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ABSTRACT
Given a set of required skills, the objective of the team forma-
tion problem is to form a team of experts that cover the required
skills. Most existing approaches are based on graph methods, such
as minimum-cost spanning trees. These approaches, due to their
limited view of the network, fail to capture complex interactions
among experts and are computationally intractable. More recent
approaches adopt neural architectures to learn a mapping between
the skills and experts space. While they are more effective, these
techniques face two main limitations: (1) they consider a fixed rep-
resentation for both skills and experts, and (2) they overlook the
significant amount of past collaboration network information. We
learn dense representations for skills and experts based on previous
collaborations and bootstrap the training process through transfer
learning. We also propose to fine-tune the representation of skills
and experts while learning the mapping function. Our experiments
over the DBLP dataset verify that our proposed architecture is able
to outperform the state-of-the-art graph and neural methods over
both ranking and quality metrics.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; Expert
search; • Computing methodologies → Search methodologies.
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1 INTRODUCTION
As the nature of work is becoming increasingly collaborative and
interdisciplinary, the need for teamwork between multiple experts
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is now of paramount importance. For this reason, the problem of
team formation, which is focused on bringing together groups of
experts that can collectively address a set of requirements, receives
attention. The objective of the team formation problem is to find a
group of experts who can effectively work together and cover a set
of skills that are required for completing a task. For instance, when
working on a website that includes an intelligent conversation
agent, one would need to assemble experts who have expertise
in ‘web development’, ‘user experience design’, ‘natural language
processing’, and ‘information retrieval’.

Traditionally, the problem of team formation has been viewed as
one of mining a subgraph from a collaboration network representing
experts, their skills and their past teamwork. Specifically, Sozio et
al. [19] offer an encompassing definition for the problem of team
formation. They define an appropriate team, as one represented
by an induced subgraph that maximizes a monotone optimization
function under a set of constraints. Depending on the application
area, different authors have provided concrete implementations of
the monotone optimization function. Lappas et al. [13] make use of
the minimum-cost spanning tree that satisfies the constraints (e.g.,
covering all required skills). More recent work by Kargar et al. [9]
and Bryson et al. [2] focus on minimizing the sum of the weights
of the induced subgraph. However, the major limiting factor for
the class of solutions that identify subgraphs as teams is that they
are all computationally intractable since subgraph optimization
techniques have been shown to be a reduced version of the Steiner-
tree problem, which is NP-hard [10].

Given the computational intractability of the methods that iden-
tify subgraphs as teams, researchers have also considered using
neural architectures to identify teams. The major objective of these
works is to learn an efficient mapping from the space of skills onto
the space of experts, so that expert teams can be formed effectively
in real-time. To the best of our knowledge, Sapienza et al. [17] were
the first to employ an autoencoder architecture to identify experts
that can learn from other team members. However, given the fact
that the distribution of skills over experts and teams is quite sparse,
a non-variational autoencoder architecture may be prone to overfit-
ting. To address the issue with sparsity of skill distributions, Rad et
al. [16] built on the foundations of the work by Sapienza et al. and
proposed a variational Bayesian neural architecture. The authors
showed that a variational architecture can lead to a more effective
treatment of sparsity, hence, producing better quality teams.

However, both of these approaches face two main drawbacks.
(1) They assume that the representations of teams and skills are
predetermined and as such their objective is to learn a mapping
between these fixed representations. Neither approaches attempt to
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Figure 1: Illustration of our model architecture with transfer learning and fine-tuning components.

co-train the skill and expert representations during the process of
learning the mapping between the skill and expert spaces. (2) Given
the complexities associated with processing large graphical struc-
tures, both Rad et al. and Sapienza et al. overlook the rich informa-
tion that can be mined from the associated collaboration network.

We focus on advancing the state-of-the-art in neural network
methods for team formation by addressing the above two limita-
tions. As such, our work offers the following two contributions. (1)
We learn dense representations for the nodes in the collaboration
network, e.g., skills and experts, and employ it to bootstrap our
learning process. We refer to this as a transfer learning process. (2)
We design our neural architecture in a way that the representa-
tions of skills and experts are learned in tandem with the mapping
between the skill and expert spaces. We refer to this process as a
fine-tuning process as the initial representations of skills and ex-
perts are initially trained using the transfer learning process based
on the collaboration network. We show that the transfer learning
and fine-tuning processes provide significant performance and ac-
curacy improvements over the state-of-the-art neural architectures
for team formation [16, 17], as well as, graphs methods [2, 9, 13].

2 METHODOLOGY
2.1 Architecture Overview
The main objective of team formation is to form a team of experts
that have a given set of skills. For each team, let S = {S𝑖 } represent
the skill set and E =

{
E 𝑗

}
denote experts. Each team is represented

as (s, e), where e ⊆ E; e ≠ ∅ and s ⊆ S; s ≠ ∅. We let T =

{(s𝑖 , e𝑖 )}𝑁𝑖=1 be a dataset consisting of N pairs of skills and experts.
Our proposed model learns a transform function 𝑓 : (S) → (E)

that forms a team of experts for a set of skills. The architecture is
illustrated in Fig. 1. Our system architecture consists of two main
components: (1) a transfer learning (TF) component that learns
initial embeddings of the skill and expert nodes used to bootstrap
the training of the transform function; and, (2) the fine-tuning (FT)
process, which trains 𝑓 : (S) → (E) and fine-tunes the skill
and expert representations in tandem to predict potential expert
candidates for forming a team for the given set of skills.
2.2 Transfer Learning
We hypothesize that the past collaboration of experts and their prior
engagement with different skills can positively impact how teams
are formed in the future. We utilize the transfer learning component
to learn representations for experts and skills based on how they
interacted with each other within a graph collaboration network.
A collaboration network can be represented by a heterogeneous
graph G(V, E, T), where 𝑉 is the set of nodes, each of which is asso-
ciated with a type defined by the mapping function 𝜙 (𝑣) : 𝑉 → 𝑇𝑉
and 𝐸 is a set of edges connecting the heterogeneous nodes. For

instance, for the DBLP dataset that is used in our experiments, 𝑇𝑉
consists of paper, author, venue and skill node types.

We use a heterogeneous skip-gram model to capture the hetero-
geneous neighborhood of each node in the graph. Some existing
heterogeneous graph embedding techniques apply random walk
over the network to build node sequences required by the skip-
gram model to learn node representations [3, 18]. However, Sun et
al. [21] showed that the random walk strategy can introduce bias
towards node types that are more dominant in the network. Thus,
we perform targeted random walk by using a meta-path scheme
as suggested by Fard et al. [5] and Dong et al. [4]. This allows us to
capture the semantic and structural correlations between different
targeted types of nodes and their relationships, which are impor-
tant in the context of team formation. We take advantage of the
meta-paths [6, 21, 22] deployed for the DBLP dataset (c.f. Figure
1), which capture semantic relations including co-authorship and
authors who publish in the same venues.

Given the collaboration network, our meta-path scheme is for-
mulated as follows: P : 𝑉1

𝑅1−→ 𝑉2
𝑅2−→ · · ·𝑉𝑡

𝑅𝑡−→ 𝑉𝑡+1 · · ·
𝑅𝑙−1−→ 𝑉𝑙 ,

where 𝑅 = 𝑅1 ◦ 𝑅2 ◦ · · · ◦ 𝑅𝑙−1 is synthesized from relations between
node types 𝑉1 and 𝑉𝑙 [20]. The probability of moving to the next
node for a random walker is defined as follows:

𝑝

(
𝑣𝑖+1 | 𝑣𝑖𝑡 ,P

)
=


1

|𝑁𝑡+1 (𝑣𝑖𝑡 ) |
(
𝑣𝑖+1, 𝑣𝑖𝑡

)
∈ 𝐸,𝜙

(
𝑣𝑖+1

)
= 𝑡 + 1

0
(
𝑣𝑖+1, 𝑣𝑖𝑡

)
∈ 𝐸,𝜙

(
𝑣𝑖+1

)
≠ 𝑡 + 1

0
(
𝑣𝑖+1, 𝑣𝑖𝑡

)
∉ 𝐸

(1)
where 𝑣𝑖𝑡 ∈ 𝑉𝑡 . Here, 𝑁𝑡+1

(
𝑣𝑖𝑡
)
specifies the next node’s type (𝑉𝑡+1)

based on the given meta-path P. Since meta-path schemes are
designed in a symmetric way, its first node type 𝑉1 is the same as
the last node in the meta-path 𝑉𝑙 [20, 21],

𝑝

(
𝑣𝑖+1 | 𝑣𝑖𝑡

)
= 𝑝

(
𝑣𝑖+1 | 𝑣𝑖1

)
, if 𝑡 = 𝑙 (2)

Hence, a random walker is able to recursively walk through a
target node neighborhood and capture deeper semantic relations.
The targeted random walk produces a set of node sequences that
are used by a skip-gram model with sensitivity to node types to
learn node representations:

𝑋 ∈ R |𝑉 |×𝑑 , 𝑑 ≪ |𝑉 | (3)

During the embedding training, we maximize the probability of
having the heterogeneous context 𝑁𝑡 (𝑣), 𝑡 ∈ 𝑇𝑉 for a node 𝑣 :

argmax
\

∑
𝑣∈𝑉

∑
𝑡 ∈𝑇𝑉

∑
𝑐𝑡 ∈𝑁𝑡 (𝑣)

log𝑝 (𝑐𝑡 | 𝑣 ;\ ) (4)

where 𝑁𝑡 (𝑣) refers to the neighborhood of node 𝑣 and nodes of
type 𝑡 . The mentioned probability function, i.e., 𝑝 (𝑐𝑡 | 𝑣 ;\ ), can be
a softmax function [1, 7]. In order to reach an optimized representa-
tion, we utilized negative sampling [15]. Given a negative sampling
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Figure 2: Performance of the variants of our approach.

size M, 𝑝 (𝑐𝑡 | 𝑣 ;\ ) in Eq. 4 is updated as:

log𝜎
(
𝑋𝑐𝑡 ·𝑋𝑣

)
+

𝑀∑
𝑚=1
E𝑢𝑚∼𝑃 (𝑢)

[
log𝜎

(
−𝑋𝑚

𝑢 ·𝑋𝑣

) ]
(5)

where 𝜎 (𝑥) = 1
1+𝑒−𝑥 . We select𝑀 negative samples drawn from a

random distribution 𝑃 (𝑢) (homogeneously chosen based on the fre-
quency of node types). The skill and expert representations learned
from the collaboration network are used to bootstrap the fine tun-
ing component, which will further tune these representations in
tandem with the training of the transform function.

2.3 Fine Tuning
Next, we devise the component to learn a transform function from
the skills space to the experts space in tandem with fine-tuning the
embeddings from the transfer learning component. We first use the
embedding representations from the transfer learning component
to initialize our embedding vectors (see Fig. 1). We then train our
neural network using the generated vectors whilst the embedding
vectors are fine-tuned.

𝑙0 = 𝜌 (𝑋𝑠 ) (6)

𝑙𝑖 = 𭟋𝑖 (𝑊 𝑖𝑙𝑖−1) (7)

O = 𭟋𝑚 (𝑊𝑚𝑙𝑚−1) (8)

where 𝑚 is the number of hidden layers and 𝑋𝑠 is the input
layer synthesized from the transferred skill embeddings. 𝜌 () cal-
culates N

(
𝝁,𝝈2) for the input layer. For each of the hidden layers

𝑙𝑖 , 𝑖 ∈ {1,𝑚}, 𭟋𝑖 denotes their activation function and𝑊 𝑖 ∈ R𝑖−1×𝑖
is the weight matrix. Take note that in our formulation, bias term
is included in weight matrices. We employ the commonly used soft-
max function for the activation function of the output layer 𭟋𝑚 . We
fine-tune the embeddings during the train phase using Adam [11]
for back propagation. Θ =

{
{𝑋𝑠 }𝑠∈𝑆 ,

{
𝑊 (𝑖 ) }𝑚

𝑖=0

}
represents all train-

able model parameters. For the test phase, each neuron of the output
layer holds probability for each expert to be part of the team.

Next, we define our loss function based on the characteristic
of the collaboration network, where the connection between the
nodes is sparse. The neural architectures based on a generative
approach are more stable and efficient, than the discriminative
ones [8]. In a generative approach, the distribution of skills is con-
sidered instead of their deterministic values. Our goal is to fine-tune
a transform function, with the above neural architecture, with pa-
rameter 𝛾 of the conditional probability 𝑝 (𝑒 | 𝑠, 𝛾). We leverage
the Bayes rule to infer the posterior distribution after calculat-
ing the prior distribution of 𝛾 . However, computing the posterior
distribution 𝑝 (𝛾 | T ) = 𝑝 (𝛾)𝑝 (T | 𝛾)/𝑝 (T ) is difficult, because
𝑝 (T ) =

∫
𝑝 (T , 𝛾)𝑑𝛾 is a computationally intractable integral. Thus,

Figure 3: Performance of our approach vs baselines.

we use variational inference, an efficient approximation approach to
tackle this problem by calculating 𝑞𝜙 (𝛾) to approximate 𝑝 (𝛾 | T ).
We minimize the difference between 𝑞𝜙 (𝛾) and 𝑝 (𝛾 | T ) using
Kullback-Leibler divergence as follows:

KL(𝑞 (𝜸 |𝝁,𝝈 ) | |𝑝 (𝜸 |T)) =
∫

𝑞 (𝜸 |𝝁,𝝈 ) log[
𝑞 (𝜸 |𝝁,𝝈 )
𝑝 (𝜸 |T) ]d𝜸 (9)

= E𝑞 (𝜸 |𝝁,𝝈 ) log[
𝑞 (𝜸 |𝝁,𝝈 )

𝑝 (T |𝜸 )𝑝 (𝜸 ) 𝑝 (T) ] (10)

= KL(𝑞 (𝜸 |𝝁, 𝝈 ) | |𝑝 (𝜸 )) − E𝑞 (𝜸 |𝝁,𝝈 ) log 𝑝 (T |𝜸 ) + log 𝑝 (T) (11)

We train our network with the loss function mentioned in Eq. 11.

3 EXPERIMENTS
3.1 Settings
Datasets. The common dataset that has been widely used in the
literature for evaluating team formation methods has been based on
the DBLP publication repository [14, 16, 24]. The authors of each
paper are considered to represent a team, and the specializations
required for the paper are its skill sets. As suggested by [9], after stop
word removal and stemming, we identify the top-2,000 unigram,
bigram and trigrams of the phrases with the highest tf-idf scores
from the paper titles to represent the set of skills. We construct
the heterogeneous collaboration network from the DBLP dataset
by considering the authors, papers, skills, and venues as the nodes
of the network. The edges of the collaboration network represent
associations between author-paper, paper-skill and paper-venue
node pairs. Our dataset, its statistics and the code for our work is
publicly available1.

Metrics. We evaluate the effectiveness of our approach from
two complementary perspectives. In the first perspective, we adopt
widely used ranking metrics, namely mean average precision (map),
mean reciprocal rank (mrr), normalized discounted cumulative gain
(ndcg), and recall. In the second perspective, we measure the quality
of the recommended teams based on two metrics, namely skill cov-
erage (sk), and team comparability (tk). The skill coverage metric
measures the percentage of the required skills that are actually cov-
ered by the proposed team. Ideally, the proposed team should fully
cover all of the required skills. On the other hand, team compara-
bility shows to what extent the proposed team is comparable to the
actual set of authors. We compute the difference between the aver-
age h-index of the proposed team and that of the actual team. The
1https://github.com/radinhamidi/Retrieving-Skill-Based-Teams-from-Collaboration-
Networks
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Figure 4: Help/Hurt results on per-team basis.

closer the proposed team is to the actual team, the lower the tk met-
ric will be. All reported results are based on 10-fold cross validation.

Baselines.We select our baselines based on the classification men-
tioned in Sec. 1: GraphMethods: Kargar et al. [9] have argued
that team formation is a special case of keyword search over graphs
and provide optimization-based solutions to compute node and
edge weights in the graph to evaluate possible ranking strategies.
Lapas et al.[14] pioneered the idea of team formation on graphs
and offered heuristic solutions to find subgraphs based on subtrees
with minimal diameter. Neural methods: Sapienza et al. [17]
have suggested that an autoencoder architecture can be used deter-
mine teams that can maximize skill transfer between experts. Rad
et al. [16] have recently proposed a variational Bayesian neural
network that maps skills to experts through a single hidden layer.
CF methods: In addition, team formation can also be viewed as a
collaborative filtering (CF methods) task where team members are
suggested based on a set of input skills. We adopt Wu et al. [23]
who propose the recurrent recommender network that uses a Long
Short-Term Memory (LSTM) autoregressive model for capturing
the relation between items and users. Finally, we also include the
widely known svd++ [12] method used as a recommender. We note
when required all method hyperparameters were tuned or selected
based on the authors’ suggestion.

3.2 Findings
Ranking. We first analyze the impact of the variants of our pro-
posed approach on the ranking metrics. The results are shown in
Fig. 2. We make several important observations: (1) overall, the
transfer learning (TL) approach has a stronger impact on the perfor-
mance of our approach compared to the fine-tuning (FT) strategy
by at least 6% on map, ndcg and mrr. However, the performance is
similar over recall. (2) despite the better performance of transfer
learning, when integrated with fine-tuning strategy (TL+FT), the
overall performance of our approach increases between 3.5% and
5.5% on map, ndcg and mrr. This shows that although the fine-
tuning strategy is not as effective as transfer learning, it does have
complementary and synergistic impact on performance.

Next, we compare the best variant of our approach, against the
baselines in Fig. 3. We note important findings: (1) our approach
consistently outperforms all other baselines on all four ranking
metrics. The degrees of improvement are consistent across all top-k
ranks and are 22%, 12.6%, 15%, and 10.5% over the best baseline (Rad
et al.) for the map, ndcg, mrr and recall, respectively. (2) Neural
network-based baselines offer a better performance compared to
graph-based baselines, even the-state-of-the-art method proposed
by Kargar et al. This poorer performance for graph-based meth-
ods can be attributed to the NP-hard nature of team formation
over graphs, which leads to sub-optimal greedy solutions. (3) When
comparing to the neural baselines, the differentiating aspect of our

Figure 5: Qualitative measures of performance.

work, from Sapienza et al. and Rad et al., is that we allow for
our model to learn association between skills and experts, through
transfer learning and fine-tuning of embeddings, whereas earlier
work resort to only learning a mapping between the skill and expert
spaces. For this reason, even when compared to the weakest variant
of our approach (FT in Fig. 2), the performance of our approach is
stronger than the best baseline on all ranking metrics.

Furthermore, we plot the degree to which map was helped or
hurt by our approach compared to the two best neural baselines on
a per-team basis in Fig. 4. The figure shows that 56.9% and 64.7% of
the map values were improved when compared to Rad et al. and
Sapienza et al., respectively. This is equivalent to 13.8% and
29.4% more teams being helped compared to the baselines pointing
to a consistent improvement across a large number of teams.
Quality. While the ranking metrics evaluated whether the original
authors of a paper were retrieved by the team formation methods,
the quality metrics are focused on two additional aspects of teams:
(1) skill coverage (sk), which evaluates whether the proposed team
actually covers the required set of skills that were requested, re-
gardless of whether the original authors were retrieved or not, and
(2) team comparability (tk) that measures how similar the retrieved
authors are in terms of their h-index. The idea behind sk and tk
is that if the original set of authors is not retrieved for forming a
team, the team would need to ideally have the same set of skills as
the original authors, i.e., sk, and have the same stature as them, i.e.,
tk. As noted earlier, higher sk and lower tk values are desirable.

Fig. 5 reports the results of comparison with the two strongest
baselines. We make two important observations: (1) our method
performs consistently better in terms of skill coverage compared
to both baselines. The improvement on sk is at least 11% over the
stronger baseline, i.e., Rad et al. over the different team sizes (top-
k). This is an indication that our approach is able to find teams that
cover a larger set of the required skills. (2) From the tk perspective,
our approach finds teams that have a lower difference to the original
authors in terms of their average team h-index compared to the
baselines, which is at least 37% better than the best baseline. We
believe this is due to how the information about author and skill
relations are transferred from the collaboration network and then
those representations are fine-tuned in our approach. This leads
to the retrieval of similar profile team members even when the
original team members are not retrieved.

4 CONCLUDING REMARKS
We provide advancements over existing neural architectures de-
signed for the team formation task through (1) a transfer learning
process and (2) fine-tuning of skill and expert embedding represen-
tations. Through our experiments on the DBLP dataset, we illustrate
that our proposed approach shows stronger performance compared
to the state-of-the-art over both ranking and quality metrics.
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