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ABSTRACT
Team mining is concerned with the identification of a group of
experts that are able to collaborate with each other in order to col-
lectively cover a set of required skills. This problem has mainly been
addressed either through graph search, which looks for subgraphs
that satisfy the skill requirements or through neural architectures
that learn a mapping from the skill space to the expert space. An
exact graph-based solution to this problem is intractable and its
heuristic variants are only able to identify sub-optimal solutions.
On the other hand, neural architecture-based solutions are prone
to overfitting and simplistically reduce the problem of team for-
mation to one of expert ranking. Our work in this paper proposes
an unsupervised heterogeneous skip-gram-based subgraph mining
approach that can learn representations for subgraphs in a collabo-
ration network. Unlike previous work, the subgraph representations
allow our method to mine teams that have past collaborative history
and collectively cover the requested desirable skills. Through our
experiments, we demonstrate that our proposed approach is able to
outperform a host of state-of-the-art team mining techniques from
both quantitative and qualitative perspectives.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; Expert
search; • Computing methodologies→ Search methodologies.
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1 INTRODUCTION
In many domains, challenging problems can only be addressed
through effective collaboration between different experts with com-
plementary skill sets who have the willingness to work with each
other towards a common goal. Hence, the team mining task is fo-
cused on facilitating the process of identifying efficient teams of
experts that can work towards an objective that requires experts
with a variety of skill sets. More formally stated, the team min-
ing task is concerned with identifying a group of experts who can
maximally cover a set of desirable skills and have shown to have
effective past collaboration experience with each other. A widely
adopted approach to addressing this problem has been to view
the past collaboration history of experts in the form of a graph
structure that would include information about experts, their skills
and past collaborative efforts. Then, the problem of team mining is
defined as one of mining subgraphs from this graph structure in
such a way that the nodes of the identified subgraph collectively
respect properties, such as being closely connected and covering
the required skillsets. While a theoretically eloquent approach, such
problems have shown to be computationally intractable because
subgraph optimization techniques are NP-hard by nature [10]. For
this reason, authors such as Kargar et al [8], Bryson et al. [2], Sun et
al. [19] and Chen et al. [4], to name a few, have proposed heuristic
techniques to reduce the graph search space in order to be able to
practically address the problem. Hence, The reduction in the large
search space leads to the mining of sub-optimal teams.

To address the challenges faced by the graph-based techniques,
more recent approaches have focused on using neural architectures
to learn mappings between the skill and expert spaces. The idea
behind these approaches is that the team mining task can be seen
as one of mapping a subset of the skills into a subset of the expert
spaces. To this end, Sapienza et al. [15] utilize an autoencoder ar-
chitecture to learn team representations, so that mapping can be
done between skills and experts. Similarly, Rad et al. [14] propose
to adopt a variational Bayesian neural network to learn an explicit
mapping between the skill and expert spaces. In these approaches,
the trained mapping function allows for the selection of the corre-
sponding experts that might be relevant for the input skills. While
such neural based methods have shown to be significantly more
effective than graph-based techniques, they face two major chal-
lenges: (C1) given the past collaboration history of experts and
the association of the experts with skills are very sparse, i.e., each
expert often only collaborates with a restricted number of collab-
orators and has a limited number of skills, such neural methods
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Figure 1: The overview of our proposed approach.

are prone to overfitting; and (C2) while the neural mapping meth-
ods learn associations between individual skills and experts, they
do not explicitly maintain the structural team relationships that
were observed during training. As such, when proposing teams,
the neural mapping methods rank individual experts based on their
association with the input skills. This could lead to teams that may
not always have synergistic skill sets or be collaborative.

The objective of this work is to propose a lightweight neural
architecture that addresses the main two challenges of existing
neural methods. To this end, we propose an unsupervised approach
that learns subgraph representations based on the past collabora-
tion history of the experts and the association between experts
and skills. The major distinguishing aspects of our work is that:
(1) we do not learn individual representations for skills and ex-
perts, however, rather learn subgraph representations for experts
who have collaborated in the past and skills that were observed
in tandem in past teams. For this reason, our approach addresses
challenge C2 of neural mapping approach, as the learnt subgraph
representations preserve past collaboration structure and hence, the
recommended teams are cognizant of effective past collaboration,
as well as the relevance of the experts to the required skills; and (2)
our approach does not directly learn a mapping from the skill space
to the expert space in a supervised way, but rather learns subgraph
representations based on a heterogeneous skipgram model. For this
reason, our approach is able to overcome the collaboration network
sparsity problem and avoid overfitting; hence, addressing Chal-
lenge C1 faced by neural mapping techniques. We experimentally
show that our unsupervised approach for subgraph representation
learning is able to show superior quantitative and qualitative per-
formances over both state-of-the-art graph and neural mapping
based approaches.

2 METHODOLOGY
2.1 Problem Definition
The objective of the team mining problem is to form a group of
experts that collectively maximally covers a set of desirable input
skills. We let S represent all of the available skills, and E denote
the complete set of experts. We formally define each team as a set
of experts ε which cover a set of skills s . Thus, each team can be

represented as (s, ε), where ε ⊆ E; ε , ∅ and s ⊆ S; s , ∅. We
let T = {(sk , εk )}

|T |

k=1 be a dataset consisting of |T | teams. On this
basis, the team mining task can be defined as:

TM(si ) → (εj ) (1)
where si ⊆ S, εj ⊆ E and TM(.) is a function that maps across

the skill space to the expert space.

2.2 Approach Overview
In order to be able to learn the function that connects the skill and
expert spaces, we first model the relationship between skills and
experts in the form of a heterogeneous graph, which we refer to as
a collaboration network. We let G(V, E, T) denote the collaborations
network, where V is the set of nodes, each of which is associated
with a type defined by the mapping function ϕ(v) : V → TV and
E is a set of edges connecting the heterogeneous nodes. In this
collaboration network, TV consists of two types of nodes, namely
expert type and skill type. Based on the collaboration network,
each team (sk , εk ) represents two subgraphs of the collaboration
network, where sk is a subgraph of G (sk ⊆ G), such that all nodes
in sk are of type skill, and εk is also a subset ofG (εk ⊆ G), where all
nodes in εk are of type expert. On this basis, we define the problem
of team mining as one of subgraph representation learning where
representations of subgraphs for experts on the same team are
placed geometrically speaking close to the representations of the
subgraphs representing the skills of that team in embedding space.
Once learnt, the embedding representation of the collaboration
network subgraphs can be used to determine subgraph similarities.
As such, given an input set of skills, which can be represented as a
subgraph consisting of skills, we identify the closest subgraph of
experts to the skills subgraph in embedding space. The identified
expert subgraph would be the mined team for the input skills.

2.3 Model Architecture
Our proposed approach for team mining, as depicted in Figure 1,
adopts an unsupervised architecture for subgraph representation
learning. In order to learn the embedding representations for a
particular subgraph, we employ a heterogeneous skip-gram model
to capture the heterogeneous neighborhood of each node in the
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subgraph. A heterogeneous skip-gram model requires a sequence
of observed heterogeneous nodes to be able to learn representa-
tions. Several existing techniques apply random walk over the
network to build node sequences that can be used to learn represen-
tations [3, 16]. However, Sun et al. [18] showed that using a random
walk technique can cause bias towards node types that are more
dominant in the graph. Therefore, we perform targeted random
walk by using a meta-path scheme as suggested by Fard et al. [7]
and Dong et al. [5] to capture the semantic and structural charac-
teristics of a targeted set of node neighbors. For each subgraph,
meta-path-based random walks need to be performed for each of
the nodes in the subgraph. In order to perform a meta-path-based
random walk, the probability of choosing a certain node for the
next hop of the random walk can be formulated as follows:

p
(
vi+1 | vit ,P

)
=


1���Nt+1 (v it )���

(
v i+1, v it

)
∈ E, ϕ

(
v i+1

)
= t + 1

0
(
v i+1, v it

)
∈ E, ϕ

(
v i+1

)
, t + 1

0
(
v i+1, v it

)
< E

(2)
where vit ∈ Vt and Nt+1

(
vit

)
specifies the type of the next node

(Vt+1). Node types are determined given a meta-path scheme P.
Meta-path schemes are generally designed in a symmetric way,
which means that for the scheme P with length l , the first node
type V1 and last node type Vl are the same [17, 18]. Using a sym-
metrical scheme enables the random walker to take recursive walks
as follows:

p
(
vi+1 | vit

)
= p

(
vi+1 | vi1

)
when t = l (3)

The targeted meta-path-based random walk process generates
a set of node sequences for any given start node. Let us assume
a subgraph representing team (sk , εk ), which consists of a set of
nodes in sk ∪ εk . We additionally produce an expert subgraph and
a skills subgraph from each team. Therefore, three subgraphs from
each team consisting of {sk , εk , sk ∪ εk } are generated.

Now, given the set of all team subgraphs T = {(sk , εk )}
|T |

k=1, and
the three subgraphs derived from each team, i.e., {sk , εk , sk ∪ εk },
we denote the collection of such three subgraphs for all teams as T ′.
Furthermore, the set of all node sequences observed when travers-
ing the heterogeneous collaboration network starting from any
node in any of the three subgraphs ({sk , εk , sk ∪ εk }) are the set of
node sequences representing that subgraph. We enable the hetero-
geneous skipgram to learn effective subgraph representations by
maximizing the heterogeneous context for nodes in each subgraph
in the following form:

argmax
θ

∑
sд∈T′

∑
v ∈sд

∑
t ∈TV

∑
ct ∈Nt (v)

logp (ct | v ;θ ) (4)

where Nt (v) is the meta-path-based node sequences harvested
for node v with node type t . The probability function, p (ct | v ;θ )
in Equation 4 is a softmax function [1]. In order to develop an
efficient implementation, we adapt the negative sampling tech-
nique proposed by [13] through which a small set of subgraph
instances are sampled for the computation of the softmax func-
tion. Assuming a set of M negative samples U = {ui }Mi=1, Equa-
tion 4 is modified by replacing p (ct | v ;θ ) with logσ

(
Xct · Xv

)
+

Table 1: DBLP dataset Attributes

Attribute Value

#Papers 33,002
#Authors 2,470
#Venues 21
#Skills 2,000
#Edge 301,369
#Nodes 37,493
#Skill/Paper 6.5
#Paper/Venue 1,571
#Avg. Node Degree In Graph 16.076

Figure 2: Distribution of articles over the
skills and experts.

∑M
m=1 Eum∼P (u) [logσ (−Xum · Xv )], whereσ (x) = 1

1+e−x and P(u)
is the pre-defined distribution from which a negative sample um is
drawn forM times and X is the set of embedding representations
for subgraphs in T ′, formally defined as X ∈ R |T

′ |×d ,d ≪ |T ′ |.
On this basis, we learn subgraph representations for expert, skill

and team subgraphs separately, which can be effectively used for
the purpose of team mining. Concretely, given a skill subgraph
representing the desired set of skills in the input, we identify the
most similar expert subgraph whose embedding representation has
the highest similarity to that of the input skill subgraph to serve as
the mined team that is the best match for the required skills.

3 EVALUATION
3.1 Experiment Setup
Dataset. In order to benchmark our proposed approach against state-
of-the-art methods, as suggested by [9, 12], we adopt the widely
used DBLP dataset for our task. The DBLP dataset consists of open
bibliographic information of Computer Science publications. The
statistical properties of the dataset used in our experiments are
shown in Table 1. In our work, we consider paper authors to be
experts, the set of authors on each paper to form a team, and the
top-2000 unigrams, bigrams and trigrams with the highest tf-idf
values to constitute the set of skills. As shown in the table, our
dataset consists of 33, 002 papers (teams), 2, 470 authors (experts)
and 2, 000 skills. The distribution of skills over the team sizes is
shown in Figure 2. In order to avoid leakage in our experiments, we
split the papers in the dataset based on a ten-fold cross-validation
strategy. The implementation of our proposed method along with
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Figure 3: Results of ablation study forNDCG&MAPmetrics.

Figure 4: Results of ablation study for Recall and MRR met-
rics.

the dataset and the results obtained from the evaluations are pub-
licly available1.
Metrics. We adopt two complementary perspectives to evaluate the
effectiveness of our approach, namely ranking-based and quality-
based perspectives. In the ranking-based approach, we use standard
ranking metrics, including mean average precision (MAP), mean
reciprocal rank (MRR), normalized discounted cumulative gain
(NDCG) and recall. These metrics show how many of the recom-
mended ranked experts are a part of the gold standard team. In
addition, we evaluate the quality of the recommended teams based
on two metrics: skill coverage (sk) and team comparability (tc). The
skill coverage metrics measures to what extent the recommended
team covers the set of skills that were required for the developed
team. The purpose of this metric is to reward those teams that while
do not have the expected team members but still consist of experts
that have the relevant expertise. The team comparability metric, on
the other hand, measures the compatibility of the proposed team
with that of the actual expected team. To this end, tc measures the
difference between the average h-index of the proposed team and
the expected team. Higher sk and a lower tc values are desirable.
Baselines.We adopt the state-of-the-work for comparing our pro-
posed approach. From the state-of-the-art, Kargar et al. [8] view
the team formation problem as one of identifying subgraphs within
a heterogeneous collaboration network. They specifically define
the problem through an optimization solution that searches for key-
words (skills) over the graph. Du et al. [6] propose that the team
(group in their context) formation process can be viewed as one
of learning-to-rank experts. They specifically propose a Bayesian
group ranking method for this task. Sapienza et al. [15] fo-
cus on the problem of team formation for the sake of developing
teams that can lead to enhanced skills development by the team
members. They adopt an autoencoder architecture to learn team

1https://github.com/radinhamidi/Subgraph-Representation-Learning-for-Team-
Mining

Figure 5: Comparing with baselines using NDCG and MAP
metrics.

Figure 6: Comparing with baselines using Recall and MRR
metrics.

representations. Rad et al. [14] build on the work by Sapienza
et al. and employ a variational Bayesian neural network to learn
mappings between the skill and expert spaces, which is then used
to derive teams for a set of input skills. Finally, we note that the
team formation task can also be viewed as one of recommending a
set of experts given some skills. As such, we adopt the work by Wu
et al. [20] that adopts a recurrent neural recommender network
to learn the association between users and items. We also include
the widely adopted matrix factorization approach by Koren [11].
We note that all baseline hyper-parameters were either tuned or
set as defined in the corresponding papers.

3.2 Results
Ablation Study. We first perform an ablation study to investigate
the impact of the variations that can be built based on our ap-
proach. There are two areas where our proposed architecture can
be modified to develop variations: (1) we can substitute the sub-
graph representation learning component of our architecture with
an alternative heterogeneous graph representation learning tech-
nique [7]. (2) we can implement a task-specific variation of our
method where the representation of the subgraphs or nodes are
used to learn a mapping between the skill and expert spaces based
on [14]. This creates four variations of our work that we study:
(1) proposed work in this paper, (base), (2) base with heteroge-
neous node representations (hnr), (3) task-specific mapping with
subgraph representations (tsr) and (4) task-specific mapping with
heterogeneous node representations (thnr).

The results of the ablation study, in Figures 3 and 4, show that
our proposed approach, i.e., base has the best performance on all
four ranking metrics. We further observe that the next best vari-
ation is tsr, which adopts the proposed subgraph representations
but in a task-specific architecture. This shows that the adoption of
subgraph representations over node-based heterogeneous graph
representations is a more effective strategy. This is especially evi-
dent when comparing the thnr and tsr variations, which only differ
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Figure 7: Performance comparison on a per-team basis.

in their adopted representations. Here, we observe that the tsr vari-
ation significantly outperforms thnr and shows that our proposed
subgraph representations are more effective for team retrieval com-
pared to heterogeneous node representations. We also find that
our approach is in general more effective than the task-specific
counterpart that attempts to learn explicit mappings between the
skill and expert sub-spaces. This can be explained by the fact that
the collaboration network is extremely sparse and hence learning
a mapping between the two spaces is not very effective. In the
rest of the paper when mentioning our proposed approach, we are
referring to the base model reported in the ablation study.
Ranking Metrics. We compare our proposed approach, i.e., the base
model, to the baselines based on ranking metrics in Figures 5 and 6.
We make the following important observations: (1) our proposed
approach has significantly outperformed all of the state-of-the-art
baselines on all four ranking metrics. When considering team sizes
of 10, the improvements shown by our method compared to the
best baseline is at least 85%. (2) The next two baselines, i.e., Rad et
al. [14] and Sapienza et al. [15] are based on autoencoder and
variational Bayesian neural architectures. Both of these works adopt
a supervised architecture and a neural mapping approach. (3) We
additionally observe that the state-of-the-art graph heuristics-based
team formation method, i.e., Kargar et al. [8], does not show
competitive performance with any of the other baselines, except the
simple matrix factorization model [11]. This can be due to the fact
that finding optimal subgraphs associated with a keyword query
(set of skills) is essentially an NP-hard problem and hence heuristic
approaches such as [8] fall short of finding an optimal solution.

We also compare the performance of our approach with the
best two baselines, i.e., Rad et al. and Sapienza et al. on an
individual team basis. To do so, we focus on the MAP and NDCG
metrics and report the difference between the average metrics value
(MAP, NDCG) of each team reported by our approach compared to
the baseline. This results have been reported in Figure 7. As seen in
the figure, the number of teams that have been helped (improved)
by our proposed approach has been substantially greater than the

Figure 8: Quality-based comparison with best baselines.

number of teams that have been negatively impacted, i.e., 3.2 times
and 4.2 times, respectively when compared to Rad et al. and
Sapienza et al.
Quality Metrics. Based on the performance of the baselines on the
ranking metrics, we further compare the performance of our pro-
posed approach on quality metrics with the strongest baselines.
The quality metrics include (1) skill coverage (sk) that considers the
extent to which the proposed team is able to cover the requested
skills and (2) team comparability (tc), which measures how similar
the selected team members are compared to the members of the
expected team. A high quality team would be one that has a high
sk measure (sk=1 is when all skills are covered) and a low team
comparability value (tc=0 shows there are no differences between
the average h-index of the proposed and expected teams). We report
the quality metrics in Figure 8. We analyze our findings from the
perspective of the two quality metrics: (1) from the point of view of
skill coverage, we find that our approach has been able to increase
the sk metric by at least 12% over the best baseline (Rad et al.
when the team size is ten, which means that the teams developed by
our approach are able to satisfy the input skill requests to a greater
extent. (2) from the team comparability perspective, our approach
has reduced the difference between the average h-index of the pro-
posed team and the expected team by 23.5% over the best baseline at
team size ten. This means that even if the proposed team members
by our approach are not the actual expected team members, they
show closer resemblance to the expected team than those proposed
by the two strongest baselines. The results of the ranking-based and
quality-based measures show that (a) our proposed approach is able
to retrieve a higher number of expected team members compared
to all baselines, and (b) even when such members are not returned,
the retrieved team members have higher coverage of the requested
skills and a closer likeness to the expected experts.

4 CONCLUDING REMARKS
In this paper, we have modeled the problem of teammining through
a subgraph representation learning process, which adopts a het-
erogeneous skipgram architecture. The advantage of our proposed
approach is that it is quite light-weight, preserves the semantics
of team structure, past collaboration experience between the ex-
perts and the relation between experts and skills. To the best of our
knowledge, our work is among the first to address the team mining
problem through learning heterogeneous subgraph representations
from within the collaboration network. Based on our experiments
on the DBLP dataset, we have shown that the proposed approach
is able to show improved performance over the state of the art
graph-based and neural architecture-based methods in terms of
both ranking and quality metrics.
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