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Abstract
Graph-based retrieval systems rely heavily on structural dependen-
cies, making them vulnerable to adversarial manipulation. We present
a black-box graph poisoning attack that degrades a target node’s rank-
ing using only edge deletions, without access to model parameters,
gradients, or retraining. Prior heuristic methods treat edge influence
as a static property and fail to capture how an edge’s impact varies
with local neighborhood structure. We address this limitation by
modeling edge influence as context-dependent. Our method samples
multiple ego-networks around a target node, measures empirical
utility changes from edge ablations, and trains a local scorer to
predict context-sensitive edge effects. At inference, predictions are
aggregated across sampled subgraphs to yield stable deletion deci-
sions. Experiments on standard benchmarks show that this approach
consistently outperforms existing black-box and white-box baselines
across perturbation budgets while remaining model-agnostic.

1 Introduction
Information retrieval systems increasingly rely on graph structures to
encode relationships among queries, documents, users, and entities
[8]. Examples include bipartite query–document graphs that capture
behavioral signals [3], nearest-neighbor graphs used for candidate
generation and reranking in embedding-based retrieval, and citation
or knowledge graphs that propagate semantic relations [2]. In these
settings, relevance is determined through path-based propagation or
message passing, making ranking outcomes sensitive to even small
structural modifications in the underlying graph.

Given the sensitivity of these approaches to graph structure, graph
poisoning has received growing attention by the community. The
objective is to decrease a chosen target score in ranking or to induce
a misclassification for a specific node while applying only a small
number of edge deletions in the graph. Existing work can be broadly
classified into four directions. White-box approaches [4] rely on
gradients or internal losses to evaluate perturbations, which ties the
attack to architectures and training signals that may not necessarily
be accessible to the attacker. Gray-box methods [10] assume partial
access to the model, such as predictions or linear approximations, but
still depend on some internal knowledge to guide perturbations. Black-
box methods [9] estimate influence through repeated interactions or
reinforcement learning and can be effective, yet require large query
budgets and often retraining. Heuristic structural methods score
candidates with single snapshot statistics such as degree, centrality,
or spectral measures. These methods are efficient, yet they assume
that edge impacts are uniform on all graph nodes, whereas the impact

of the same edge can vary depending on the target node and its
neighborhood, making static global scores a weaker proxy for graph
poisoning attacks.
Our work in this paper adopts a black-box setting in which the
attacker does not have access to the model architecture, parameters,
or gradients, and does not require model retraining. The attack
acts only on the input graph by perturbing its edges in order to
introduce downstream effects. In this setting, the effect of removing
an edge depends on the neighborhood that the scorer actually uses
at evaluation time, and that neighborhood can vary as indexing and
approximate nearest-neighbor search change which nodes appear
nearby. We treat edge influence as conditional on local structure. For
each target, we sample budgeted 𝑘-hop ego networks that represent
plausible local views, ablate candidate edges inside each view, and
record the resulting change in the downstream objective of node
rank demotion. Using these empirical labels, we train a scoring
function on features extracted within the subgraphs to predict per-
edge sensitivity. At inference, we evaluate candidate edges across a
small set of sampled ego networks, aggregate the predicted effects
to obtain a stable estimate, and delete the highest-scoring edges
within the perturbation budget. This design respects the black-box
constraints while aligning the attack with neighborhood variability.

In theory, our proposed conditional subgraph based estimation
yields two benefits relative to prior poisoning strategies, namely
(1) by treating edge influence as an expectation over plausible
local neighborhoods rather than a fixed quantity tied to a single
snapshot, it matches path based propagation of information used
in graph representation methods and provides lower variance and
greater stability compared to heuristic methods that assume invariant
edge importance; and (2) by supervising on empirical ablations
within sampled ego networks, it captures the same directional signal
that gradient driven white box methods target, namely how small
structural edits change scores, yet it does so without access to model
parameters or losses, which keeps the method model agnostic.

The main contributions of our work can be enumerated as follows:
• A black-box framework for graph poisoning through edge

removal that targets node ranking in retrieval settings without
access to model internals or retraining;

• A subgraph conditioned training procedure that learns edge
sensitivity from multiple ego network realizations using
labels obtained by direct ablation within each subgraph;

• An inference strategy that aggregates predictions across sam-
pled neighborhoods to produce stable demotion estimates
under neighborhood variability;

1
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• Experimental study on standard node retrieval benchmarks
that compares against heuristic and learning based baselines
across perturbation budgets, showing consistent improve-
ments without gradients or retraining.

2 Methodology
In this section, we investigate graph structure poisoning attacks,
where an adversary is capable of removing edges in the original
graph under a limited modification budget.

2.1 Problem Definition
Let𝐺 = (𝑉 , 𝐸) be a graph with adjacency A and node features X. For
retrieval, query q is scored against a target node 𝑣𝑡 by a similarity
𝑠 (q, 𝑣𝑡 ); we write per-target utility as:

𝐽 (𝐺 ; 𝑣𝑡 ) = Eq∼Q(𝑣𝑡 )
[
𝑠 (q, 𝑣𝑡 )

]
,

where Q(𝑣𝑡 ) denotes the query distribution for 𝑣𝑡 . The utility
is the (positive) margin 𝐽 (𝐺 ; 𝑣𝑡 ) = 𝑚(𝑣𝑡 ). An attack chooses a
set of incident edges B ⊆ N(𝑣𝑡 ), N(𝑣𝑡 ) ≜ { (𝑣𝑡 , 𝑢) ∈ 𝐸 }
(the set of edges incident to 𝑣𝑡 ) with |B| ≤ 𝐵 and deletes them, pro-
ducing 𝐺 ′ = (𝑉 , 𝐸 \ B). The setting is black-box and hence the
attacker observes utilities 𝐽 but has no access to model internals.

2.2 Proposed Method
To relate structural edits to representation changes, we analyze a
linearized 𝑘-layer propagation model 𝑓GNN (A,X) = A𝑘XW. Let “:”
denote the Frobenius inner product, U : V = tr(U⊤V). Deleting a
single edge induces a perturbation ΔA and a first-order change in the
embedding of 𝑣𝑡 ,

Δz𝑣𝑡 ≈
𝜕z𝑣𝑡
𝜕A

: ΔA =

𝑘∑︁
𝑙=1

A 𝑙−1 ΔAA𝑘−𝑙 XW,

which shows how a local edit propagates along multiple hops through
powers of A. This motivates a scalar attack sensitivity that directly
measures task impact. For an edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ) and query q, we define

S(𝑣𝑡 , 𝑒 | q) =
��� 𝜕 𝑠 (q, 𝑣𝑡 )

𝜕𝐴𝑖 𝑗

���, S(𝑣𝑡 , 𝑒) = Eq∼Q(𝑣𝑡 )
[
S(𝑣𝑡 , 𝑒 | q)

]
,

Large S(𝑣𝑡 , 𝑒) indicates that removing 𝑒 strongly decreases the utility.
Closed-form computation of S is intractable for deep nonlinear
models, so we learn a surrogate 𝑓𝜃 (h𝑒 ) ≈ S(𝑣𝑡 , 𝑒) by supervised
regression on context-dependent edge descriptors extracted from
local subgraphs. Supervision is obtained by empirical ablation on
the full graph:

Ŝ(𝑣𝑡 , 𝑒) =
[
𝐽 (𝐺 ; 𝑣𝑡 ) − 𝐽 (𝐺 \ {𝑒}; 𝑣𝑡 )

]
+, [𝑥]+ =max(𝑥, 0),

We adopt a larger-is-better convention for 𝐽 (similarity or positive
margin), so harmful deletions yield positive labels while helpful
or neutral deletions map to zero. To expose structural variation
while controlling cost, we generate𝑚 localized views around 𝑣𝑡 by a
stochastic 𝑘-hop expansion that samples up to 𝑠ℎ neighbors at hop
ℎ without replacement and then prunes to a node budget 𝑆max, i.e.,
retain 𝑣𝑡 and its one-hop neighbors; if over budget, sample additional
nodes from the remainder with probability proportional to deg𝛼 for
𝛼 ∈ [0, 1], insert shortest-path connectors as needed to keep nodes
reachable from 𝑣𝑡 , and, if still over budget, drop farthest-by-hop
nodes (ties by lower degree). We then denote the resulting views

by {𝐺 (𝑟 )
𝑠 }𝑚𝑟=1. For a given view 𝐺𝑠 , we form an edge representation

h𝑒 (𝐺𝑠 ) ∈ R𝑑 only when 𝑒 ∈ 𝐸 (𝐺𝑠 ). The scorer 𝑓𝜃 : R𝑑 → R≥0 is
trained to predict the same label Ŝ(𝑣𝑡 , 𝑒) across all realizations in
which the edge appears, using the mean-squared error objective

min
𝜃

L(𝜃 ) = 1
|D|

∑︁
(𝑣𝑡 ,𝑒,𝐺𝑠 ) ∈D

(
𝑓𝜃
(
h𝑒 (𝐺𝑠 )

)
− Ŝ(𝑣𝑡 , 𝑒)

)2
,

D =
⋃
𝑣𝑡

{
(𝑣𝑡 , 𝑒,𝐺𝑠 ) : 𝑒 ∈ N (𝑣𝑡 ) ∩ 𝐸 (𝐺𝑠 ), 𝐺𝑠 ∈ {𝐺 (𝑟 )

𝑠 }
}
.

2.3 Inference
At inference time, we mirror training to stabilize decisions under
neighborhood variability. Around 𝑣𝑡 , we sample {𝐺 (𝑟 )

𝑠 }𝑚𝑟=1, score
each candidate edge in each view, and aggregate the predictions to
estimate the expected effect under the subgraph distribution,

S̃(𝑣𝑡 , 𝑒) =
1
𝑚𝑒

∑︁
𝑟 :𝑒∈𝐸 (𝐺 (𝑟 )

𝑠 )

𝑓𝜃
(
h𝑒 (𝐺 (𝑟 )

𝑠 )
)
, 𝑚𝑒 =

��{ 𝑟 : 𝑒 ∈ 𝐸 (𝐺 (𝑟 )
𝑠 ) }

��.
S̃(𝑣𝑡 , 𝑒) ≈ E𝐺𝑠∼P(· |𝑣𝑡 )

[
𝑓𝜃
(
h𝑒 (𝐺𝑠 )

) ]
.

Given a budget 𝐵, we select

B★(𝑣𝑡 ) = argmax
B⊆N(𝑣𝑡 ), | B |≤𝐵

∑︁
𝑒∈B

S̃(𝑣𝑡 , 𝑒),

The aggregated score S̃ provides low-variance estimates of edge
impact across neighborhood realizations.

2.4 Time Complexity Analysis
Let 𝑑𝑡 denote the degree of a target node 𝑣𝑡 , 𝑅 the number of sampled
ego-networks, 𝑆 the maximum subgraph size, 𝐶oracle the cost of one
utility evaluation 𝐽 (·), and𝐶𝑓 the cost of a forward pass of the scorer.
Training. For each target, we compute 𝐽 (𝐺 ; 𝑣𝑡 ) once and 𝐽 (𝐺\{𝑒}; 𝑣𝑡 )
for every incident edge 𝑒, giving a labeling cost of 𝑂 (𝑑𝑡 𝐶oracle).
Sampling 𝑅 subgraphs of size at most 𝑆 costs 𝑂 (𝑅𝑆). Each edge
appears in up to 𝑅 subgraphs, yielding𝑂 (𝑅𝑑𝑡 ) training examples and
a scorer training cost of 𝑂 (𝑅𝑑𝑡 𝐶𝑓 ). Overall training time per target
is: 𝑂

(
𝑑𝑡 𝐶oracle + 𝑅𝑆 + 𝑅𝑑𝑡 𝐶𝑓

)
.

Inference. Attack inference mirrors training: sampling𝑅 ego-networks
costs 𝑂 (𝑅𝑆), and scoring all incident edges in all views costs
𝑂 (𝑅𝑑𝑡 𝐶𝑓 ). Selecting the top-𝐵 edges requires 𝑂 (𝑑𝑡 ). Total infer-
ence time per target is 𝑂

(
𝑅𝑆 + 𝑅𝑑𝑡 𝐶𝑓 + 𝑑𝑡

)
.

The beauty of our approach is that both training and inference
scale linearly with the target node’s degree and with the number of
sampled ego-networks, and do not depend on the global graph size
beyond these local quantities. As we will see in the experiments, this
is in contrast to some of the state of the art baselines [9] that fail to
produce any results and reach a timeout.

3 Experiments
ResearchQuestions. To assess the effectiveness and robustness of
our proposed black-box graph poisoning method, we organize our
empirical evaluation around the following research questions:

RQ1: How does our proposed method perform on the retrieval
demotion task compared to existing baselines? This question ex-
amines whether our attack can degrade model utility more effectively

2
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than both heuristic and learning-based baselines, despite operating
in a fully black-box setting.

RQ2: How scalable is our approach compared to other black-
box methods under increasing graph size? Here, we investigate the
computational efficiency of our method in comparison to other black-
box techniques, particularly NAG-R, by analyzing time and space
complexity on large graphs and identifying performance bottlenecks.

RQ3: How does adversarial effectiveness change with increas-
ing perturbation budgets? This question examines the robustness
of our edge selection strategy under varying budgets. We assess
whether the model maintains or improves its demotion impact as the
number of allowable deletions increases, and how this compares to
baseline trends.

3.1 Evaluation Setup
Datasets. We evaluate our attack on three standard network bench-
marks: CoraFull [2], Amazon-Photo [8], and PubMed [7]. These
datasets vary in size, feature dimensionality, and number of classes,
providing a diverse evaluation setting. Detailed statistics for each
dataset are summarized in Table 1.

Implementation Details. Experiments were conducted using an
NVIDIA RTX 6000 ADA GPU. To ensure fair comparisons, we
use the same budget constraints and evaluation protocols across all
baselines. For methods that required more than 4 days of computation
to complete attack generation for the specified targets, we marked
them as OOT (Out of Time). Our implementation of the proposed
attack method, including, baseline integration, and analysis tools, is
publicly available at:
https://github.com/m-hoseyny/graph-poisoning-proposed-model.

Baselines. To evaluate the effectiveness of our proposed attack,
we compare it against a diverse set of baselines spanning heuristic,
unsupervised, and supervised methods, covering white-box, gray-box
and black-box scenarios:
• Degree: A simple structural heuristic that removes edges connected

to low-degree nodes in the neighborhood. The intuition is that
nodes with lower degree typically exert more influence, and
removing them may degrade the target node’s prominence.

• PageRank [5]: This method ranks neighbors using personalized
PageRank scores and removes edges to the most influential nodes.
It approximates long-range influence propagation and targets
nodes with broader graph centrality.

• Random: A naive baseline that deletes edges uniformly at random.
It serves as a control to assess whether structured deletion strategies
provide meaningful improvements.

• Link Prediction (VGAE) [1]: Uses a variational graph autoencoder
to estimate link probabilities. Edges with the lowest predicted
likelihood are removed, assuming they are structurally weak and
less informative.

• VIKING [4]: A gradient-based poisoning attack that learns edge
deletions using supervised training on model internals. Though
effective, it assumes white-box access to gradients and architecture.

• NAG-R [9]: A recent black-box method that combines Nesterov [6]
Accelerated Gradient with rewiring to craft adversarial perturba-
tions. It addresses common limitations in black-box optimization

(e.g., local optima) and maintains stealth by preserving node
degrees.

• Nettack [10]: A foundational gray-box attack designed for targeted
node misclassification. It optimizes edge and feature perturbations
based on surrogate gradient objectives and enforces structural
constraints for stealth. Nettack is widely used to benchmark
robustness in transductive node classification.

Table 1: Characteristics of datasets used in our experiments.

Dataset # Nodes # Edges # Features

CoraFull [2] 19,793 126,842 8,710
Amazon-Photo [8] 7,650 238,162 745
PubMed [7] 19,717 88,648 500

Metric. We evaluate attack effectiveness using specific metric for
the retrieval task. We report the Average Rank Demotion (ARD),
measuring how much the target node’s rank degrades after the attack.
This

3.2 Findings
Our experiments yield several key findings that highlight the effec-
tiveness, efficiency, and robustness of our proposed attack strategy:

(1) As shown in Table 2, our method consistently achieves the high-
est performance across all three datasets (PubMed, Amazon-Photo,
and CoraFull) and across both retrieval models (EPAGCL and GCA).
Notably, our black-box method surpasses even gray-box attacks such
as Nettack [10], which has access to gradient approximations and
internal model parameters. Despite this privileged access, Nettack
performs even worse than simple structural heuristics like Degree or
PageRank in several cases. This suggests that surrogate modeling
using linear approximations fails to capture the complex, nonlinear
interactions present in modern GNNs. Meanwhile, VIKING [4]
underperforms across all settings despite having full model access
and using perturbation-based optimization. This suggests that its
global modeling lacks the localized sensitivity necessary to iden-
tify high-impact deletions. In contrast, our approach benefits from
subgraph sampling and localized edge scoring, allowing it to better
capture context-dependent edge effects. Moreover, in some scenarios,
especially on PubMed using GCA, we observe negative rank demo-
tions. This indicates that edge deletions unexpectedly improve the
target node’s ranking. This reveals that some edges may contribute
to noisy or adversarial message passing, and their removal can lead
to richer or more coherent embeddings. Sparse datasets are more
susceptible to such behavior, where each edge plays a disproportion-
ately critical role in structural signal propagation. This addresses
RQ1 by demonstrating our method’s superior performance in rank
demotion compared to all baselines, including those with internal
model access.

(2) Although NAG-R is also a black-box approach, it fails to
execute within a reasonable timeframe on larger graphs like CoraFull.
This is due to its quadratic time complexity 𝑂 (𝑇 × 𝐵 × 𝑁 2) and
memory complexity𝑂 (𝑁 2), originating from dense adjacency matrix
operations. The inefficiency arises from three main bottlenecks: (i)
cloning and storing dense adjacency matrices at each iteration, (ii)
computing gradients over the entire graph even though perturbations

3
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Table 2: Comparison of attack performance under different budget constraints (B=1 to 5) for EPAGCL and GCA models across three
datasets. Best results are in bold

EPAGCL GCA
Dataset Method B=1 B=2 B=3 B=4 B=5 B=1 B=2 B=3 B=4 B=5

Pu
bm

ed
Degree 14.63 16.70 24.33 22.75 27.58 10.61 15.14 21.24 18.18 24.95
Page Rank 13.51 14.48 20.44 16.86 21.10 8.47 9.56 15.71 13.73 18.31
Random 2.80 5.23 7.63 11.71 13.69 -2.60 -8.11 -9.59 -12.71 -14.39
Viking 2.06 5.53 8.00 11.37 15.40 -2.83 -5.88 -10.21 -13.77 -13.00
Link Prediction 4.81 -0.68 2.41 -0.48 4.83 -2.61 -19.06 -26.09 -34.23 -39.85
Nag-R OOT 7.83 12.14 16.17 20.58 23.02
Nettack 1.94 3.54 6.33 9.98 14.06 -6.03 -12.87 -21.43 -28.69 -30.06
Proposed 23.32 38.79 53.18 66.28 76.83 37.78 57.68 69.99 77.53 81.12

A
m

az
on

Degree 3.77 3.68 6.44 6.60 8.82 2.13 3.41 5.96 5.82 7.46
Page Rank 2.99 3.04 5.71 5.21 6.23 2.23 2.81 5.04 5.52 6.53
Random 0.60 -0.17 0.77 1.45 0.74 0.18 0.63 1.02 0.77 0.88
Viking 0.23 0.20 0.59 0.32 0.65 0.04 0.30 0.77 0.33 0.79
Link Prediction -1.21 -2.11 -3.45 -4.60 -5.66 1.29 1.37 2.10 1.99 2.47
Nag-R 0.22 0.54 0.98 1.55 2.11 1.59 3.00 4.15 5.51 6.56
Nettack 0.02 0.88 1.69 2.05 2.86 -0.38 -0.73 -0.41 -0.76 -0.45
Proposed 5.73 9.06 11.18 13.53 15.34 5.18 7.46 9.42 10.88 12.77

Co
ra

Fu
ll

Degree 4.89 4.59 7.29 8.38 10.88 2.84 4.24 8.02 10.45 13.20
Page Rank 4.87 4.51 7.00 7.14 9.40 1.71 4.71 6.98 9.39 12.83
Random 0.80 2.45 2.21 2.43 3.06 1.36 2.64 3.11 3.02 4.26
Viking 0.98 0.20 1.61 4.45 2.86 0.69 0.26 2.79 1.72 4.91
Link Prediction 1.07 1.33 2.21 2.68 3.67 0.24 1.78 3.20 3.42 5.06
Nag-R OOT OOT
Nettack 0.68 1.37 2.85 2.78 2.61 3.74 6.47 8.72 13.92 17.97
Proposed 5.88 9.37 12.25 14.76 17.02 11.42 17.36 22.29 25.46 28.26

affect only a local neighborhood, and (iii) performing sequential
attacks per node. In contrast, our method scales linearly with the
target node’s degree and the number of sampled subgraphs, making
it more practical for real-world deployment. Together with the time
complexity analysis of our proposed method in Section 2.4, we
addressed RQ2 by demonstrating that our approach is significantly
more scalable and computationally efficient than the existing black-
box attack baseline.

(3) Our method continues to show strong performance as the
budget increases. The effectiveness is not limited to single-edge
attacks. It persists and even strengthens under larger budgets. This
indicates that our scoring mechanism not only identifies impactful
edges but also ensures that deletions act synergistically. In contrast,
baseline methods often plateau or slightly improve at higher budgets
due to redundant or suboptimal edge selections. The increasing
performance gap between our approach and others as the budget
grows further highlights its ability to adaptively identify structurally
critical edges for demotion. This validates RQ3 by confirming that
our method maintains and improves effectiveness as the perturbation
budget scales.

4 Concluding Remarks
We proposed a black-box graph poisoning attack that demotes target
node rankings via edge removal without accessing model internals.
Our method learns to identify high-impact removals effectively
by modeling edge influence using sampled subgraphs and local
ablation signals. Experiments across three benchmark datasets and
two retrieval models show that our approach outperforms both
heuristic and gradient-based baselines, scales efficiently to large
graphs, and improves as the perturbation budget increases. These
findings affirm the effectiveness, scalability, and robustness of our
method in practical black-box settings.
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