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ABSTRACT
�e composition of the functionality of multiple services into a
single unique service mashup has received wide interest in the
recent years. Given the distributed nature of these mashups where
the constituent services can be located on di�erent servers, it is
possible that a change in the functionality or availability of a con-
stituent service result in the failure of the service mashup. In this
paper, we propose a novel method based on the So�ware Product
Line Engineering (SPLE) paradigm which is able to �nd an alter-
nate valid service mashup which has maximum possible number
of original service mashup features in order to mitigate a service
failure when complete recovery is not possible. �is method also
has an advantage that it can recover or mitigate the failure auto-
matically without requiring the user to specify any adaptation rule
or strategy. We show the practicality of our proposed approach
through extensive experiments.
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1 INTRODUCTION
With the growing number of publicly available services, there has
been a trend on providing methods and tools to allow users to take
advantage of these services in order to create their own personal-
ized services called service mashups [6]. �ere has been e�orts in
this area to provide automated or semi-automated methods for com-
posing service mashups [9, 14]. However, the way these methods
specify the requirements for the service mashup usually requires
in-depth expertise in SOA. In our earlier work [2], we proposed us-
ing SPLE concepts [21] to facilitate the service composition process.
So�ware product lines provide a rich set of models and methods
for managing variability in a problem domain. Speci�cally, we
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utilized feature models [17] as the main model for expressing the
speci�cation of the desired service mashup. Feature models are
capable of capturing variability of a system in term of its features,
which are themselves user-tangible fragments of functionality. Fea-
ture models have been e�ectively used in the so�ware product line
community as a shared artifact between system developers and
end-users for specifying product requirements [5].

Since the services whichmake up a service mashup can be hosted
by di�erent providers, service mashups operate within a highly
dynamic environment in the sense that services can become un-
available, change interface, or change functionality at any time.
�ese changes may result in the failure of the service mashup that
relies on them, which directly a�ects mashup reliability. In this
paper, a self-healing Dynamic So�ware Product Line (DSPL) [8, 12] is
proposed where a service mashup is either repaired or reorganized
even in cases when complete recovery from failure is not possi-
ble. In the proposed failure recovery method, online planning is
used in order to �nd alternate service mashups, which can replace
the failed service mashup. If such alternative mashup cannot be
found, the recovery method tries to mitigate the e�ect of failure by
�nding an alternate service mashup with minimal loss of features
compared to the existing service mashup through feature model
re-con�guration.

�ere are existing methods for enabling self-adaptation through
building DSPLs [1, 3, 16, 19, 20, 26]. �ese works usually enable
adaptation by de�ning a detailed adaptation strategy over features.
Consequently, they need to de�ne a large number of rules in order
to enable self-healing in response to service failure since a system
can fail in many di�erent ways. �erefore, we adopted a di�er-
ent approach to enable self-healing where the recovery method
automatically looks for an alternative feature model con�guration
where those features which result in a failure are not considered.
Furthermore, some researchers have already focused on the auto-
mated recovery from failed services by using AI planning [14, 15].
However, these methods also fall short when restoration of the
service mashup to its full functionality is not possible.

�is work is di�erent from our previous work [2] in the sense
that it provides a method for enabling self-healing on the service
mashups whereas, in our previous work, we only generated a static
service mashup based on a feature model con�guration. Concretely,
the current paper o�ers the following contributions:

• We propose a method for enabling automated self-healing in
service mashups without requiring any auxiliary information
about possible mitigation strategies provided by the users or
service mashup designers.
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• We propose a method which enables service mashups to be
able to continue servicing with limited features when complete
service recovery is not possible.

In the following, we �rst provide a background on feature models
and how our proposed service composition method works using an
example. Subsequently in the next section, the problem which we
address in this paper is formally de�ned and the proposed approach
is outlined. In the experiments section, three di�erent experiments
focusing on practicality and e�ectiveness of the proposed approach
are designed and performed. Furthermore, our work is compared
with existing work in the literature in the related work section.

2 BACKGROUND
�e work in this paper revolves around the fundamental notion
of feature models where the expected requirements of a service
mashup are speci�ed by con�guring a feature model and using
that con�gured feature model to automatically compose a service
mashup. On this basis, the goal of our work is to dynamically adapt
a service mashup at runtime when a service failure occurs. In the
following, background on feature models, how service mashups
can be modeled in this context, and how automated composition of
service mashups can be performed will be provided.

Feature models are among the popular models used in the SPLE
community for representing possible variability of the problem
domain [5]. Feature models allow for hierarchical representation
of features that are related to each other through structural and/or
integrity constraints. �e structural constraints relate features to
their parents through Mandatory, Optional, Alternative, and Or
relations. Integrity constraints represent dependencies between
features which are not hierarchically related. Having a feature
model, users can de�ne their desired variants by selecting features
from the feature model which results in a specialized model known
as feature model con�guration. A feature model con�guration con-
sists of a subset of features in the feature model which respects
structural and integrity constraints and can be used as the reference
model for composing the desired system.

Figure 1-A shows a feature model for a family of service mashups
which process and upload an incoming image on a website. An
application instance in this family needs to have the mandatory
feature of storage and can provide optional features of tagging,
�ltering, and editing. �e tagging feature processes the image
and �nds some keywords which describe the image to be used in
di�erent operations such as image search. �ere are two types of
tagging in this product line, namely metadata-based and external.
In meta-data tagging, information about objects and text in the
image is used to create the tags for the image. In the external
tagging feature, an external service is used to create the tags for
the image. �e �ltering feature provides mechanisms for detecting
nudity or profanity within the image. Similar to the �ltering feature,
the editing feature provides watermark or face blur capabilities.
�e watermark feature watermarks an arbitrary text on an image
and the face blur feature obscures faces in the image. �e set of
features marked with (l ) in Figure 1 shows a valid feature model
con�guration.

In the work proposed in [2], service mashups are represented
in Business Process Execution Language (BPEL), which work with

a set of partner services from a service repository. In order to
relate the services and features together, a new model known as
the context model is used which contains a set of entity and fact
types and instances. Using the context model, both features and
services are annotated by how they a�ect the context model. Using
these annotations, the problem of �nding a service mashup for a
feature model con�guration is reduced to a planning problem and
solved using an AI planner.

Figure 1-B shows the context model for the upload image product
family. It is a triple (cT , cE , S) where cT de�nes the entity and fact
types, cE de�nes entity instances, and S de�nes fact instances. To
be more elaborate, cT is a triple (Θ,Φ,F ) where Θ includes the
set of all entity types which can be used in the service mashup
family, Φ de�nes the set of fact types where a fact is a relation
which can be true between entities, and F speci�es type entities
that are related to each other for each fact type. Example members
of Θ are Imaдe and TaдList which are type of entities on which
services in the service mashup family work. Example member of Φ
is HasTaдs , which relates an image to a tag List. Example member
of F is (HasTaдs, (Imaдe,TaдList)) which de�nes that HasTaдs
relates entities of type Imaдe to entities of type TaдList .

Using the context model, the services in the service repository
are annotated. Each service has two sets: I and O , which de�ne its
inputs and outputs where members of these two sets are entities
with types from the context model. Furthermore, each service is
annotated with three sets of facts de�ned over entities from I and
O , namely (1) those facts that need to be true to invoke the service
(PI ), (2) those facts that will be true a�er invocation of the service
(QI ), and (3) those facts that will become false a�er invocation
of the service (RI ). Figure 1-C shows some parts of the service
repository for the example service mashup family. It additionally
shows their inputs, outputs, and their annotations using the context
model. For example, the service GenerateTaдMetadata has three
inputs of type Imaдe , InImaдeObjectList , and InImaдeTextList .
�is service has an output of type TaдList . �e set PI includes
two facts of type HasObject and HasText . �e set QI has a fact of
type HasMetadataTaдs which speci�es that the tag list entity in
the output would represent the tags generated from the objects and
texts in the image. �e set RI is empty for this service.

In addition to services, the features in the feature model are
also annotated using the context model. �e annotation of each
feature is a triple (Ef ,Pf , Ef ) where Ef is the set of entities which
are needed in a realization of the service mashup which includes
that feature, Pf is the set of facts that should be true before ex-
ecution of the service mashup with that feature, and Ef are the
facts that will become true a�er executing a service mashup that
includes that feature. �e dashed boxes in Figure 1-A show the
annotations for the features in the feature model of the example
service mashup family. For instance, the set Ef for the watermark
feature has an entity of type Text which is used to hold the text
that needs to be watermarked on the image. �e set Pf has the
factWatermarkRequested which means that the service mashup
having this feature requires a text entity that has been requested to
be watermarked in the image. �e set Ef has a factWatermarked
which speci�es that a�er executing a service mashup with this
feature, the image will be watermarked with the requested text.
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A

Ef = {Image(im)}

Ef = {TagList(t l )}

Ef = {InImageTextList(td ),
InImageObjectList(od )}

Ef = {HasMetadataTags(im, t l )}

Ef = {HasTags(im, t l )}

Ef = {DetectionList(nr )}
Ef = {HasNudityDetectionList(im, nr )}

Ef = {DetectionList(pr )}
Ef = {HasProfanityDetectionList(im, pr )}

Ef = {URL(ur l )}
Ef = {Stored(im, ur l )}

Ef = {InImageObjectList(ol )}
Ef = {Blurred(im, Face )}

Ef = {Text(wt ),
Pf = {WatermarkRequested(im, wt )}
Ef = {Watermarked(im, wt )}

Upload Image

Tagging

Metadata -
based

External

Filtering

Nudity Profanity

Storage Editting

Watermark Face Blur

•••

•••
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••• •

Optional Mandatory Or Alternative

•••

BContext Model c = (cT , cE , S )
cT = (Θ, Φ, F)
Θ = {Image, TagList, ObjectType, InImageTextList,

InImageObjectList, Text, URL, DetectionList}
Φ = {HasTags, HasText, HasObject, Watermarked, Blurred,

WatermarkRequested, HasType, HasProfanityDetectionList,
HasNudityDetectionList, Stored, HasMetadataTags}

F = {HasText(Imaдe, InImaдeT extList ),
HasObject(Imaдe, InImaдeObjectList ),
WatermarkRequested(Imaдe, T ext ),
Blurred(Imaдe, ObjectType ),
Stored(Imaдe, URL),
HasTags(Imaдe, TaдList ),
Watermarked(Imaдe, T ext ),
HasType(InImaдeObjectList, ObjectType ),
HasProfanityDetectionList(Imaдe, Detect ionList ),
HasMetadataTags(Imaдe, TaдList ),
HasNudityDetectionList(Imaдe, Detect ionList )}

cE = (E, T) E = {Face} T = {ObjectType(Face )} S = {}

Services C
ObjectDetection
I = {Image(imaдe )}O = {InImageObjectList(ob jects )}
PI = {¬Blurred(imaдe, ?type ), ¬Watermarked(imaдe, ?text )}
QI = {HasObject(imaдe, ob jects )}

TextExtraction
I = {Image(imaдe )}O = {InImageTextList(texts )}
PI = {¬Blurred(imaдe, ?type ), ¬Watermarked(imaдe, ?text )}
QI = {HasText(imaдe, texts )}

DetectProfanity
I = {Image(imaдe )} ,O = {DetectionList(pList )}
PI = {Blurred(imaдe, ?type ), Watermarked(imaдe, ?text )}
QI = {HasProfanityDetectionList(imaдe, pList )}

GenerateTagMetadata
I = {Image(imaдe ), InImageObjectList(ob jects ),

InImageTextList(texts )}O = {TagList(taдList )}
PI = {HasObject(imaдe, ob jects ), HasText(imaдe, texts )}
QI = {HasMetadataTags(imaдe, taдList )}

BlurObjects
I = {Image(imaдe ), InImageObjectList(ob jects ),
ObjectType(type )}O = {Image(blurredImaдe )}
PI = {HasType(imaдe, type ), ¬Stored(imaдe, ?ur l )}
QI = {Blurred(blurredImaдe, type )}

FilterObjects
I = {InImageObjectList(ob jects ), ObjectType(type )}
O = {InImageObjectList(f il ter edObjects )}
PI = {HasObject(?imaдe, ob jects )}
QI = {HasType(f il ter edObjects, type )}

DetectTextProfanity
I = {InImageTextList(texts )}
O = {DetectionList(pList )}
PI = {HasText(?imaдe, texts )}
QI = {HasProfanityDetectionList(imaдe, pList )}

GenerateTagExternal
I = {Image(imaдe )}O = {TagList(taдList )}
QI = {HasTags(imaдe, taдList )}

UploadImgUr
I = {Image(imaдe )}O = {URL(ur l )}
QI = {Stored(imaдe, ur l )}

UploadTinyPic
I = {Image(imaдe )}O = {URL(ur l )}
QI = {Stored(imaдe, ur l )}

Figure 1: A. An annoated feature model for the upload image family. B. �e context model for the upload image service
mashup family C. Part of the service repository and annotations for the upload image service mashup family.

We refer to the collection of a feature model, a service reposi-
tory, context model, service annotations, and feature annotations
as a domain model for the service mashup family. In order to ex-
press his/her requirements, the user con�gures the feature model
from a domain model. Having the domain model and a feature
model con�guration, the problem of �nding a sequence of service
invocations which satisfy the requirements of that feature model
con�guration can be reduced into a planning problem represented
using the PDDL language and solved using an existing planner.
A�er invoking a planner with the planning problem, the planner
will return a single sequence of service invocations. A�erwards,
an optimization method will convert the sequence of execution to
a dependency graph with the goal of introducing concurrency in
order to optimize non-functional properties such as response time
compared to the input sequence of invocations. In the dependency
graph, service invocations are represented as nodes and their de-
pendencies on other service invocations are represented as edges.
�en, a BPEL generation method converts the dependency graph
into the BPEL process structure.

For example, Figure 2 shows the visualization of the BPEL pro-
cess code for the feature model con�guration containing features
marked with (l ) in Figure 1-A.�e service operations in this process
have been organized with three structure types: �ow, sequence,
and link. �e service operations in the sequence structure should
be executed in order, the service operations in a �ow structure
can be executed in any order or simultaneously, and the link struc-
ture allows enforcing order between two operations in di�erent
�ow and sequence structures. Using the link structure makes sure
that operations in the source for the link is executed before the
operations in the target of the link.

3 PROBLEM STATEMENT AND SOLUTION
APPROACH

Based on the foundation introduced in the previous section, a ser-
vice mashup can be generated based on a set of selected features.
However, since service mashups are o�en composed of services that
are likely to be distributed across di�erent third-party providers,
it is possible that these services go o�ine or change functionality
which results in the failure of the service mashup. In order to ad-
dress this issue, we adopt a Dynamic So�ware Product Line (DSPL)
approach. Dynamic so�ware product line engineering is a para-
digm for enabling self-adaptation using concepts from the SPLE
domain. By taking a DSPL approach, we propose an automated
feature model re-con�guration method which is capable of �nding
an alternate feature model con�guration with partial features when
a service mashup fails and cannot be recovered. In our work, the
feature model is automatically re-con�gured to a new con�guration
such that it does not rely on the failed services for its realization
and at the same time has the least loss of utility compared to the
current feature model con�guration. �e utility is a quantitative
value de�ned for each set of features and used for representing the
user relative preference over di�erent set of features. �is means
that if the utility for a set of features is higher than another set of
features, the user prefers the �rst set of features over the second
one.

Problem Statement. Lets assume that SM is a service mashup,
which has been generated based on feature model con�guration
C and that service s which is invoked in service mashup SM has
become unavailable. �e goal is to propose an automated method to
�nd an alternative service mashup for replacing the failed service
mashup such that the alternative (1) is valid with regards to the
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Figure 2: BPEL process visualization for a possible service
mashup satis�ng requirements of feature model con�gura-
tion in Figure 1.

constraints, (2) does not rely on s , and (3) has the least loss of utility
compared to the failed service mashup in terms of the provided
features.

In order to be able to react to failure, we �rst de�ne a service
availability model which contains availability status of all services
in the service repository. Additionally, we also assume that the
service mashup has a rollback mechanism which rolls back the
transactional processes to the initial state if a service failure oc-
currs during execution of the service mashup. �e BPEL language
itself provides mechanisms for such situations. �e failure recovery
and mitigation process works as follows: a�er a failure takes place
during mashup execution, the service availability model is updated
to re�ect the unavailability of the service. A�erwards, the recovery
process begins by looking for a service which has the same pre-
conditions and e�ects. If such service is found, the invocation of
the failed service in the current process is replaced by the alternate
service and the new process is executed. Otherwise, a planning
mechanism is used to �nd an alternate process which has the same
functionality. If such process does not exist, the mitigation process
is started in which an alternate service mashup for replacing the
current service mashup is found such that the alternate service
mashup has minimal loss of utility for the user in terms of features.

3.1 Adaptation without change in features
�e �rst recovery strategy which is used a�er a service failure takes
place is to �nd an alternate service with the same functionality. As
discussed in the background section, the functionality of services
are de�ned using the preconditions and e�ects de�ned over their
inputs and outputs. If such a service is found, the invocations of
the failed service is replaced with the invocation of the alternate
service in the failed service mashup process. For example in the
service mashup in Figure 2, if the service UploadImgUr fails, it can

bpel:flow

bpel:flow

bpel:sequence

bpel:sequence bpel:sequence

bpel:sequence

--
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BlurObjects

UploadImgUr

TextExtraction

GenerateTagMetadata
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Figure 3: BPEL process visualization for an alternate solu-
tion for BPEL process in Figure 2 a�er adaptation by replan-
ning as a result of DetectTextProfanity failure.

be replaced with the UploadTinyPic service since it can be seen
in Figure 1-C that they have the same functionality in terms of
preconditions and e�ects.

If such a service is not found, the objective will be to �nd a
alternate service mashup that would be able to replace the failed
service. Finding such a alternate service mashup can be de�ned
as a service mashup composition problem with the di�erence that
the failed service and other services marked as unavailable in the
service availability model are removed from the domain model.
Here, replanning can be used to �nd the alternate service mashup.
If replanning results in a solution, the solution is optimized and
based on that, the replacement process is generated. Otherwise,
the process of feature model re-con�guration in order to mitigate
the e�ect of failure begins. For example in the service mashup in
Figure 2, if the service DetectTextProfanity, which works on the text
extracted from that image fails, there exists no service with the same
functionality to replace it. �erefore, replanning is used to �nd
an alternate solution which does not rely on this service. Figure
3 shows the alternate BPEL process found through replanning.
In this case, the structure of the process has changed such that
the DetectProfanity service which receives an image as input and
extracts profanity from it can be used for the purpose of detecting
profanity in the image.

3.2 Adaptation through feature model
re-con�guration

�egoal here is for the service mashup to degrade gracefully instead
of failing completely. �is way the service mashup continues to
provide service with limited or alternative features. �is will be
accomplished by �nding an alternate feature model con�guration
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which satis�es the structural and integrity constraints, does not rely
on the failed service, and has the least loss of utility compared to
the failed feature model con�guration. Finding an alternate feature
con�guration ensures that the set of features in the alternative
service mashup represents a valid combination of features. In this
paper, we reduce the problem of �nding the alternative feature
model con�guration into an optimization model.

On the one hand, the well-accepted and e�cient method for
�nding a valid feature model con�guration which satis�es fea-
ture model constraints is reduction to boolean satis�ability (SAT)
problem [5]. On the other hand, minimizing the loss of utility be-
tween alternate and current feature model con�guration can be
seen as an optimization problem. In order to �nd a solution with
regards to these two requirements, we reduce this problem into a
Pseudo-boolean optimization (PBO) problem [7]. In this type of opti-
mization, optimization is performed on a function which is de�ned
over binary variables and whose constraints are de�ned as boolean
formulas. �is type of optimization problem has the advantage of
being reducible to a SAT problem [10, 18] and e�ciently solved
using existing solvers. In the following, the pseudo-boolean opti-
mization and the reduction of existing problem into pseudo-boolean
optimization is formally de�ned.
pseudo-boolean Optimization. Assuming an array of boolean
variables X = (x1, ...,xn ), a pseudo-boolean optimization problem
can be formally de�ned as:

Minimize: f (x1, ...,xn ) =
∑

S ⊆{1, ..,n }
cS

∏
i ∈S

xi (1)

Subject to: B(x1, ...,xn )

In this de�nition, function f is de�ned as the sum of weights
for those subsets of variables which are all true given that

∏
i ∈S xi

would be only one if all the variables in S are true and zero otherwise.
�erefore, an optimization function can be de�ned by specifying
the weights for all subsets of boolean variables in general form. �e
constraints of this optimization function is a boolean function B.
�e solution of the pseudo-boolean optimization is an assignment
to X which minimizes the value of f while making B true at the
same time.

Representing a feature model con�guration as an array of binary
variables C = (c1, ..., cn ) where the feature corresponding to ci
would be selected in the feature model con�guration if ci is 1 and
unselected if it is 0, the problem of �nding an alternate feature
model con�guration C ′ with minimum loss of utility from C can
be formally de�ned as a pseudo-boolean optimization problem as:

Minimize: loss(C,C ′) (2)
Subject to:
B(c ′ ∈ C ′) = S(c ′ ∈ C ′) ∧ E(C,C ′) ∧ I (c ′ ∈ C ′)

In this de�nition, loss is a function which gets two con�gurations
as an input and returns a numerical value representing the loss of
utility when con�guration C is replaced with C ′. Furthermore, the
boolean function representing the constraints of this optimization
problem is de�ned as the conjunction of three boolean functions:
S(c ′ ∈ C ′), which is a set of predicates representing the feature
model’s structural and integrity constraints, E(C,C ′), which is a

set of predicates that make sure the new con�guration makes valid
assumptions about the input data, and I (c ′ ∈ C ′) is made of a set
of predicates which enforce the selection of those feature model
con�gurations which do not require the inclusion of failed services
for their realization. In the following, we discuss how the utility
function and these boolean functions can be presented.

3.2.1 Loss of utility. Assuming that the user has requested a
service mashup based on the feature model con�guration C , the
goal here is to �nd a way to measure the loss of utility if the user
is provided with a service mashup with features in feature model
con�guration C ′ where utility is a quantitative value representing
relative desirability of that feature model con�guration. In this
work, it is assumed that the utility of each feature for the user
is independent of the other features which exist in the system.
Assuming that such values are available through a function U :
F → R, the loss of utility by providing a service mashup with
feature model con�guration C ′ instead of con�guration C can be
represented as a function loss(C,C ′) where:

loss(C,C ′) =
∑

i ∈{1, ..,n }
ci (1 − c ′i )U (fi ) − (1 − ci )c

′
iU (fi ) (3)

�is equation iterates over all features in the feature model and
calculates the amount of utility lost by using C ′. For each feature,
if the feature is selected or unselected in both feature model con�g-
urations, the value inside the sum operator would be zero. If the
feature was selected in C but not available in C ′, the utility of the
unselected feature is added to the sum of the lost utility. If a feature
exists in C ′ while it does not exist in C , its utility is deducted from
the sum of the lost utility.

�e drawback of this approach is that the utility of features
is not always available. �erefore, we adopt a restricted version
of loss(C,C ′) called distance(C,C ′) which uses only the number
of features which are di�erent in term of their selection in the
new con�guration as a measure for loss of utility a�er using an
alternative con�guration. �e distance function can be used instead
of the loss function as the goal of minimization in Equation 2 when
utility of features is not available.

distance(C,C ′) =
∑

i ∈{1, ..,n }
(1 − ci )c ′i + ci (1 − c

′
i ) (4)

�e expression in the sum operator of the optimization function
evaluates to zero when ci and c ′i are both one or zero which means
both of those feature are selected or unselected. In case one of c
or c ′ is one and the other is zero, this expression evaluates to one.
�erefore, this function will be zero when the two feature model
con�gurations are identical.

3.2.2 Feature Model Structural and Integrity Constraints. �e set
of features in the alternative service mashup needs to respect the
constraints de�ned in the feature model. For example, the storage
feature cannot be unselected in the feature model con�guration
since it is a mandatory child of the root feature. �e boolean func-
tion S(c ∈ C) would be evaluated as true when the assignment
to C represents a valid feature model con�guration in terms of
structural and integrity constraints. Previous work has shown that

98



SPLC ’17, September 25-29, 2017, Sevilla, Spain M. Bashari et al.

all types of structural and integrity constraints can be represented
using propositional logic. For example, the optional relation be-
tween the Upload Image and Editing feature can be represented
as UploadImage ∨ ¬Editing. �ere exist methods for translating a
feature model structure and its constraints into propositional logic.
In our work, we have used the translation proposed in [4].

3.2.3 Service Mashup Precondition Constraints. �e new ser-
vice mashup which replaces the old service mashup cannot make
new assumptions about the precondition state of its execution and
needs to have the same preconditions. �erefore, feature model
con�gurations that produce new assumptions about the precondi-
tions of the service mashup cannot replace the failed feature model
con�guration. For example, adding the watermark feature to the
feature model con�guration containing features marked with (l ) in
Figure 1-A will require the conditionWatermarkRequested(im,wt)
to be true before execution, which might not necessarily be true.
�e boolean function E(C,C ′) ensures that the alternative feature
model con�guration does not change the preconditions of the ser-
vice mashup.

Considering that each feature f in the feature model is annotated
with the set P(f ) containing the preconditions that the selection
of the feature will add to the precondition of the service mashup,
the new con�guration cannot include a feature whose P(f ) is not
a subset of Pre(C). �erefore, the function E(C,C ′) can be de�ned
as:

E(C,C ′) =
∧

i ∈{1..n } s .t . P(fi )*Pre(C)
¬c ′i (5)

Assuming that Pre(C) returns all of the preconditions required
by service mashup realizing feature model con�guration C as out-
lined in [2], the And operator in this equation makes sure that
con�guration process does not select those features which add pre-
conditions which are not in the precondition set of service mashup
realizing con�guration C .

3.2.4 Service Independence Constraints. �ese constraints pre-
vent the selection of those feature model con�gurations which rely
on the failed service for their realization. Since, there is no direct
mapping between features and services in our service mashup com-
position method and multiple features can be realized by multiple
services, it is not easy to �nd those feature model con�gurations
that cannot be realized a�er the service failure without trying to
compose them.

In order to address this issue, an incremental approach is taken.
We de�ne a set consisting of those feature model con�gurations
which rely on the failed service for realization. In the beginning
we initialize this set with the feature model con�guration related
to the failed service mashup. Consequently, as alternative feature
models con�gurations are found, corresponding service mashups to
these con�gurations are built using existing services. If building the
service mashup corresponding to that feature model con�guration
fails, the feature model con�guration is added to this set and the
process of looking for alternative feature model con�gurations
continues. �e boolean function I (c ′ ∈ C ′) is de�ned in such a
way that it would return false if the feature model con�guration
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Input:
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im im im
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url pr tl

Figure 4: BPEL process visualization for an alternate solu-
tion for BPEL process in Figure 2 a�er adaptation by feature
model re-con�guration as a result of ObjectDetection failure.

corresponding to the current assignment exists in the failed feature
model con�guration set and true otherwise.

By representation of the feature model con�guration problem
as a pseudo-boolean optimization problem, the alternative feature
model con�guration can be found using a solver. Based on this
feature model con�guration, the replacement service mashup is
composed and executed. For example for the service mashup in
Figure 2, if the serviceObjectDetection, which extracts objects in the
image fails, the service mashup cannot fully recover using existing
services in the service repository. �e above method results in
a feature model con�guration with features marked with (m ) in
Figure 1-A as the alternate feature model con�guration which does
not rely on the failed service. Figure 4 shows the alternative service
mashup built based on this con�guration. In the alternative feature
model con�guration, the Metadata-based Tagging, Editing, and
Face Blur features are removed and External Tagging is added.

4 EXPERIMENTS
�e proposed approach has been implemented in a tool suite called
magus.online1 using FF planner [13] for AI planning and NaPS
solver [22] for pseudo-boolean optimization. Using this implemen-
tation, we performed three di�erent sets of experiments in order
to investigate the practicality of the proposed method. �e experi-
ments were performed on simulated services and feature models
given that actual feature/service repositories that have di�erent
sizes do not exist. �ese experiments were performed on a machine
with Intel Core i5 2.5 GHz CPU, 6GB of RAM, Ubuntu 16.04 and
Java Runtime Environment v1.8.

4.1 E�ect of Feature Model Con�guration Size
on Adaptation

In this �rst set of experiments, we focus on answering two Research
�estions (RQ):

RQ 1.1 - How does the execution time for performing an adap-
tation change as the number of valid feature model con�gurations
of the feature model increases?

1Available at: h�p://magus.online/
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Figure 5: Replanning and Feature Adaptation Duration in
terms of Feature Model Possible Con�guration.

Figure 6: Distribution of Recovery and Mitigation Mecha-
nisms a�er a Service Failure in terms of Possible Feature
Model Con�guration.

RQ 1.2 - What types of strategies, and to what extent, are used
in order to address a service failure as the number of valid feature
model con�gurations of the feature model increases?

�e goal for asking the �rst question is to evaluate if the adapta-
tion process is performed in a reasonable time. Furthermore, the
second goal for asking this question is to investigate the applicabil-
ity of the proposed method in terms of adaptation time for larger
feature models. �e goal of asking the second question is to �rst
investigate if the proposed self-healing approach is capable of recov-
ery from service failures and second to examine if the adaptation
method remains feasible as the size of the feature model increases.

�e experiments were designed as follows: For di�erent service
mashup families with the same service repository size but di�erent
feature model sizes, a possible feature model con�guration was
randomly selected and the service mashup satisfying it was com-
posed. �en a service was randomly selected and placed in the
failed state and the time to perform adaptation and the type of
adaptation chosen to address the failure was recorded.

�e experimentwas performed for �ve di�erent groups of service
mashup families where feature models in the same group had the
same number of features but di�erent number of possible con�gu-
rations. Each group had 10 di�erent service mashup families which
were generated as follows: We used the Be�y feature model gen-
erator [23] to generate the feature models with 30 features which
is the average number of features in the SPLOT repository feature
models 2 and with maximum a branching factor of 10. 25 percent of
the features were in Or group, 25 percent were in Alternative group
2h�p://www.splot-research.org/

and the rest of the features were split equally between Optional and
Mandatory categories. According to the survey that is performed in
[24], these parameters re�ect structural properties of a real feature
model. �e number of possible con�gurations for the generated
feature models ranged between 400 a and 2,000 which is divided
between 5 groups. �e feature models were annotated using the
context model with 30 entity types and 600 fact types using a feature
model annotation generator with parameters N(2, 1), N(0.2, 0.8),
and N(1, 1) as the number of entities, preconditions, and e�ects,
respectively. N(µ,σ ) is a normal distribution with a mean of µ
and a standard deviation of σ . �ese values were calculated based
on the case studies that we implemented while investigating the
practicality of the composition method since there is no other real
case study reported in the literature related to this. In the com-
position approach, OWL-S is used for service precondition-e�ect
annotation. Although OWL-S is widely used for service annotation
in service composition, we were not able to �nd a dataset of OWL-
S services with precondition e�ect annotation or a paper in the
literature which reports on service precondition-e�ect generation
parameters. �erefore, the precondition and e�ect distributions for
the services in our case studies were used for service generation.
�e services for the annotated feature models were generated by
a customized random service generator with 250 services, N(1, 1),
and N(2, 1) for the number of precondition and e�ects. 3

For generating services, a customized service model generator
was implemented in order to make sure that all possible con�gura-
tions of a feature model have corresponding service mashups. In
this method, the generator iterates over all possible con�gurations
of the input feature model and makes sure required services for re-
alizing that feature model con�guration exist in the repository. For
each feature model con�guration, the planner is used to examine
if that feature model con�guration can be realized using existing
services in the repository. If the feature model con�guration cannot
be realized using existing services, a planner is used to �nd the
sequence of services has the highest degree of intersection with
the feature model con�guration aggregated e�ects. �en, a random
service generator is used to realize the remaining e�ects of the
feature model con�guration which are not realized by the sequence
generated by the planner. �is service generator ensures that all
feature model con�gurations in a service mashup family can be
generated using services in the service repository. 4

For each service mashup family, the experiment was performed
by selecting a random valid con�guration with 15±1 features from
the feature model and generating its corresponding service mashup.
�en, a random service from the generated mashup was selected
and failed. �e failurewas handled through adaptation. �is process
was repeated 100 times for each service mashup family. Having �ve
groups and ten service mashup families in each group, this activity
was repeated for 5,000 times.

Figure 5 shows the average time to perform re-planning and fea-
ture adaptation for feature models with di�erent number of possible
con�gurations. �e average re-planning time was the same (60 ms)
in di�erent feature model con�guration sizes. �is is expected since
the number of services and feature model con�guration size which
3All generated dataset are available to download at: h�p://magus.online/experiments/1
4�e code for the tool and the service generator is available at
h�ps://github.com/matba/magus
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Figure 7: Replanning and Feature Adaptation Duration in
terms of Service Repository Size.

Figure 8: Distribution of Recovery and Mitigation Mecha-
nisms a�er a Service Failure in terms of Service Repository
Size.

a�ect the size of the planning problem is the same for di�erent
groups of service mashups. Conversely, the time for feature adap-
tation increases as the number of possible con�gurations increases
as the problem gets more complex to solve. It should be noted that
the feature adaptation time remains fast (<300 ms), and increases
in a linear way.

Figure 6 shows the distribution of responses taken as service
failure occurs. In our dataset of service mashup families, the adap-
tation approach is able to recover from failure of a service through
service replacement or re-planning in 92% or more of the cases. It
is also able to recover or mitigate the failure in 98% of cases and
only 2% or less of service failure resulted in the failure of service
mashup. It should be noted that the recovery rate for a service
mashup family can be in�uenced by di�erent factors of how it has
been realized through services. However, the results show that
this approach can recover a failed service mashup while the rate
of success can di�er between di�erent service mashup families. It
can also be seen from this �gure that the increase in the feature
model in terms of possible con�gurations does not a�ect the way
the service mashup responds to failure.

4.2 E�ect of Service Repository Size on
Adaptation

In the second set of experiments, we focus on the e�ect of change
in the number of services available in the service repository on the
di�erent aspects of adaptation. In our experiments, we are looking
to answer two research questions:

RQ2.1 -How does the time for performing an adaptation change
as the service repository size for the service mashup increases?

RQ 2.2 - What types of strategies, and to what extent, are used
in order to address a service failure as the service repository size
grows?

�e goal of the �rst question is to examine the practicality of
the proposed approach in terms adaptation time for larger service
mashup families. �e goal of the second experiment is to study how
the behaviour of the adaptation approach changes as the number
of services in the service mashup family increases to see if the
proposed method is still practical for failure recovery in service
mashup with larger size in terms of the services.

In order to create the dataset for this experiment, we used an
annotated feature model con�guration from previous experiments
with 2,000 possible con�gurations. We used the service generator
from previous experiments with the same parameters but with
di�erent repository sizes ranging from 100 to 400 with an interval
of 50. �is range was selected based on the correlation between the
number of possible con�gurations and the number of services in the
implemented case studies using the service mashup composition
approach since an actual feature/service repository is not available.
�is resulted in seven service mashup families. We used these
service mashup families to perform the experiment.

�e experiment was performed by selecting a random feature
model con�guration with 15±1 features for a service mashup family
and composing its corresponding servicemashup. A random service
from the generated service mashup is selected and considered as
a failed service. �e failure is addressed by adaptation and the
adaptation duration and its type is collected. �is activity was
repeated 250 times for each service mashup family in the dataset.

Figure 7 shows the average time for re-planning and feature
model adaptation with di�erent service repository sizes. Similar
to the previous experiment, feature adaptation takes longer than
re-planning. However, both types of adaptation remain less than
500ms for service mashups in the dataset. Furthermore, it can be
seen that the time for both re-planning and feature adaptation
increases in a linear manner as the number of services increases.

Figure 8 shows the distribution of the type of strategies adopted
in response to service failures. It can be seen that about half of the
failures that cannot be addressed with re-planning can be addressed
with feature adaptation in all service mashups with di�erent service
repository sizes. Another noticeable feature of this �gure is that the
service replacement time does not show any trend. We speculate
that running this experiment with larger number of service mashup
families will result in a trend on this strategy as well.

4.3 E�ect of the Number of Failures on
Adaptation

In this set of experiments, we focus on the e�ect of the number of
failed services on the di�erent aspects of adaptation in the service
mashup to examine the robustness of our approach. In our experi-
ments, we are looking to answer the following research questions:

RQ 3.1 - What types of strategies, and to what extent, are used
in order to address a service failure as the number of failed services
increases?
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Figure 9: Distribution of Recovery and Mitigation Mecha-
nisms a�er a Service Failure in terms of Number of Failed
Services.

Figure 10: Distribution of Distance for Alternate Feature
Model Con�guration in Feature Model Adaptation in terms
of Number of Failed Services.

RQ 3.2 - How extensive does the feature model con�guration
change as a result of feature model adaptation in terms of the
distance between the new feature model con�guration and the
failed one as the number of failures increases.

�e goal of asking the �rst question is to investigate how well
the proposed self-healing method performs in response to more
severe failures when two or more services fail. �e goal of asking
the second question is to determine if the changes in the adapted
feature model is limited enough to be used as a mitigation strategy.

For generating dataset of this experiment, we created 10 service
mashup families with parameters used in the �rst experiment with
800 possible con�gurations, and service repository size of 150.

In this experiment, for the number of failures between one to
four, the following process was performed: a random valid feature
con�guration was selected from the service mashup family and
the corresponding service mashup was generated. �en, a random
number of services, between 1-4, were selected and set to failed
status. �e failures were then addressed by the proposed approach.
�is activity was repeated 250 times for each service mashup family.

Figure 9 shows the distribution of responses taken as service
failure occurs for di�erent number of failed services. �e service re-
placement strategy was removed when performing this experiment
since it is de�ned for situations when only one service has failed.
As expected, the number of recovered service mashups decreases
as the number of failed services increases such that more than half
of the service mashups cannot recover their full functionality when
four services have failed. However, more than 70% of failures can

be mitigated in cases when recovery through re-planning is not
possible. �is reduces the number of failures to 16% when four
services fail at the same time in the service mashup.

Figure 10 shows the distribution of the distance between the
alternative feature model con�guration and the failed feature model
con�guration for di�erent number of failures. It can be seen that
the average distance of the alternative feature model increases as
the number of failed services increases since it is more likely that
more extensive changes are required as more services fail. However,
the average distance between the failed feature model con�guration
and the alternative feature model con�guration remains less than 2
features even when four services have failed.

5 RELATEDWORK
WTE+ [14] is an approach for automated composition and adapta-
tion of service mashups in which the requirements of the service
mashup are de�ned by specifying the desired service mashup pre-
conditions and e�ects. In the case of service failure, an alternative
mashup satisfying those preconditions and e�ects is sought through
replanning. Our proposed method di�ers from WTE+ in the sense
that it introduces features and relates features to services. �is al-
lows the speci�cation of the desired mashup requirements through
features as well as deciding on features to address service failure
when re-planning fails.

ENTIMID [16] is a middleware for developing service-based
DSPLs for home automation system. In this middleware, it is as-
sumed that each feature can be mapped to a set of atomic ser-
vices which realize that feature. �is allows easy dynamic re-
con�guration of system at runtime by enabling/disabling corre-
sponding services. However, this work mainly focuses on relating
services and features and a systematic way for enabling context-
awareness; therefore, automated feature model re-con�guration is
not provided by this work.

CAPucine [20] is another service-based DSPL which focuses on
context-awareness. In this method, contextual information is col-
lected by a set of sensors wrapped as components. Changes in this
contextual information can trigger some rules which result in fea-
ture model con�guration such as selecting or deselecting a feature.
�e changes in the feature model con�guration is re�ected on the
running system using Aspect Model Weaving. �is method allows
developing DSPLs which can be adapted for di�erent purposes such
as self-healing applications. However, in the case of self-healing
applications, the designer needs to design an adaptation strategy
for all possible types of failures which can be cumbersome and can
result in invalid con�gurations. �is can primarily be due to the fact
that the rules need to be designed in such a way that the outcome
feature model con�guration is always valid; an assumption that is
di�cult to satisfy in many cases.

Acher et al. [1] propose a method for feature adaptation based on
context changes and use it in realizing a video surveillance system.
In this method, context variability is captured using a feature model.
�is context feature model is mapped to the system variability
feature model through a set of rules represented using propositional
logic. As a change in the context modi�es the con�guration of
context feature model, appropriate system feature con�guration
satisfying the relation rules is found using a SAT solver. �ismethod
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provides an e�ective means for linking context adaptability and
feature adaptability at runtime. However, it is not the best choice
for self-healing in response to service failure since feature models
are not the best option for representing service availability.

Murguzur et al. [19] propose a DSPL for enabling feature adapta-
tion in data-intensive Operation and Maintenance (O&M) analytics
processes for wind farms. �eir work is context-aware in in that it
addresses issues of ambiguity and heterogeneity in the input data.
Using this method, the analytics processes can adapt at runtime
through feature model con�guration as the structure of the input
data changes. �is work is di�erent from our work in how we de-
�ne context. In our work, the context is de�ned as the availability
of services while the context is de�ned as the input data in [19].

In the Refresh approach [26] for self-healing service composi-
tions, feature models are used as the model for capturing di�erent
ways for realizing a service composition. When a service failure
occurs, the feature corresponding to the service is marked as un-
selectable and the problem of �nding an alternate feature model
con�guration is represented as a Constraint Satisfaction Problem
(CSP). When an alternate feature model con�guration is found, the
system shutdowns those components corresponding to the unse-
lected features and launches those corresponding to the selected
features using a method called micro-booting. In this work it is
assumed there is a direct link between services and features. How-
ever, our proposed work does not make that assumption since is
not always true [25]. In practice, a feature can be realized with
di�erent combination of services and creating a direct relationship
between services and features may not be possible.

Our work is similar to these works in the sense that it uses
feature models as the main artifact for representing variability and
adaptation takes place by re-con�guring it. However, there are
three aspects that distinguish our work: First, making changes in
the feature of the service mashup is used as the last resort in our
proposed method instead of de�ning an adaptation strategy on
the features of the system. Second, our work does not require any
prede�ned rules for adaptation. �is has two advantages in the case
of responding to failure: (i) it is hard to de�ne adaptation recovery
rules for all possible service failures. (ii) adaptation strategies are
likely to become incosistent [11]. �ird, we do not assume any
direct relationship between features and services but instead use
planning for �nding alternate services mashup.

6 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a method for enabling self-healing
service mashups in response to service unavailability. �e method
proposed in this paper enables service mashups to recover from
failure by trying to �nd another service mashup with the same
features. Additionally, we have proposed a method which uses
feature model re-con�guration to �nd an alternate feature model
con�guration which does not rely on the failed services in order to
recover from failure. In this method, �nding an alternate feature
model con�guration with the least loss of utility is represented
as an optimization problem. To investigate the practicality of the
method, we performed experiments, which showed that proposed
adaptations can be performed in reasonable time, and do not require

substantial changes to the feature model con�guration, and can
produce partial solutions when complete recovery is not possible.
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