [36] including NER, emoticons, hashtags and senti- 

ment analysis. We use these features to learn gradient boosting 

trees and evaluate the developed models through a 10-fold cross- 

validation mechanism on the gold standard dataset. Table 6 shows 

the results of using the additional features to build life event clas- 

sifiers and how their performance compares to our layer 1 ap- 

proach. The results in this table provide significant insight into the 

effective f eatures that produce high precision life event classifica- 

tion. As seen in the table, our layer 1 approach provides superior 

performance in terms of F-score on 5 out of 6 life events. Its recall 

is also reasonable and better than the other baselines in almost all 

life events. However, similar to the comparison with baseline from 

[36] , our layer 1 method shows a lower precision for life event 

detection. When considering the different features, it is clear that 

hashtags when used as features provide the highest precision for 

detecting life events given they produced the highest precision in 

all six life events. In other words, hashtags are quite discriminative 

9 Given the implementations of these techniques are not available, we have im- 

plemented these methods according to the available publications and hence use the 

word ‘inspired’. 

features for life event detection. However, they suffer from a very 

low recall. The interpretation of this would be that when available, 

hashtags are very strong indicators of life events but it turns out 

that such hashtags are not very frequently observed with life event 

tweets as shown in Table 6 . 

Furthermore, as seen in Table 6 , sentiment based features are 

also reasonable indicators for life events. This feature provides bal- 

anced results for precision and recall for the various life events. 

One of the significant observations is that the sentiment-based fea- 

ture produces the best F-score for the Wedding life event. This 

shows that when sentiments are abundant for a life event such 

as weddings, in contrast to other life events such as travel or a 

new job, sentiment features provide a strong indication of the life 

event. 

Another important observation is that emoticons are also strong 

indicators of life events when present. The precision of the classi- 

fier learnt based on emoticons is reasonable but the recall rate is 

very low. Furthermore, it is important to mention named entity 

mentions as features. These features suffer from the recall prob- 

lem similar to emoticons and hashtags. One of our observations is 

that although we used a Twitter specific API to identify and pick 

out named entity mentions, due to the informal and unique nature 

of tweets, the detection of the named entities is extremely difficult 

leading to the poorer recall rates. 
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Table 7 

Improvement of the performance of the features when our proposed embedding features is concatenated to the baseline features. 

Life event/classifier NER + Embed Emoticons + Embed HashTag + Embed Hybrid + Embed Our approach (Embed) 

Broken Device Precision 0.64 0.63 0.63 0.64 0.57 

Recall 0.58 0.58 0.59 0.58 0.54 

F-Score 0.61 0.61 0.61 0.61 0.55 

Device Upgrade Precision 0.72 0.72 0.74 0.74 0.72 

Recall 0.34 0.34 0.36 0.36 0.32 

F-Score 0.47 0.46 0.49 0.49 0.44 

Moving Precision 0.66 0.67 0.67 0.67 0.66 

Recall 0.45 0.46 0.44 0.47 0.46 

F-Score 0.53 0.54 0.53 0.55 0.53 

New Job Precision 0.77 0.78 0.77 0.78 0.76 

Recall 0.71 0.74 0.71 0.75 0.65 

F-Score 0.74 0.76 0.74 0.77 0.7 

Travel Precision 0.72 0.74 0.73 0.75 0.73 

Recall 0.75 0.74 0.74 0.75 0.75 

F-Score 0.73 0.74 0.74 0.75 0.74 

Wedding Precision 0.61 0.57 0.62 0.64 0.57 

Recall 0.12 0.16 0.17 0.21 0.21 

F-Score 0.19 0.25 0.27 0.32 0.31 

We further performed additional experiments to see whether 

our proposed features based on the word mover’s distance has 

synergistic impact on the other features included in Table 6 . To 

do so, we retrained the models by concatenating our proposed 

features to the baseline features and the results are reported in 

Table 7 . As seen in the table, when our proposed features is con- 

catenated to the baseline features, the performance of the baseline 

features improves significantly especially as it pertains to the re- 

call metric. When comparing Tables 6 and 7 , it can be seen that 

the recall rates of the baseline features are extremely weak, while 

the recall rate of our proposed approach is strong. However, the 

inclusion of our feature with the baseline features substantially 

improves the recall rates. In conclusion, the Hybrid + Embed ap- 

proach that includes NER, Sentiments, Emoticons, Hashtags as well 

as our proposed features (Embed) shows the best performance 

across all life event types. 

5.4.2. Temporal stacking 

Now, we temporally stack layer 1 classifier over past and future 

tweets. In other words, we apply the layer 1 classifier over the 

tweets from one week before and after the given tweets posting 

date and use the outcome as the feature set for training a second 

classifier in the second layer, a process which we refer to as tem- 

poral stacking. Based on the performance of the Gradient Boosted 

Tree in building a more effective classifier in the first step, we have 

adopted it for training the temporal stacking classifier. 

In addition to performing a temporal stacking on our layer 1 

approach, we also perform stacking on the baselines introduced in 

Table 6 , to see if temporal stacking also provides improvement on 

those models or not. We report the results based on a 10-fold cross 

validation scheme in Fig. 5 (a)–(c). These figures show to what ex- 

tent precision, recall and F-score changed when temporal stacking 

was applied. It should be noted that the results reported in these 

three figures are statistically significant compared to the results re- 

ported in Table 6 (before temporal stacking) for all life events and 

all classifiers with a p-value < 0.01. 

The first observation is based on the results in Fig. 5 (a), which 

shows that temporal stacking, when applied on features such as 

Hashtags and NER, can result in lower precision. In other words, 

when a larger number of tweets from before and after a certain 

tweet of interest are taken into consideration, the chances of ac- 

curately predicting the correct life event for the tweet of interest 

reduces. This might be explained by the fact that the likelihood 

of observing discriminatory features for the life events increases, 

which might not necessarily all be related to the tweet of inter- 

est. While this observation is consistent for the NER, HashTag and 

hybrid features, it is different for the Emoticon and WMD features. 

When looking into the reason for this, we found that given the fact 

that the WMD feature only relies on the semantic similarity be- 

tween the observed words and the representation of a life event to 

determine the correct life event, it is more resilient towards unre- 

lated words when pooled through temporal stacking. For instance, 

if several tweets are pooled in the temporal stacking process and 

there are a few tweets that are discussing unrelated issues to the 

topic of the tweet of interest, then as long as the other tweets are 

related, WMD is able to benefit from the related tweets as it cal- 

culates semantic similarity based on word mover’s distance that 

maximizes similarity to the closest words. 

On the other hand, this does not apply to features such as 

Named Entities and Hashtags when considering two facts simul- 

taneously: 1) Such features are not very common in tweets (low 

recall observed in Table 6 ); 2) When present these features are 

highly discriminatory (high precision in Table 6 ). In simple terms, 

if an instance of such features is observed, it will serve as a strong 

indicator for a certain life event. Therefore, these features, unlike 

WMD, are sensitive features that would reduce precision if inaccu- 

rate values for the features are included. For this reason, when ap- 

plied in temporal stacking and given the fact that information from 

related tweets are used in the temporal stacking process, the preci- 

sion will drop. In order to show the number of values obtained for 

these features through temporal stacking, we report the percent- 

age of users that had relevant values for each feature before and 

after temporal stacking in Table 8 . For instance, within the ‘bro- 

ken device’ life event, only 2% of the users had Hashtags while this 

number reached 15% when temporal stacking was applied showing 

a 13% increase in the number of Hashtags that were considered. 

While this will have a positive impact on recall, as we will show 

later, it negatively impacts precision. 

Finally, we also looked at the reason why emoticons, unlike 

NER and Hashtags, show improvement on precision after tempo- 

ral stacking. We found that this is due to the fact that when used, 

users adopt a consistent set of emoticons in their tweets. However, 

it is worth noting that the improvement of precision as a result 

of temporal stacking on emoticons is quite small ∼0.05. There- 

fore, our finding shows that temporal stacking positively impacts 

the precision of models learnt based on semantic features such as 

our proposed WMD feature but can negatively impact models pri- 

marily built on features such as NER and Hashtags. 

The second set of observations relate to the increase in recall 

shown in Fig. 5 (b). As seen in the figure, given additional values for 
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Fig. 5. Changes in (a) Precision, (b) Recall, and (c) F-score after temporal stacking. 

Table 8 

The percentage of users with a given feature before and after temporal stacking. 

Broken Device Device Upgrade Moving New Job Wedding Travel 

Bef Aft Bef Aft Bef Aft Bef Aft Bef Aft Bef Aft 

Emoticon 0.26 0.85 0.2 0.86 0.32 0.81 0.22 0.63 0.21 0.61 0.28 0.67 

HashTag 0.02 0.15 0.09 0.2 0.06 0.17 0.02 0.17 0.16 0.42 0.08 0.32 

NER 0.9 0.99 0.91 0.99 0.91 0.99 0.96 0.99 0.95 0.99 0.4 0.92 

all the features are pooled through temporal stacking (also seen in 

Table 8 ), recall increases significantly. Compared to the recall val- 

ues obtained in the first layer classifier, these improved recall val- 

ues are important as they allow us to predict the correct life event 

of a larger number of tweets. For instance, the recall rates of the 

Emoticons feature on the ‘Broken Device’ and ‘Device Upgrade’ life 

events are 0.001 in the first layer life event classifier, which means 

that out of 5,768 and 2,822 tweets in these life events, respec- 

tively, only between 5 − 6 and 2 − 3 tweets would have been re- 

called by the first layer classifier, which is quite insignificant. How- 

ever, based on temporal stacking and for the same life events and 

feature, recall has increased by ∼50% covering up to 2, 884 and 

1,411 tweets, respectively. This can be explained by observing in 

Table 8 that for the same feature and life events, the percentage 

of users that had a value for the emoticon feature increased from 

26% and 20% to 85% and 86%, respectively after temporally stack- 

ing, leading to increased recall values. As discussed in Tables 5 and 

6 , the main issue with the first layer classifiers was low recall. 

Based on the results obtained, the recall values have significantly 

increased, albeit at the cost of losing some precision in the case of 

Hashtag, NER and hybrid features. 

In order to evaluate the overall impact of temporal stacking on 

life event detection, we report the delta of F-score before and af- 

ter temporal stacking in Fig. 5 (c). The results show that temporal 

stacking has resulted in an increase in performance over the first 

layer classifiers across all features and for all different types of life 

events. 
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Fig. 6. Changes in (a) Precision, (b) Recall, and (c) F-score after temporal stacking 

when our proposed metric is included with the baseline features. 

Furthermore, in order to validate the above arguments in terms 

of the impact and role of our proposed embedding feature in terms 

of robustness for recall and precision, we report the performance 

of the baseline models before and after temporal stacking for the 

case when they are trained jointly with our proposed features. The 

results are reported in Fig. 6 . As expected, when our proposed fea- 

tures is included along with the baseline features, the observed 

improvement is consistently positive for all three metrics across all 

life event types. 

Finally, an important consideration for life event detection 

could be the need to perform classification in realtime. Therefore, 

if this is the case the tweets from the next seven days (one week) 

will not be available for the sake of classification. In this case, the 

only available information is the tweets from the past time inter- 

vals before the tweet of interest was posted. Based on this, we per- 

formed experiments to see the impact of 2 factors on the perfor- 

mance of the model: (1) The consideration of only past tweets; 

and (2) The length of the considered time window. Fig. 7 summa- 

rizes our findings in terms of the difference of the F-score of our 

proposed approach for different window sizes. In this figure, zero 

days shows the case when no future tweets are taken into account 

for detecting the life event and only past tweets are considered. 

The other three intervals two, four and six show cases when tweets 

of only two, four and six future days are taken into consideration. 

The y-axis shows the percentage of change in the F-score of the 

trained models. As seen, the more future tweets are taken into ac- 

count, the more accurate the model will be; however, the amount 

of improvement is not significant and hence a model trained only 

based on past tweets would be practical for realtime life event de- 

tection. 

It should be noted that the performance of the temporal stack- 

ing model relies on the availability of other tweets other than the 

tweet of interest; therefore, if such tweets (e.g., those from the past 

week for that user) are not available due to reasons such as limita- 

tion of the Twitter API, then temporal stacking would not be pos- 

sible. However, to date, there are currently no such limitations in 

place and it is possible to retrieve the required tweets for temporal 

stacking from Twitter. 

5.4.3. Execution performance 

The other performance consideration that we explored was the 

execution time of our proposed method compared to the state of 

the art methods 10 This is an important issue given the fact that 

tweets need to be processed and labeled in real-time and slow 

methods would not be practical. The average and standard devia- 

tion of the execution time of the different methods in first layer 

are reported in Table 9 . It can be seen that the execution time 

of our proposed approach is among the fastest compared to the 

other methods and is comparable to when only simple features 

such as emoticons and hashtags are used. However, the slowest ex- 

ecution time belongs to the work proposed by Li et al. [36] , which 

is around 33 seconds per classification, making it too slow to be 

practical. 

We further explored whether the execution time of the second 

layer classifiers (temporal stacking) was different for the various 

classifiers. Our observation was that second layer classifiers all had 

the same execution time with an average of 0.002 seconds regard- 

less of which first layer classifier was used. This is primarily due to 

the fact that the second layer classifier does not rely on the perfor- 

mance of the first layer classifier and only classifies a tweet based 

on a set of input labels from the first layer. So once those labels are 

provided, all the models have the same execution time in terms of 

temporal stacking. It should be noted that the set of tweets used 

in temporal stacking for the different models was exactly the same 

(therefore, the same number of tweets) and hence making the ex- 

ecution times fully comparable. 

10 All our experiments were executed on 40-core Intel(R) Xeon(R) E5-2690 v2 @ 

3.00GHz with 256GB of memory. 
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Fig. 7. Impact of different window sizes on performance. 

Table 9 

The execution time of the first layer classifiers using different approaches. Avg and Std represent average and 

standard deviation of the execution time in seconds. W/O E and WE denote Without Embedding features and 

With Embedding features, respectively. 

NER Emoticons Hashtags Hybrid Li et al. Ours 

W/O E WE W/O E WE W/O E WE W/O E WE 

Avg 0.743 0.788 0.486 0.858 0.504 0.768 0.765 0.801 33.681 0.662 

Std 0.0 0 06 0.001 0.0 0 02 0.002 0.0 0 03 0.001 0.0 0 07 0.001 2.763 0.0 0 05 

6. Concluding remarks 

In this paper, we have proposed two incremental methods for 

the detection of life event mentions on microblogging platforms, 

most specifically Twitter. We have advanced the state of the art 

methods for identifying life event mentions on Twitter by using a 

semantic feature learnt based on the distance between embedding- 

based life event representations and the vector representation of 

a tweet calculated using Word Movers Distance (WMD). We have 

shown that multi-class classifiers learnt using this feature outper- 

form existing techniques in terms of both recall and F-score; how- 

ever, they are not as efficient from a precision stand-point. To ad- 

dress, this shortcoming, we have proposed the novel idea of tem- 

porally stacking the results on an existing life event classifier over 

the tweets from several time intervals before and after the tweet 

of interest. The predicted life events for these tweets obtained from 

existing life event classifiers, such as our proposed classifier based 

on WMD, are then used as input features for a second-layer classi- 

fier, which we refer to as the stacked classifier. Through our experi- 

ments, we have shown that the stacked classifier shows impressive 

improvement in all recall, precision and F-score metrics and out- 

performs all methods before being stacked. This is an indication 

that using a weaker life event classifier for labeling a sequence of 

tweets leads to a highly accurate model for life event detection. 

As a part of future work, we are interested in extending our 

work in the following two directions: 

• One specific area that we are interested in is to predict future 

life events based on a given user’s historical social network ac- 

tivity. For instance, we are interested in predicting whether a 

given Twitter user will get married or change jobs in the next 

few weeks without having access to the tweets that include 

such announcements. A possible approach for addressing this 

problem is to consider the historical content of the user as well 

as the content generated by her connection. A natural approach 

for addressing is to use recurrent neural networks based on 

long short-term memory networks. 

• We are also interested in addressing the same problem of pre- 

dicting future life events by applying frequent sequence mining 

techniques on a global set of life events. This could give us an 

indication of how users transition through life events and what 

are the likelihood of observing a next type of life event given 

the observation of a sequence of life events. 

• Finally, the work in this paper could be generalized to detect- 

ing local events on Twitter that are not necessarily personal and 

dedicated to only one individual user. For instance, the pro- 

posed approach could be used to detect a sale or promotion at a 

local store that makes the announcement on Twitter. The char- 

acteristic of such events is similar to life events and hence the 

work presented in this paper has the potential to be applied in 

those contexts as well. As future work, we are interested in col- 

lecting tweets that could be used to evaluate our work in such 

context. 
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