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ABSTRACT
Various researchers have recently explored the impact of differ-
ent types of biases on information retrieval tasks such as ad hoc
retrieval and question answering. While the impact of bias needs
to be controlled in order to avoid increased prejudices, the litera-
ture has often viewed the relationship between increased retrieval
utility (effectiveness) and reduced bias as a tradeoff where one
can suffer from the other. In this paper, we empirically study this
tradeoff and explore whether it would be possible to reduce bias
while maintaining similar retrieval utility. We show this would be
possible by revising the input query through a bias-aware pseudo-
relevance feedback framework. We report our findings based on
four widely used TREC corpora namely Robust04, Gov2, ClueWeb09
and ClueWeb12 and using two classes of bias metrics. The findings
of this paper are significant as they are among the first to show
that decrease in bias does not necessarily need to come at the cost
of reduced utility.

CCS CONCEPTS
• Information systems → Information Retrieval; • Evalua-
tion of retrieval results → Presentation of retrieval results.
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1 INTRODUCTION
There has been growing awareness on how various forms of bi-
ases can be introduced as a result of representational and algorith-
mic aspects of computational models in information retrieval (IR)
[8, 18, 20, 27]. More specifically, the IR literature has recognized
how biases, such as those associated with gender and ethnicity,
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can impact the outcomes of tasks including ad hoc retrieval and
conversational search [4, 11, 22, 23]. Unidentified biases can leak
and impact the outcome of retrieval systems and potentially impact
users by exposing them to biased information that can in turn lead
to stereotypical biases that reinforce known yet unfair prejudices.

Recent literature has observed a host of computational meth-
ods that attempt to identify, explain or potentially reduce biases,
e.g., from neural representations [3, 7, 21, 35]. The recent work
by Rekabsaz et al. [22] specifically shows that the state-of-the-art
neural ranking methods are more inclined towards retrieving male-
dominated documents when applied over gender-neutral queries.
In line with the work by Rekabsaz, Bigdeli et al. [2] further explored
whether stereotypical gender biases can be systematically observed
within IR relevance judgements. As a result of their experiments
on the MS MARCO relevance judgements, the authors found that
gender biases are prevalent among relevance judgments, which can
be learnt by neural models that are trained based on them.

One of the important practical considerations of dealing with
biases is its potential impact on retrieval utility. Several researchers
have already argued that reducing biases can often be achieved at
the cost of reduced utility, pointing to a tradeoff between reducing
bias and increasing utility [6, 9, 10, 17, 25]. In other words, such
perspective identifies an orthogonal relation between fairness (re-
duced bias) and utility. While such position may sound reasonable,
to the best of our knowledge, it has not yet been empirically ex-
plored within the context of information retrieval. For this reason,
the main objective of this paper is to systematically study the
tradeoff between bias and utility in ad hoc document retrieval. The
ad hoc retrieval task is defined as a process of retrieving a ranked
list of relevant documents 𝐷𝑞 to a query 𝑞 using an efficient re-
trieval method𝑀 that can estimate the relevance of each document
in a large document collection 𝐶 to 𝑞. In this context, there are at
least two elements that can be controlled to reduce bias, namely (1)
retrieval method𝑀 , and (2) query 𝑞. In this paper, we focus on the
second element, i.e., query 𝑞, and empirically study whether: (a) a
tradeoff necessarily exists between bias and utility, and (b) there
exists a possible revision to 𝑞 that will lead to reduced bias while
maintaining (or possibly increasing) utility. We hypothesize that
one way to avoid a tradeoff between bias and utility is to identify a
revised query for 𝑞, i.e., 𝑞′, such that 𝑞′ has at least the same utility
as 𝑞 but results in a less biased ranked list of documents.

To explore whether a revised query such as 𝑞′ exists, we show
how 𝑞 can be revised using a bias-aware pseudo-relevance feedback
method that explicitly considers bias when revising the original
query. While it has already been shown that it is possible to revise
a query to increase utility [5, 12, 15, 26, 28, 29, 34], to the best of
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our knowledge, there are no works that revise a query to reduce
bias and maintain utility. On this basis, we answer three Research
Questions (RQ) in this paper: (RQ1) Is it possible to revise an initial
query such that it maintains at least the same degree of utility while
significantly reducing bias? (RQ2) Are potential reductions in bias
as a result of revising 𝑞 consistent across different quantitative
measures for bias? (RQ3) Do the characteristics of a revised query
substantially differ from that of the original query when optimized
for lower bias even if the same levels of utility are maintained?

We conduct our experiments on four well-known TREC corpora
namely Robust04, Gov2, ClueWeb09 and Clueweb12 and their asso-
ciated topics. We find that it is possible to systematically revise an
input query so that it maintains the same utility while substantially
reducing bias in the retrieved list of documents. We believe the
findings of this paper are impactful as it shows: (1) the widely
discussed hypothesis about a tradeoff between bias and utility does
not necessarily always hold, and (2) it is possible to use simple yet
effective methods to reduce the degree of bias of the documents
that are retrieved and presented to the users.

2 BIAS-AWARE PSEUDO-RELEVANCE
FEEDBACK

The main hypothesis behind our work is that one could potentially
show that the tradeoff between bias and utility does not necessarily
always hold, if there is some revised version of the input query 𝑞,
such as𝑞′, that maintains the same degree of utility but significantly
decreases bias in the retrieved ranked list of documents. In this
paper, we propose an effective strategy for revising a query based
on bias-aware pseudo-relevance feedback. In essence, a Pseudo-
Relevance Feedback (PRF) strategy revises the original query by
expanding it using the most informative terms extracted from the
top-k retrieved documents by the original query [14, 24, 30, 31]. We
argue that it is possible to reformulate the query revision strategy
based on PRF such that it is not solely dependent on the relevance
of the top-k retrieved documents to the original query but also
cognizant of the degree of bias exposed by each of these documents.

We hypothesize that by considering the degree of bias of the
documents when choosing the top-k documents to be considered
as the pseudo-relevant feedback set, we reduce the likelihood of
choosing terms that have bias. Simply put, the inclusion of less
biased documents in the pseudo-relevant feedback set will decrease
the likelihood of choosing biased terms to be included in the revised
query𝑞′. As a consequence, a less biased𝑞′ is likely to show a higher
degree of relevance to less biased documents, and therefore, lead to
a less biased ranked list of documents.

Let us now formalize our bias-aware pseudo-relevance feedback
strategy for generating a revised query 𝑞′. We assume that a re-
trieval method 𝑀 retrieves a ranked list of documents from the
collection 𝐶 based on their relevance to a query 𝑞. We refer to the
set of retrieved documents for query 𝑞 as 𝐷𝑞 . A pseudo-relevance
based strategy would select terms from 𝐷𝑞 to be used for devel-
oping 𝑞′. However, in our work, we revise the rank order of the
documents in 𝐷𝑞 such that the revised ranking explicitly considers
the degree of bias exposed by each document in 𝐷𝑞 . We rerank 𝐷𝑞

such that the relevance of each document to 𝑞 and the bias of each
document is taken into consideration in tandem. More specifically:

𝑅𝑒𝑙𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑑) = (1 − 𝜆)𝑅𝑒𝑙 (𝑑) − 𝜆𝐵𝑖𝑎𝑠 (𝑑) (1)

where 𝑑 ∈ 𝐷 , 𝑅𝑒𝑙 (𝑑) is the relevance of document 𝑑 to query 𝑞,
𝐵𝑖𝑎𝑠 (𝑑) is some measure of bias computed for document 𝑑 and 𝜆

is a linear interpolation coefficient. Since lower values of 𝐵𝑖𝑎𝑠 (𝑑)
are desirable, they are subtracted from 𝑅𝑒𝑙 (𝑑). Based on Equation
1, the initial ranked list of document 𝐷𝑞 is re-ranked based on
𝑅𝑒𝑙𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑑) producing a new ranking for the top-k documents,
which we refer to as 𝐷𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑

𝑞 . Given the re-ranked list of docu-
ments, to develop the revised query 𝑞′, we adopt the RM3 strategy,
which is a pseudo-relevance feedback framework for query expan-
sion [1, 13] and has shown outstanding performance across various
corpora and queries [16, 28, 33]. In order to develop 𝑞′, we select
and expand 𝑞 with those top-n terms that have the highest score as
follows:

𝑆𝑐𝑜𝑟𝑒𝑡 =
∑

𝑑∈𝐷𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑
𝑞

(𝑃 (𝑡 |𝑑)𝑙𝑜𝑔 𝑃 (𝑡 |𝑑)
𝑃 (𝑡 |𝐶) ) (2)

Now, each term w in the original query and the selected top-n
expansion terms are weighted as follows:

𝑊𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑤,𝑞) = 𝛼𝑃 (𝑤 |𝑞) + (1 − 𝛼)𝑃 (𝑤 |𝐷𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑
𝑞 ) (3)

where 𝛼 ∈ [0, 1] and 𝑃 (𝑤 |𝐷𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑
𝑞 ) is defined as:

𝑃 (𝑤 |𝐷𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑
𝑞 ) =

∑
𝑑∈𝐷𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑

𝑞

𝑃 (𝑤 |𝑑)
∏
𝑡 ∈𝑞

𝑃 (𝑡 |𝑑) (4)

The proposed strategy for developing the revised query 𝑞′ is
likely to reduce bias in the final list of ranked documents for two
main reasons: (1) it retrieves terms from a list that has been re-
ranked by considering the bias of each document; therefore, reduc-
ing the chances of including biased terms in the top-n expansion
terms, and (2) it weighs the terms in the query and the top-n ex-
pansion terms based on their likelihood to appear in 𝐷𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑

𝑞 as
captured in Equation 4. As such, even if biased terms do appear in
the final composition of the query, it is unlikely they would receive
a higher weight compared to less biased terms in 𝑞′.

3 EXPERIMENTS
3.1 Setup
3.1.1 Datasets. We employ four different corpora, namely, Ro-
bust04, Gov2, ClueWeb09 (i.e., CW09), and ClueWeb12 (i.e., CW12)
and their TREC topics: 301-450 and 601-700 for Robust04, 701-850
for Gov2, 1-200 for ClueWeb09, and 201-300 for ClueWeb12.
3.1.2 Bias Metrics. In order to measure the degree of bias for each
document as required by 𝐵𝑖𝑎𝑠 (𝑑) in Equation 1, we employ two
strategies to show that our findings are not prejudiced towards a
certain definition of bias. In the first strategy, we employ the met-
rics proposed by Rekabsaz et al. for measuring gender biases [22].
The authors propose two classes of metrics for measuring gender
bias based on the (i) presence (boolean) and (ii) term frequency of
gendered terms within each single document. On this basis, the
authors extend the measurement of bias from a single document to
a ranked list by proposing the Average Ranking Bias (ARaB) metric
that considers the bias of each document and the ranking of that
document in the list. In the second strategy, we adopt the method
proposed by Bigdeli et al. [2] to measure stereotypical biases within
documents. Their approach is based onmeasuring document gender
inclinations based on LIWC’s male and female references [19].
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Figure 1: The impact of our proposed approach on utility
(map) and bias (ARaB) metrics.

3.1.3 Implementation Details. We implement our work based on
Anserini [32]. We adopt the tuned BM25 implementation for each
corpus fromAnserini. The base RM3 query expander is also adopted
from this library with top-k and top-n set to 10, and 𝛼 = 0.5. We
implement and incorporate bothmeasures of bias for our bias-aware
pseudo-relevance feedback in Anserini. All our code and the results
of our runs on all four corpora are publicly available1. The values of
the interpolation coefficient (𝜆) in Equation 1 are selected from [0,1]
with 0.1 increments. We note that while our results are consistent
for all values of 𝜆, we resort to reporting the results for [0,0.5] due
to space limitation, all other results are available online2.

3.2 Findings
We structure our findings based on our three research questions
introduced earlier.We note statistical significance ismeasured based
on a paired t-test at 95% confidence.
3.2.1 RQ1: Utility-Bias Tradeoff. In the first research question, we
empirically explore whether it would be possible to revise an initial
query such that utility is maintained while significantly reducing
bias. We adopt mean average precision (map) as the measure for
utility and term-frequency version of the ARaB metric proposed by
Rekabsaz et al. [22] as the measure of bias of a ranked list. We report
our findings at rank 10 of the retrieved ranked list of documents.
Figure 1 depicts the impact of our work on both utility (Figure 1a)
and bias (Figure 1b). In the sub-figures, the x-axis represents the
impact of the interpolation coefficient 𝜆 such that 𝜆=0 is equivalent
1https://github.com/aminbigdeli/bias-aware-PRF
2https://github.com/aminbigdeli/bias-aware-PRF/tree/main/results
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Figure 3: Reduction in bias per query-basis compared to
PRF.
to the base pseudo-relevance feedback method since the impact of
bias measurement in Equation 1 is canceled out in this case. As seen
in the figure, regardless of the value of 𝜆, the value of map does not
experience any statistically significant changes as a result of the
inclusion of the bias term in Equation 1. However, the degree of
bias of the retrieved ranked list of documents reduces significantly
with the increase of 𝜆 starting from 𝜆=0.1. In other words, the figure
shows that it is possible to revise the initial query 𝑞 such that the
utility of retrieval is maintained while significantly reducing the
bias of the retrieved list of documents. For instance, while the least
degree of decrease in bias was observed on the Robust04 dataset
with 29.48%, the best reduction on bias was observed on Gov2 with
55.01%. The impact of our proposed approach is further visualized
in Figure 2 where map has been maintained while the degree of
bias has been significantly reduced on all corpora.

Finally, to show that the proposed approach has been able to
consistently reduce bias on a wide range of queries, we report the
degree to which bias was reduced on a per-query basis in Figure
3. This figure shows how much bias was positively or negatively
impacted by the proposed approach when compared to the base-
line PRF method. Positive values show how much the proposed
approach was able to reduce bias compared to PRF and negative
values show the inverse. The four figures show that in the majority
of the cases, our approach was able to improve bias compared to
PRF. For instance, in ClueWeb09, 57% of the queries were improved
while only 25% were negatively impacted and 18% were tied. The
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Table 1: Bias measurements using ARaB and LIWC-based metrics.
Robust04 Gov2 CW09 CW12

ARaB ARaB ARaB ARaBMethod
TF Boolean LIWC TF Boolean LIWC TF Boolean LIWC TF Boolean LIWC

BM25 0.61 0.35 0.48 0.33 0.14 0.07 0.23 0.08 0.05 0.40 0.14 0.19
PRF 0.61 0.34 0.45 0.39 0.11 0.07 0.22 0.07 0.07 0.42 0.10 0.20

Our Approach 0.43 0.27 0.34 0.18 0.07 0.05 0.14 0.06 0.04 0.23 0.05 0.13
Decrease in Bias (%) 29.50 20.58 24.44 53.84 36.36 28.57 36.36 14.28 42.85 45.23 50.00 35.00

Table 2: The number and weight of biased terms in the revised queries.
Robust04 Gov2 CW09 CW12Bias

metric PRF Ours Δ% PRF Ours Δ% PRF Ours Δ% PRF Ours Δ%
ARaB 65 49 -25% 16 5 -69% 17 14 -17% 11 8 -27%

Number of Biased Terms LIWC 69 54 -22% 24 10 -58% 24 19 -21% 15 11 -27%
ARaB 3.84 2.72 -29% 1.42 0.79 -44% 2.20 1.85 -16% 0.99 0.84 -15%

Sum of Biased TermWeights LIWC 4.22 3.08 -27% 1.80 1.02 -43% 2.34 1.96 -16% 1.71 1.54 -9%

Table 3: Qualitative comparison of the revised queries.
Darker colors denote higher weight of biased term.
Original
Query

PRF Our Approach

anorexia
nervosa
bulimia

spell anorexia movi nervosa
opiat teen she her bulimia to-
bacco diet seri

anorexia japan nervosa opiat
your teen research studi eat bu-
limia tobacco diet

Cult
Lifestyles

student krishna kim chilton
lifestyl she mother cult her
car pension

student di krishna mambro
lifestyl she cult her campu
car pension

History of
Physicians
in America

societi bibliographi, black my
america york medicin physician
histori press women

medicar black ohio my americai
Insur journal african physician
w1 histori

american
muslim
mosques
schools

mosqu muslim american wah-
habi my saudi america religion
islam school he

mosqu muslim american my
percent america religion coun-
tri islam school religi he

symptoms
of heart
attack

pain chest medic diseas blood
heart panic symptom attack
women

treatment pain pressur diseas
blood stroke heart panic symp-
tom attack sudden

weather
strip

door bottom girl cheroke strip
caulk jeep weather cme replac

door channel seal presen chanc
strip stop weather cme bogen

most number of improved queries were seen on Robust04 were 78%
of queries were improved compared to only 18% that were hurt.
3.2.2 RQ2: Bias Evaluation using Different Metrics. To confirm that
the decrease in bias is not due to the fact that it has been indirectly
controlled for in Equation 1, we measure the degree of bias using an-
other completely independent measure of bias proposed by Bigdeli
et al. [2] that measures bias as the degree to which male and female
affiliations are observed within a document based on psychometric
properties offered in Linguistic Inquiry and Word Count (LIWC)
[19]. We also report the boolean version of the ARaB metric in
addition to its term-frequency variation that was used in RQ1. As
shown in Table 1, the percentage of decrease in bias is consistent
across all metrics and always statistically significant. This shows
that our approach systematically reduces bias even when measured
on a different bias metric than the one considered in Equation 1.
3.2.3 RQ3. Revised Query Characteristics. We analyze how the
characteristics of a query undergo changes from both quantitative
and qualitative perspectives. From quantitative point of view, we
compare the revised queries based on our approach with the ones
from PRF from two angles: (1) the set of terms that appear in the
revised queries: we report the number of biased terms appeared
in each set of expanded terms that are added to the original query,

and (2) the weights assigned to query terms: we compute the sum
of the weights assigned to the biased terms that are used to expand
the original query. The list of biased terms are those suggested
by Rekabsaz et al3. Table 2 shows that both the number and the
weight of biased terms have significantly decreased in the revised
queries developed by our proposed approach in all four corpora.
This supports our initial hypothesis that a reduction in the bias of
the revised query will lead to a reduction in the bias of the retrieved
list of documents. This also shows that the use of the biased terms
did not necessarily contribute to an improved utility (Figure 2) but
did lead to an increasingly biased retrieval.

To provide a qualitative insight, Table 3 shows several sample
queries that represent how our revised queries differ from the base-
line in two aspects: (1) there are cases where the baseline revised
queries have introduced additional biased terms to the query, which
do not appear in our revised queries. In such cases, the biased terms
do not seem to be necessary for retrieval. For instance, for the
‘symptoms of heart attack’, the baseline method adds the biased
word ‘women’ to the query, which does not appear in our revised
query. (2) there are other cases where biased terms do appear in
both forms of the revised query but the weights of these terms are
lower in our approach. We indicate the weight differences based
on a color encoding. For instance, for the ‘cult lifestyles’ query,
the baseline adds the biased terms ‘she’, ‘mother’ and ‘her’ but our
method does not include the term ‘mother’ and only includes two
biased terms ‘her’ and ‘she’ with much lower weights.

4 CONCLUDING REMARKS
This paper investigates the widely assumed tradeoff between utility
and bias, which asserts that reducing bias (higher fairness) can
come at the cost of reduced utility (lower retrieval effectiveness).
In this paper we show that this hypothesis does not necessarily
always hold and one can potentially find cases where bias can be
systematically reduced while maintaining utility. To this end, we
have shown that it is possible to effectively revise a user query that
would lead to a less biased ranked list of documents. Based on our
experiments, a less biased revised query can maintain utility and
at the same time reduce bias. We believe that this work lays the
foundation for considering fairness and utility as two cooperating
measures as opposed to being viewed as competing aspects.

3https://github.com/navid-rekabsaz/GenderBias_IR
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