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Abstract—The focus of point-of-interest recommendation tech-
niques is to suggest a venue to a given user that would match
the users’ interests and is likely to be adopted by the user. Given
the multitude of venues and the sparsity of user check-ins, the
problem of recommending venues has shown to be a difficult
task. Existing literature has already explored various types of
features such as geographical distribution, social structure and
temporal behavioral patterns to make a recommendation. In this
paper, we propose a new set of features derived based on the
neural embeddings of venues and users. We show how the neural
embeddings for users and venues can be jointly learnt based
on the prior check-in sequence of users and then be used to
define three types of features, namely user, venue, and user-
venue interaction features. These features are integrated into a
feature-based matrix factorization model. Our experiments show
that the features defined over the user and venue embeddings
are effective for venue recommendation.

Index Terms—Point-Of-Interest recommendation, Neural Em-
bedding, Feature-based matrix factorization

I. INTRODUCTION

Due to the growing popularity of location-based social
networks (LBSNs), point-of-interest recommendation systems
have received growing attention by researchers and many
service providers are now focused on developing recommen-
dation systems for their end-users [1]–[3]. The current point-
of-interest recommendation models primarily take various
features, such as spatio-temporal characteristics of user check-
ins, transitions between venues, human mobility patterns and
category of venues into account [4]–[6]. Given the collection
of these features, different machine learning methods such as
deep neural network, matrix factorization and collaborative
filtering models are utilized to recommend a point-of-interest
to a user [7]–[9].

In this paper, we propose a new set of features based on the
neural embedding of users and venues. Our features rely only
on neural embeddings trained based on users’ check-ins, which
place users and venues within the same embedding space. We
show how the shared user and venue embedding space can give

way to different types of features, which are then incorporated
into a feature-based matrix factorization technique for venue
recommendation. The contributions of this paper include:

1) We systematically show how the check-in sequence of
users can be utilized to learn neural embeddings for both
users and venues within the same embedding space;

2) We introduce three classes of features based on neural
embeddings of users and venues, which capture the
characteristics of users, venues and their interactions;

3) We formalize how the defined features are encoded into
feature-based matrix factorization for venue recommen-
dation and extensively benchmark our work.

This paper extends state of the art by showing how user
check-in sequences can be used to learn neural user and venue
embeddings and how these neural embeddings can be used to
define strong indicative features for venue recommendation.
In our experiments, we show that features extracted from the
user and venue embeddings are able to effectively outperform
the state of the art methods.

II. PROPOSED APPROACH

We formally define the problem of point-of-interest recom-
mendation as follows:

(Venue Recommendation). Let the check-in sequence of
user u ∈ U, denoted by CS(u) = (vtu), be a sequence
of venues ordered on t, where vtu shows a venue v ∈ V
that user u checked in at time t. Based on CS(u) from T
consecutive time intervals, we aim at recommending a ranked
list of venues for user u, each denoted by vxu such that
x ∈ T + 1. The recommendations are ranked descendingly,
based on the predicted degree of interest of user u in v at
time x. We first learn user and venue embeddings within the
same space, then use these embeddings to derive features that
can be used in feature-based matrix factorization. One of our
key contributions is to learn user and venue representations in
the same embedding space based on the check-in sequence of
users with the expectation that a user would be closer to the
venues that she has checked-in at compared to those she has
not. We show that by embedding users and venues in the same
space, it will be possible to construct different types of features
based on these embeddings, which can be directly incorporated
into a feature-based recommendation model. In the following,
we introduce the embedding model to learn user and venue
representations. Then, we introduce our features constructed
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from the embeddings and finally describe how these features
are exploited in a feature-based recommendation model.

A. User and Venue Embeddings

Our goal is to learn user and venue embeddings in the
same space so that a user is closer to the venues that she has
checked-in compared to those that she has not. To this end,
given the check-in sequence of all the users in T consecutive
historical time intervals, i.e., {CS(u) = (vtu) |u ∈ U, 1 ≤
t ≤ T}, we map each user and venue into an L-dimensional
embedding vector, denoted by eu and ev within the same
embedding space, in the same feature space by applying a
neural embedding model based on the framework shown in
Figure 1.

We consider the sequence of checked-in venues of each user
u as a sentence and place the ID of user u at the beginning of
each sentence which results in |U| sentences. In the learning
process, both the ID of users |U| and venues |V| are treated
as word tokens and a user ID is essentially always associated
with a set of check-ins. In other words, during training, for
each sentence, the sliding context window will always include
the first word in the sentence (i.e., user ID). Formally, given
the check-in sequence of each user u, CS(u) = (vtu), and a
context window size of k, the objective is to maximize the
following log probability:

1

T

T−k∑
t= k

log pr(vtu|vt−ku , ..., vt+ku , u) (1)

We adopt a softmax function to model
pr(vtu|vt−ku , ..., vt+ku , u) as follows:

pr(vtu|vt−ku , ..., vt+ku , u) =
exp(e>context.evtu)∑

v ∈V
exp(e>context.evtu)

(2)

econtext = h(evt−ku
, ..., evt+ku

, eu) (3)

where evtu denotes the embedding vector of venue vtu ∈ CS(u)
and econtext denotes the context vector, which is obtained
by averaging over the embedding vectors of the context
information (Equation 3). Further, h(.) is a function that
averages the embedding vectors. By sampling a target venue
and its context window at each iteration, our network is trained
using stochastic gradient descent and updates the parameters
via backpropagation. As such, the final result of the learning
process is an L-dimensional embedding for each user (eu) and
each venue (ev).

B. Embedding-based Features

Given user and venue embeddings, i.e., eu and ev , which
are embedded in the same space, we define three classes of
features:
User features: for each user u ∈ U, we propose two types
of features: 1) user embedding feature, which is equivalent to
the L-dimensional embedding vector for user u, i.e. eu; and 2)
top-N similar users feature that is inspired from the main idea
of collaborative filtering based on which similar users share

similar check-in behaviour in the future. Therefore, for a given
user u, we consider her top-N similar users, denoted by Su.
This provides us with N features, which correspond to the
most similar users to a target user. To compute the similarity
of two users u1 and u2, we apply cosine similarity between
eu1

and eu2
.

Venue features: for each venue v ∈ V, we define two types
of features: 1) venue embedding feature, which is the learnt
L-dimensional embedding vector for venue v, i.e., ev; and 2)
top-N similar venues feature where for a venue v, we calculate
its similarity with other venues through cosine similarity of
their embedding vectors and then select the top-N most similar
venues to v, denoted as Sv .
Global user-venue interaction feature: Given both user
and venue embeddings in the same feature space, we can
incorporate a global feature to denote the similarity between
any given user and venue pair. The global feature of a user-
venue pair such as (u, v) is calculated by the cosine similarity
between eu and ev .

C. Venue Recommendation

These features are encoded into a feature-based matrix
factorization as follows:

r̂u,v(α, β, γ) = µ+
∑
j b

(g)
j γj +

∑
j b

(u)
j αj +

∑
j b

(v)
j βj + (

∑
j αjxj)

>(
∑
j βjyj)

(4)
where α ∈ RNα , β ∈ RNβ and γ ∈ RNγ are the input
vectors consisting of the features of user u, the features of
venue v and the global feature for the pair (u, v) with the
lengths of Nα, Nβ and Nγ , respectively. Further, b(g)j , b(u)j

and b(v)j are the global, user and venue bias parameters. The
latent vectors xj and yj capture the jth user feature and the jth

venue feature, respectively. The global features and bias values
do not have any corresponding latent vectors. The response
value, i.e., r̂u,v(α, β, γ), predicts whether user u will check-in
at venue v in the future. In the following, we show how to
encode our features into Equation 4.
Encoding user features: In the user input vector α ∈ RNα ,
consisting of the user features of user u, we reserve the
first |U| dimensions to one-hot encode the ID of user u
and its top-N most similar users, i.e. Su. Therefore, given
Q = {u}∪Su, each user q ∈ Q is encoded by inserting a “1”
in the qth dimension of the |U|-dimensional vector. The rest
of dimensions are set to “0”. Then, given a user u, we use the
dimensions from (|U+ 1|) to (|U+ L|) to encode her user
embeddings, eu. Therefore, the total number of user features
is Nα = |U|+ L.
Encoding venue features: We reserve the first |V| dimensions
in the venue input vector β ∈ RNβ , to one-hot encode a venue
v and its top-N similar venues, i.e. Sv . Then, given a venue v,
we use the dimensions from (|V+ 1|) to (|V+ L|) to encode
the venue embeddings, ev . Total number of venue features is
Nβ = |V|+ L.
Encoding global user-venue interaction feature: The idea
behind the user-venue interaction feature is that a user is
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Fig. 1. A framework for learning user and venue embeddings in the same feature space.

more likely to check-in at a venue closer in the latent feature
space to those she has checked in at before; therefore, the
corresponding venue should receive a larger global bias value.
Therefore, we define the global user-venue interaction feature
as γ1 = cosineSim (eu, ev) and the number of global features
is Nγ = 1.

With these coded features, for a user-venue pair (u, v),
based on Equation 4, we have the following factorization
formula:

r̂u,v(α, β, γ) = µ + b
(g)
1 γ1 +

∑
j

b
(u)
j αj +

∑
j

b
(v)
j βj+ ∑

q∈{u}∪Su

xq +

L∑
l=1

eu,lx|U|+l

>  ∑
p∈{v}∪Sv

yp +

L∑
l=1

ev,l y|V|+l


(5)

The parameters are trained by minimizing the log-likelihood
loss function using stochastic gradient descent. Our goal is to
construct a ranked list of venues that u may be interested in.
Therefore, for a user u, we first calculate the value r̂u,v for
all the pairs {(u, v) | v ∈ V} and then construct a descendingly
ranked list on r̂u,v .

III. EXPERIMENTS

A. Dataset and Evaluation Methodology

Our experiments were conducted on a dataset collected from
the Gowalla LBSN introduced in [1]. The check-in data in this
dataset are collected from 600,000 users from November 2010
to December 2011 that captured their check-ins in various
cities of the United States, i.e., Austin, Chicago, Houston,
Los Angeles and San Francisco. Table 1 shows some statistics
about the number of users and venues in each city.

Our evaluation strategy and metrics are based on [1], which
suggests to randomly select 70% of the check-ins of each user
as the training data and leave the rest of the check-ins for test-
ing. Further, the quality of the recommendations is measured

TABLE I
NUMBER OF USERS AND VENUES PER CITY

City Users Venues
〈
checkins

user

〉 〈
checkins
venue

〉
Austin 339 7936 138.226 5.905

Chicago 257 1704 18.732 2.825
Houston 163 6812 162.135 3.880

Los Angeles 280 3607 43.179 3.352
San Francisco 370 5447 62.405 4.239

based on Precision@6, Recall@6 and F1-Score. In terms of the
parameters of our model, we train our embeddings based on a
dimension size of L = 100. Further, we perform 10-fold cross-
validation and select N = 5, which is the best performing
value for N in top-N similar user and venue features. The
hyperparameters of the matrix factorization model were set as
suggested in [10], namely, the learning rate, the regularization
parameter for the user factor, the regularization parameter for
the venue factor and the number of latent factors were set to
0.005, 0.004, 0.004 and 64.

We evaluate the performance of the three proposed features
(Embedding (E), Interaction (I) and Top-N (T) features)
through a combination of seven variants. For example, the
variant “EI” means that embedding vectors feature and the
global user-venue interaction feature are included in the model
but the top-N feature is not included. The results of comparing
the variants of our model are reported in terms of Precision@6
and Recall@6 in Figure 1 based on the 70-30 split that was
mentioned earlier. As depicted in this figure, it can be observed
that embedding features show the lowest performance. We
believe the reason for this is that the number of embedding
features is quite high (200 for user and venue features together)
and each of the features does not convey any meaning in
isolation. Therefore, the high number of highly dependent
features leads to poor prediction. However, when merged with
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the top-N similar features the quality of the results improve.
This observation shows that highly similar users and venues,
regardless of their social connection to the user of interest, can
serve as strong indicators of relevant venues for a user. It can
also be seen in the results that when these two features are
combined with the global feature, the results do not show any
noticeable improvement. On the other hand, when the global
feature is used alone or in combination with the top-N similar
features, the accuracy of venue recommendation increases. We
conclude that the top-N similar features are the most effective
for point of interest recommendation due to finding similar
users and venues that are located close to each other in the
embedding space. Given the way the embeddings are learnt,
this finding basically means that considering information from
(1) similar users that have shown similar check-in behavior
and (2) venues that have had similar user check-ins have the
highest predictive power for point-of-interest prediction. So in
summary, we find:

1) Among the features, top-N similar users and venues
serve as the best performing features compared to the
other features.

2) The best variant that benefits from more than one feature
is the “TI” model that uses both Top-N similar features
and the interaction between them, but it still has a
weaker performance when compared to top-N similar
features.

B. Features Analysis

These findings show that embedding users and venues in the
same space has been able to identify users with similar check-
in patterns and venues with similar user check-ins behavior.
Given such effective embedding, the consideration of top-N
features and the global user-venue interaction feature based
on these embeddings will point to the users that have similar
behavioral patterns and so can be used for recommending the
best venue. Based on this observation, we select model “T” as
the venue recommendation model to be compared to the other
baselines. [vs]

C. Comparison with Baselines

For comparison, we use those baselines that have already
used the same benchmark dataset and the same evaluation
strategy:
• CPOIR [1] is a Category-aware venue recommendation

model based on the transitioning behavior of each user
between the categories of locations.

• BasicMF is a basic matrix factorization technique that
only considers the users’ historical check-ins and their
preferences for venue recommendation.

• POILP [11] formulates the problem as heterogeneous
link prediction over venue categories, venue regions and
user relationships in addition to historical check-in data
of users.

• GeoCF [12] proposes an integrated collaborative filtering
model by using the user geographical influence and user
preference for venue recommendation.

• MGMMF [13] is based on the captured geographical in-
fluence of users’ check-ins using a Multi-center Gaussian
Model fused with matrix factorization over users’ social
influence.

• Markovian [14] is based on users’ mobility behavior
where the locations are recommended by observing n
previously visited venues.

• UMFL [15] treats venue recommendation as a supervised
learning problem where global mobility, user mobility,
and temporal features are incorporated in the model.

We perform our comparative analysis based on the strategy
proposed in [1] and so only the top-6 venues are taken into
consideration and reported in Table 2. We observe that the
BasicMF method shows the worst performance compared to
other models. This can be partly attributed to the fact that this
model only employs the user’s similar venue visit patterns to
make recommendations. Other models such as the Markovian
model which is solely based on temporal features of user
footprints and recommends locations to users based on the
previously visited locations outperform BasicMF. However,
this model performs less accurately due to the fact that users’
sequential mobility data is quite sparse. The other baseline in
our work is the UMFL model, which uses a geographical fea-
ture for venue recommendation and outperforms BasicMF and
the Markovian model. Nonetheless, MGMMF and GeoCF that
fuse the geographical influence and user interest offer more ac-
curate recommendations compared to the UMFL model. Also,
the CPOIR model is a category-aware venue recommendation
model, which is based on the transitional performance of the
users between the locations and their categories. This model
outperforms all of the previous models. The POILP model,
which uses link prediction for venue recommendation achieves
better results compared to CPOIR model in terms of precision.
However, it shows lower Recall compared to the others. As
reported in Table 2, our proposed model outperforms all the
baselines in all three metrics. This observation indicates that
by embedding user and venue vectors, a new set of features
can be developed that are suitable for venue recommendation.
By presenting the users and venues into the same space,
not only closer users and locations are discovered, but also
similar user-location pairs are found. We found that direct
social connection between users is not necessarily an accurate
indicator for venue recommendation. This is because users’
social connections do not directly translate into visiting the
same venues. In contrast, we developed an alternative feature
for finding top-N similar users and venues for each user and
venue, which might not even be directly connected to the user
or the venue. These top users and venues have similar temporal
check-in behavior and as such have a similar embedding
vector. The incorporation of these top-N users and venues
substantially increases performance.

IV. RELATED WORK

There is a rich line of research on Point-of-Interest (venue)
recommendation that utilizes users’ check-in data. Existing
point-of-interest recommendation techniques can be classified
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Fig. 2. The Precision@6 and Recall@6 of the seven variants of our proposed approach.

TABLE II
COMPARATIVE ANALYSIS WITH THE BASELINES DIVIDED ACROSS DIFFERENT CITIES.

City Austin Chicago Houston Los Angeles San Francisco
R P F1 R P F1 R P F1 R P F1 R P F1

CPOIR 0.157 0.026 0.045 0.292 0.049 0.083 0.279 0.046 0.080 0.203 0.034 0.058 0.159 0.027 0.045
BasicMF 0.064 0.011 0.018 0.086 0.014 0.025 0.082 0.014 0.024 0.072 0.012 0.021 0.066 0.011 0.019
POILP 0.056 0.096 0.071 0.096 0.130 0.111 0.207 0.122 0.153 0.120 0.112 0.116 0.072 0.116 0.089
GeoCF 0.122 0.020 0.035 0.227 0.038 0.065 0.165 0.027 0.047 0.164 0.027 0.047 0.126 0.021 0.036
MGMMF 0.117 0.020 0.034 0.186 0.031 0.053 0.159 0.027 0.045 0.152 0.025 0.046 0.112 0.019 0.032
Markovian 0.086 0.014 0.025 0.116 0.019 0.033 0.102 0.017 0.029 0.096 0.016 0.027 0.088 0.015 0.025
UMFL 0.116 0.019 0.033 0.170 0.028 0.049 0.152 0.025 0.044 0.132 0.022 0.038 0.111 0.018 0.032
Our Approach 0.134 0.178 0.153 0.513 0.194 0.282 0.380 0.155 0.220 0.306 0.159 0.153 0.195 0.146 0.167

into different categories. Matrix Factorization [16] which is a
method used for rating prediction has been widely used and
integrated with various approaches in this field. Particularly,
MF seeks to find the latent elements of venues and users
to precisely predict the rating of the person to unvisited
venues. Based on collaborative filtering, Matrix Factorization
has been used to recommend venues to the users based on
their similarities with others. For instance, Manotumruksa et
al. [5] have addressed the problem of venues rating prediction
by using Matrix Factorization on word embeddings. Liu et
al. [1] has proposed a category-aware venue recommendation
model that exploits the transition of users’ preference among
venue categories. They apply matrix factorization to predict
the interest of users over venues in different categories.
Manotumruksa et al. [2] have proposed a Matrix Factorization
regularization technique for point-of-interest recommendation
which fuses users social information and their comments using
word embeddings. In their work, venues are recommended to
the users by looking at their similar friends in terms of visiting
locations. This has been done by using the comments left by
the users along their check-in information and embedding the
words they have used.

Recurrent Neural Networks (RNN) based point-of-interest
recommendation models have become popular to their state-
of-art performance. Manotumruksa et al. [9] have proposed
a Deep Recurrent Collaborative Filtering Framework (DRCF)
for venue suggestions by considering the complex user-venue
interactions, users feedback and the geographical information
of the locations. Spatial and temporal information have been
taken into account in Liu et al. [17] extended RNN model
where spatio-temporal context is modeled in each layer. Lately,

Yao et al. [7] have proposed a Semantics-enriched Recurrent
Model (SERM) which jointly learns the embeddings of various
features and the transition parameters. The main purpose
of these approaches is to enable a semantic-aware point-of-
interest recommendation model to improve recommendation
accuracies.

Collaborative recommendation approaches have been exten-
sively explored in traditional recommender systems due to its
positive impact on the quality of recommendations. Inspired
from the presumption that friends of LBSNs share more com-
mon pursuits than non friends, several POI recommendation
strategies enhance the quality of their recommendations by
taking community impact straight into account such as [12].
For instance, in their approach, POI recommendations is based
on a friend-based collaborative filtering model. Their model is
trained based on the friendships similar preferences instead of
the similarity between all the users in the social network.

Personalized point-of-interest recommendation models have
been also investigated by using various techniques. Gambs et
al. [14] have proposed a model for next venue prediction using
the mobility Markov chain that is built for each individual
user. Their model is solely based on the temporal behaviour
of the user check-ins and does not consider the correlation
between users’ check-ins. Yang et al. [18] have proposed a
fusion framework, which exploits both spatial and temporal
activity preferences of users to predict their next venue. For
each user, the spatial features are captured by building Personal
Functional Regions, which are built based on frequented
regions that the user visits. In their work, each region is
assigned to a category that the user is more interested in based
on her historical visits. Therefore, when the user is near each
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region, the category assigned to that region is used for venue
recommendation.

Lately, Aliannejadi et al. [4] have proposed a personalized
context-aware point-of-interest recommendation model where
the venues are suggested based on a set of similarity scores.
In their work, the venues are recommended contextually by
using a combination of context and user based similarity
scores such as frequency-based scores, venue tags score and
review-based score. Finally, the similarity scores are combined
by using linear interpolation and a ranked list of venues
are used for point-of-interest recommendation. Also, in this
work, the lifestyle behavior of users is observed by using
the temporal nature of the check-ins. Pourali et al. [11] have
viewed the problem of venue recommendation as an instance
of the link prediction problem. They have incorporated various
types of information into a heterogeneous graph such as the
users, locations, categories of the locations, and the association
between the users.

In this paper, we represent users and venues within the
same feature space solely based on check-in data of users
by utilizing neural embeddings that have already been widely
used in related areas [19], [20]. Then, We utilize the user and
venue embeddings to define three types of features which are
incorporated in a feature-based matrix factorization model for
venue recommendation.

V. CONCLUDING REMARKS

We have shown how a sequence of user check-ins can
be used to learn user and venue representations in order to
introduce new types of features. Results from earlier methods
had shown that explicit social connections of each user does
not necessarily lead to effective recommendations and as such,
we built user relationships based on finding the top-N similar
users and venues based on the embeddings. This feature
showed to be the strongest for predicting points of interest.
Additionally, we used the similarity of the embeddings of
a user-venue pair to serve as a feature, which was a strong
feature but not as strong as the top-N similar user and venue
features. Finally, we considered the raw embeddings of users
and venues to serve as features, which did not show a good
performance. We also systematically explored the possibility
of building models that use a combination of these features and
found that the top-N similar features are the strongest features
both in isolation and when combined with other features.
We showed that compared to state of the art, our variant
that only relies on top-N features shows a noticeably better
performance.
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