Check for
Updates

PyDHNet: A Python Library for Dynamic Heterogeneous Network
Representation Learning and Evaluation

Hoang Nguyen Radin Hamidi Rad Ebrahim Bagheri
hoang.cam.nguyen@ryerson.ca radin@ryerson.ca bagheri@ryerson.ca
Toronto Metropolitan University, ON, Toronto Metropolitan University, ON, Toronto Metropolitan University, ON,
Canada Canada Canada
ABSTRACT space. The embedded vectors should be compact to practically effi-
Network representation learning and its applications have received cient while still capturing and maintaining network properties for

various downstream network tasks. With the increasing importance

increasing attention. Due to their various application areas, many re-
of the network representation learning task, several open-source

search groups have developed a diverse range of software tools and

techniques to learn representation for different types of networks. libraries and tools have been progressively developed and shared
in the community [7, 11, 12, 17, 22, 25]. We summarize some of

However, to the best of our knowledge, there are limited works
the main libraries for this task in Table 1. As shown in the table,

that support representation learning for dynamic heterogeneous net-

works. The work presented in this demonstration paper attempts the majority of existing libraries are designed for learning network
to fill the gap in this space by developing and publicly releasing an representation for static networks. In other words, they consider
open-source Python library known as, PyDHNet, a Python Library the graph to be a single snapshot and do not support for evolving
for Dynamic Heterogeneous Network Representation Learning and graphs over time. Furthermore, these libraries often overlook the
Evaluation. PyDHNet consists of two main components: dynamic need for more complex network representations by only allowing

heterogeneous network representation learning and task-specific for homogeneous node and edge types in the network.

evaluation. In our paper, we demonstrate that PyDHNet has an ex- From the existing libraries, DynamicGEM and CTGCN are among
tensible architecture, is easy to install (through PIP) and use, and the first to allow representations to be learnt for dynamically evolv-
integrates quite seamlessly with other Python libraries. We also ing graphs. However, both of these libraries are limited by only

show that the implementation for PyDHNet is efficient and enjoys a supporting homogeneous networks. In contrast, OpenAttHetRL
and Space4HGNN are the only two libraries that support for net-

work heterogeneity; however, they do not support for network
CCS CONCEPTS dynamism. The work in this paper illustrates our work on an
open-source python-based network representation library, called
PyDHNet, which supports both network heterogeneity and network
dynamism. Mentioned features are not currently supported by any
other available libraries. We believe that PyDHNet is an extremely
KEYWORDS valuable contribution to the community in many application do-
mains, such as social networks, biological dataset and traffic moni-
toring data, to name just a few, deal with graphs that rely on efficient
representations through dynamic heterogeneous graphs.
ACM Reference Format: The purpose of this demonstration can be enumerated as follows:
Hoang Nguyen, Radin Hamidi Rad, and Ebrahim Bagheri. 2022. PyDHNet:
A Python Library for Dynamic Heterogeneous Network Representation
Learning and Evaluation. In Proceedings of the 31st ACM International
Conference on Information and Knowledge Management (CIKM ’22), Oc-

competitive execution time.

« Computing methodologies — Learning latent representa-
tions; - Mathematics of computing — Graph algorithms; « In-
formation systems — Retrieval models and ranking.

Network Representation Learning, Dynamic Heterogeneous Net-
work, Network Application

(1) we will introduce PyDHNet, which allows users to both ef-
ficiently and effectively learn network representations for
dynamic heterogeneous networks;

tober 17-21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 5 pages. (2) we will show how the structure of PyDHNet has been de-
https://doi.org/10.1145/3511808.3557181 signed based on software engineering principles make it

easily extensible for adding new features. Our developed
1 INTRODUCTION software library is modularized and hence easy to maintain

and work with;
(3) we will demonstrate the PyDHNet consists of a standalone
evaluation library that supports for the testing the perfor-

Permission to make digital or hard copies of all or part of this work for personal or mance of the learnt representations on different downstream
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

Network representation learning is the task of mapping a graphi-
cal network structure into a lower dimensional embedding vector

tasks such as node classification and link prediction, which

on the first page. Copyrights for components of this work owned by others than ACM makes it ideal for comparative analysis and replicable re-
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, search.

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org. The rest of this demonstration paper is organized as follows:

CIKM 22, October 17-21, 2022, Atlanta, GA, USA We will first provide an overview of our representation learning
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10. .. $15.00 technique and how it differentiates itself from other existing work
https://doi.org/10.1145/3511808.3557181 in Section 2. Next, the software architecture of PyDHNet is briefly

4936

https://doi.org/10.1145/3511808.3557181
https://doi.org/10.1145/3511808.3557181
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511808.3557181&domain=pdf&date_stamp=2022-10-17

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Hoang Nguyen, Radin Hamidi Rad, & Ebrahim Bagheri

. Library Features .

Tool First release Environment Heterogeneit;’ Node properties | Evaluation Link
GEM [10] 2017 Static Homogeneous No No https://github.com/palash1992/GEM
OpenNE [20] 2018 Static Both No No https://github.com/thunlp/OpenNE
DynamicGEM [9] 2018 Dynamic Homogeneous No No https://github.com/palash1992/DynamicGEM
OpenHINE [27] 2020 Static Heterogeneous No No https://github.com/BUPT-GAMMA/OpenHINE
OpenAttHetRL [3] 2021 Static Heterogeneous Yes No https://github.com/etemadir/OpenAttHetRL
CTGCN [15] 2021 Both Homogeneous No No https://github.com/jhljx/CTGCN
Space4HGNN [27] 2022 Static Heterogeneous Yes No https://github.com/BUPT-GAMMA/OpenHGNN
PyDHNet 2022 Dynamic Heterogeneous No Yes https://github.com/hoangntc/PyDHNet

Table 1: The key features of some common open-source tools for network representation learning,.

introduced in Section 3. We will then show in Section 4 that PyDHNet
has an easy-to-use API interface that makes it easy to utilize in any
Python program. We compare PyDHNet and its competitors from
execution time perspective in Section 5. Finally, Section 6 presents
final concluding remarks.

2 DYNAMIC HETEROGENEOUS NETWORK
REPRESENTATION LEARNING

In general, the dynamic embedding of a node in a dynamic network
can be viewed as a time series of vectors where each single vector
is associated with a timestamp in the network. Equivalently, one
can consider a dynamic network to be a series of static network
snapshots, which can be denoted as G = {Ql, G ..., QT} where
T is the number of timestamps. A static network at time ¢ is defined
as G' = (V*, EY), where V! is the node set and & is the edge set.
In order to deal with heterogeneous networks, at each timestamp ¢,
we formalize G! as a static heterogeneous network, which consists
of multiple node types. As such and in each timestamp ¢, our dy-
namic network representation learning method aims to learn latent
representations for each node in the network G in such a way that
it preserves both the properties of the node in previous and cur-
rent heterogeneous network snapshots as well as its evolutionary
behavior up to time t.

There are two main approaches to deal with heterogeneity at
each network snapshot: (1) one approach adopts a type-specific
mapping function to aggregate the information from the directed
neighbors (e.g., HGAT [22], HGT [11]); (2) the other approach cap-
tures higher-order proximity by employing meta-path neighbor-
hood aggregation (e.g., MAGNN [7], HeteGNNs [12]). The imple-
mentation of such methods can be found in the latest libraries such
as OpenNE and Space4HGNN. However, none of these libraries con-
sider the subgraph structure of the node when learning network
representations. The network learning method used in our library
utilizes a meta-path neighborhood aggregation approach to cap-
ture higher-order proximity information while at the same time
considering the subgraph structures around each node. As such,
our approach for capturing heterogeneity is unique as it captures
both local subgraph structures surrounding each node as well as
higher-order proximity information.

For the sake of encoding the temporal nature of the dynamic
graph, a natural approach is to use time series encoders since they
support node addition/deletion and link update [19]. However, the
research community has recently found that the use of positional
encodings is a more effective approach compared to recurrent neu-
ral networks especially due to its computational efficiency [1, 18].
This approach allows modelling temporal dependencies without
the need of feeding the sequential data recursively, which supports

4937

parallel computation. Our library uses Transformer-like positional
encoding [8] in order to capture the temporal order of network
snapshots. In our library, the positional encoding first encodes the
order of the network snapshots regarding the position of their
timestamp in the whole time series of the network. The position en-
coding vectors are then combined with the input vectors to model
the sequence of the input representation.

Based on these techniques, our representation learning technique
can capture both the heterogeneity well as the evolution of dynamic
heterogeneous networks, and allows users to have richer network
representations with potentially better performance on downstream
tasks.

3 PYDHNET STRUCTURE

In this section, we present the design of the PyDHNet library and
show that is quite easy to use and extend it by other users. The
overall structure of PyDHNet is shown in Figure 1. As shown in
this figure, the library consists of two main components, Network
Representation Learning designed for developing embedding rep-
resentation, and Network Evaluation for assessing the quality of
the learnt representations on downstream tasks. The former com-
ponent consists of three main tasks, namely (1) data preparation,
(2) model training, and (3) embedding generation. The latter com-
ponent supports the evaluation of the embedding representations
based on downstream tasks such as node classification and link
prediction. This would make PyDHNet quite suitable to serve as
baseline for many domain-specific tasks such as expertise predic-
tion (node classification) [13, 21], and product recommendation
(link prediction) [2, 5], to name a few.

The network representation learning component of the PyDHNet
library is built over PyTorch Geometric (PyG) [6] and Pytorch
Lightning [4] while the network evaluation component is built
to be compatible with Scikit-learn [16]. The mentioned libraries
are widely used in the Machine Learning (ML) community and
have well-adopted standards for data input, model export and eval-
uation. As a result, PyDHNet offers the following very desirable
characteristics: (1) it is quite easy to use as it can be installed simply
through the ‘PIP’ command; (2) it relies on dependencies that are
already well-managed through the Pytorch libraries; and is easy to
learn as it uses Pytorch standards for development and Scikit-learn
standards for model training, export and evaluation.

3.1 Network Representation Learning
Component

We have implemented the network representation learning compo-
nent of PyDHNet in an object-oriented programming (OOP) style
with the back-end based on well-known set of Python libraries, i.e.,

https://github.com/palash1992/GEM
https://github.com/thunlp/OpenNE
https://github.com/palash1992/DynamicGEM
https://github.com/BUPT-GAMMA/OpenHINE
https://github.com/etemadir/OpenAttHetRL
https://github.com/jhljx/CTGCN
https://github.com/BUPT-GAMMA/OpenHGNN
https://github.com/hoangntc/PyDHNet

PyDHNet: A Python Library for Dynamic Heterogeneous Network Representation Learning and Evaluation

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

PyDHNet
. /-
." Network Representation Learning B — 5
Model Trainning ' Legend
. T 777 Main modules
Train DHNet H L
Data Preparation ¥, Save meta-data
]
- - to memory
Create
network ‘ .E'iE‘
. snapshots L Action
Input data ¥ . Model checkpaints | [|
Compute L
network |i|* |i| [|
metrics ‘ I | Output
B | [|

‘ Extract
node features

:’ Network Evaluation

Task-specific |
result metrics «

Evaluation

Classify nodes

Predict links

| Network embeddi ng)

———— L —

Network Generation

Infer
network

Task-specific
input

Figure 1: The overall structure of PyDHNet.

Pytorch, Pytorch Lightning and Pytorch Geometric. As a result, this
allows users in this space to easily pick up our library and use it
without much learning barriers for their specific downstream task.
Data Preparation In this task, the users are able to convert the
format of the input dataset to the general standard format used for
graph. We support a similar graph structure input to PyG except that
our graph snapshots require temporal labels as well to support for
dynamicity. We note that given the fact that we deal with dynamic
networks, each graph consists of multiple snapshots. Each network
snapshot is considered to be a static heterogeneous network and
wrapped up as Dataset object from PyG. The network features
at the node level are then extracted using the PyG library which
enables the standardization of the dimension of node features used
in the later stages.

Model Training In the model training task, PyDHNet provides sup-
port for data loading, model training and model evaluation. Three
sub-modules, namely DataModule, ModelModule and Trainer, are
responsible for the mentioned tasks, respectively. The DataModule
handles the construction and the flow of the large network data dur-
ing training process. In order to support for the streaming nature
of dynamic networks, this module loads the data in mini batches
with the temporal and structural information related to a node such
as the node features, the node type and the structural subgraphs it
belongs to in each timestamp. The Mode1Module handles the model
generation task and receives the output of the DataModule as its
input and generates the appropriate embeddings for the target net-
work. The optimization during the learning process is defined under
the Trainer. The Trainer provides commonly-used utility func-
tions such as early stopping, regularization and checkpoint tracking.
The configuration of all of the mentioned sub-modules such as the
data batch size, the learning rate, the dropout probability or the loss
criteria are stored in a . json file or can be inputted via a dictionary.
These sub-modules are inherited from the LightningDataModule,
LightningModule and Trainer classes of the Pytorch Lightning

4938

library, which allows the users to easily and quickly implement or
customize their own learning process.

Network Generation The objective of this module is to generate
the embedding vectors for all the nodes in the network that can
later be used for downstream tasks, e.g., node classification or link
prediction. We note that PyDHNet generates node representations
for each node up to each timestamp that it has observed. Therefore,
the node representation will be updated at each timestamp.

3.2 Network Evaluation Component

Given a specific task, the network evaluation component receives
the embedding vectors of all nodes or a set of node pairs as the input
and employs a machine learning predictor (e.g., Logistic Regression)
or a statistical measures (e.g., sigmoid function) to predict the score
of the targeted output. Finally, it calculates a set of widely-used
evaluation metrics, including but not limited to, accuracy, recall
and precision, based on comparison between the ground truth and
the predicted results.

4 PYDHNET DEMONSTRATION

In this section, we practically demonstrate how PyDHNet can be
easily integrated into any Python program using its easy to use
API The PyDHNet tool requires four input files:

¢ node_types gives the detail of the type of all nodes in the
network.

e temporal_edge_list tracks the existence of the edges corre-
sponding to different timestamps.

e temporal_subgraphs includes the information of all the
structural subgraphs in the network.

o data stores the information related to the nodes including
the node index, the subgraph indices which it belongs to and
whether the node is used for training/validation/testing.

To sample the structural subgraphs corresponding to each node
at each time step, we provide a TemporalSubgraphSampler, which
provides the implementation for some built-in sampling functions

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

such as DiffusionSampler and RandomWalkSampler. An example
on how to use the subgraph sampler is depicted in Figure 2.

from PyDHNet.subgraph_sampler import TemporalSubgraphSampler

sampler = TemporalSubgraphSampler (
node_path,
edge_path,
sampled_node_ids,
max_size=5,
number_of_nodes=20,
seed=0,
output_dir='./",
)

sampler.sampling_temporal subgraph()
sampler.write_temporal_subgraphs()

Figure 2: Code Snippet for Temporal Subgraph Sampler.

Figure 3 demonstrates the implementation for the network rep-
resentation learning component. The main component of PyDHNet
can be initialized either by a file path which points to a configu-
ration file or a direct configuration dictionary. Once the instance
is created, the users are able to run the whole pipeline of the pro-
cess in one full execution or in separate steps, both of which are
supported.

from PyDHNet import PyDHNet

Instance initialization
pydhnet = PyDHNet(config_path='./PyDHNet/config/dblp.json’')

or

config dict = {
‘name': 'dblp',
‘num_time steps': 8,
‘batch_size': 64,
'learning rate':
‘checkpoint_dir':

0.0001,
'./model’,

}
pydhnet = PyDHNet (config_dict=config_dict)

Manual running
1. Data preprocessing
pydhnet .preprocess_data()

2. DataModule, ModelModule, Trainer initialization
data_module, model module, trainer = pydhnet.initialize()
pydhnet.train(data module, model module, trainer)

3. Embedding generating
restore model_dir = str(pydhnet.config['checkpoint dir'])
restore_model_name = 'name.ckpt’
output_dir = str(PROJ_PATH / 'output')
pydhnet.generate_embedding (
data_module, model module, restore model dir, restore model name, output dir)

Full pipeline running
pydhnet.run_pipeline()

Figure 3: Code Snippets for the three tasks offered by the
Network Representation Learning component.

After obtaining the learnt model and inferring the network em-
bedding, it is possible to easily evaluate the learnt representations
using the PyDHNet network evaluation component. For clarity, we
demonstrate how evaluation based on two downstream tasks can
be performed in Figure 4. It is worth noting that evaluation is an
independent component of our library, which can be used in con-
junction with other network representation libraries as well. The
evaluation component only requires the embeddings generated by
any network representation learning libraries (often referred to as
the node/node pair features), the label (the class of the node w.r.t.
the task) and the sample dataset indicator (whether the sample is
for training/validation/testing) in order to produce the evaluation
metrics.

5 EXECUTION PERFORMANCE

It is also important to comparatively analyze the execution time of
PyDHNet and the latest graph representation libraries, namely CT-
GCN and OpenHINE. While other libraries do not simultaneously

4939

Hoang Nguyen, Radin Hamidi Rad, & Ebrahim Bagheri

from PyDHNet.evaluation import (
eval link prediction,
eval_node_classification

)

1p_result = eval link prediction(
source_features,
target_features,
labels,
train_val_test_index

)

nc_result = eval node classification(
features,
labels,
train_val_test_index

)

Figure 4: Code Snippet for Network Evaluation.

support for dynamicity and heterogeneity, we show that PyDHNet
still shows competitive execution time. In order to compare the
performance of different libraries, we run experiments over the
DBLP dataset for the node classification task, which aims to predict
the research area of an author as suggested in [21, 24]. Based on the
dataset, we construct a network with 5,343 papers, 1,475 authors,
1,951 terms and 5 venues forming 55,310 interactions between the
nodes in total. There are 8 timestamps in the dataset. For tools
that support only static graphs, we consolidate nodes and edges
from all timestamps into one graph. For methods that support only
homogeneous nodes, we consider all nodes to be of the same type
as suggested by [23, 26].

In all the experiments, the hidden dimension is set to 128, the
batch size is 64 and the number of iterations is 50. We report execu-
tion time on a machine with one NVIDIA GeForce RTX 3090.

Model Tool Network Execution Time
GCN [14] CTGCN Static Homogeneous Network 6 mins
MetaGraph2Vec [25] | OpenHINE | Static Heterogeneous Network 35 mins
CTGCN [15] CTGCN Dynamic Homogeneous Network | 2 hours 25 mins
PyDHNet PyDHNet | Dynamic Heterogeneous Network | 1 hours 45 mins

Table 2: The execution time of some common open-source
tools for network representation learning.

The execution times are reported in Table 2 for the different
methods. As seen in the table, methods that are designed for homo-
geneous networks are faster than those for heterogeneous networks
(e.g., compare GCN with MetaGraph2Vec), and dynamic networks
are lengthier to process compared to static networks (compare
CTGCN with MetaGraph2Vec). We note however PyDHNet has an
efficient implementation where its execution time for a dynamic
‘heterogeneous’ network is even faster than other strong implemen-
tations for dynamic ‘homogeneous’ networks.

6 CONCLUDING REMARKS

In this demonstration paper, we have introduced the open-source
python-based PyDHNet library that supports the task of learning
embedding representations for Dynamic Heterogenous Network
Representation Learning. We have shown that PyDHNet provides
support for both dynamic (temporal) and heterogeneous networks,
which are currently not supported by existing tools. Furthermore,
we explained how PyDHNet is well-structured, extensible and easy
to use, which makes it suitable for both practical use and further
development. In addition, we have empirically shown the the im-
plementation of PyDHNet is quite efficient as it even has a faster
performance compared to existing state of the art dynamic homo-
geneous network representation learning tools.

PyDHNet: A Python Library for Dynamic Heterogeneous Network Representation Learning and Evaluation

REFERENCES

(1]

[2

[

(6

=

[9

=

[12]

[13]

[14]

Ling Cai, Krzysztof Janowicz, Gengchen Mai, Bo Yan, and Rui Zhu. 2020. Traffic
transformer: Capturing the continuity and periodicity of time series for traffic
forecasting. Trans. GIS 24, 3 (2020), 736-755. https://doi.org/10.1111/tgis.12644
Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng
Jin, and Yong Li. 2021. Sequential Recommendation with Graph Neural Networks.
In SIGIR °21: The 44th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, Fernando
Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai
(Eds.). ACM, 378-387. https://doi.org/10.1145/3404835.3462968

Roohollah Etemadi, Morteza Zihayat, Kuan Feng, Jason Adelman, and Ebrahim
Bagheri. 2021. OpenAttHetRL: An Open Source Toolkit for Attributed Het-
erogeneous Network Representation Learning. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management. 4706-4710.
William Falcon et al. 2019. Pytorch lightning. GitHub. Note: https://github.
com/PyTorchLightning/pytorch-lightning 3 (2019), 6.

Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S. Yu.
2021. Continuous-Time Sequential Recommendation with Temporal Graph
Collaborative Transformer. In CIKM "21: The 30th ACM International Conference
on Information and Knowledge Management, Virtual Event, Queensland, Australia,
November 1 - 5, 2021, Gianluca Demartini, Guido Zuccon, J. Shane Culpepper,
Zi Huang, and Hanghang Tong (Eds.). ACM, 433-442. https://doi.org/10.1145/
3459637.3482242

Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. CoRR abs/1903.02428 (2019). arXiv:1903.02428 http:
//arxiv.org/abs/1903.02428

Xinyu Fu, Jiani Zhang, Zigiao Meng, and Irwin King. 2020. MAGNN: Metapath
Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In
WWW °20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Yennun
Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2,
2331-2341. https://doi.org/10.1145/3366423.3380297

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
2017. Convolutional Sequence to Sequence Learning. In Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017 (Proceedings of Machine Learning Research), Doina Precup and
Yee Whye Teh (Eds.), Vol. 70. PMLR, 1243-1252. http://proceedings.mlr.press/
v70/gehring17a.html

Palash Goyal, Sujit Rokka Chhetri, Ninareh Mehrabi, Emilio Ferrara, and Ar-
quimedes Canedo. 2018. DynamicGEM: A Library for Dynamic Graph Embedding
Methods. CoRR abs/1811.10734 (2018). arXiv:1811.10734 http://arxiv.org/abs/
1811.10734

Palash Goyal and Emilio Ferrara. 2018. GEM: A Python package for graph
embedding methods. J. Open Source Softw. 3, 29 (2018), 876. https://doi.org/10.
21105/j0ss.00876

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. In WWW °20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen
(Eds.). ACM / IW3C2, 2704-2710. https://doi.org/10.1145/3366423.3380027
Houye Ji, Xiao Wang, Chuan Shi, Bai Wang, and Philip Yu. 2021. Heteroge-
neous Graph Propagation Network. IEEE Transactions on Knowledge and Data
Engineering (2021).

Di Jin, Cuiying Huo, Chundong Liang, and Liang Yang. 2021. Heterogeneous
Graph Neural Network via Attribute Completion. In WWW °21: The Web Con-
ference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, Jure Leskovec,
Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.). ACM / IW3C2,
391-400. https://doi.org/10.1145/3442381.3449914

Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv preprint arXiv:1609.02907 (2016).

4940

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

[15] Jingxin Liu, Chang Xu, Chang Yin, Weiqiang Wu, and You Song. 2020. K-core

[16

[17

(18

[19

[20

[21

[23

[24

[25

[26

[27

]

]

]

]

]

based temporal graph convolutional network for dynamic graphs. IEEE Transac-
tions on Knowledge and Data Engineering (2020).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Radin Hamidi Rad, Aabid Mitha, Hossein Fani, Mehdi Kargar, Jaroslaw Szlichta,
and Ebrahim Bagheri. 2021. PyTFL: A Python-based Neural Team Formation
Toolkit. In CIKM ’21: The 30th ACM International Conference on Information and
Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021,
Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang
Tong (Eds.). ACM, 4716-4720. https://doi.org/10.1145/3459637.3481992

Selim Reza, Marta Campos Ferreira, JJ]M Machado, and Joao Manuel RS Tavares.
2022. A multi-head attention-based transformer model for traffic flow forecasting
with a comparative analysis to recurrent neural networks. Expert Systems with
Applications 202 (2022), 117275.

Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. 2020. Foundations

and modelling of dynamic networks using Dynamic Graph Neural Networks: A
survey. CoRR abs/2005.07496 (2020). arXiv:2005.07496 https://arxiv.org/abs/2005.

07496

Cunchao Tu, Yuan Yao, Zhengya.n Zhang, Ganqu Cui, Hao Wang, Changxin Tian,
Jie Zhou, and Cheng Yang. 2018. OpenNE: An Open Source Toolkit for Network
Embedding.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.
Yu. 2019. Heterogeneous Graph Attention Network. In The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu, Ryen W.
White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates,
and Leila Zia (Eds.). ACM, 2022-2032. https://doi.org/10.1145/3308558.3313562
Tianchi Yang, Linmei Hu, Chuan Shi, Houye Ji, Xiaoli Li, and Ligiang Nie. 2021.
HGAT: Heterogeneous Graph Attention Networks for Semi-supervised Short
Text Classification. ACM Trans. Inf. Syst. 39, 3 (2021), 32:1-32:29. https://doi.org/
10.1145/3450352

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. Advances in neural information processing
systems 32 (2019).

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V.
Chawla. 2019. Heterogeneous Graph Neural Network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin Kumar,
Ying Li, Romer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, 793-803.
https://doi.org/10.1145/3292500.333096 1

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chenggi Zhang. 2018. Meta-
Graph2Vec: Complex Semantic Path Augmented Heterogeneous Network Em-
bedding. In Advances in Knowledge Discovery and Data Mining - 22nd Pacific-Asia
Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings,
Part II (Lecture Notes in Computer Science), Dinh Q. Phung, Vincent S. Tseng,
Geoffrey I. Webb, Bao Ho, Mohadeseh Ganji, and Lida Rashidi (Eds.), Vol. 10938.
Springer, 196-208. https://doi.org/10.1007/978-3-319-93037-4_16

Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye.
2021. Heterogeneous Graph Structure Learning for Graph Neural Networks. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021. AAAI Press, 4697-4705. https://ojs.aaai.org/
index.php/AAAT/article/view/16600

Tianyu Zhao, Cheng Yang, Yibo Li, Quan Gan, Zhenyi Wang, Fenggqi Liang,
Huan Zhao, Yingxia Shao, Xiao Wang, and Chuan Shi. 2022. Space4HGNN:
A Novel, Modularized and Reproducible Platform to Evaluate Heterogeneous
Graph Neural Network. CoRR abs/2202.09177 (2022). arXiv:2202.09177 https:
//arxiv.org/abs/2202.09177

https://doi.org/10.1111/tgis.12644
https://doi.org/10.1145/3404835.3462968
https://doi.org/10.1145/3459637.3482242
https://doi.org/10.1145/3459637.3482242
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
https://doi.org/10.1145/3366423.3380297
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
http://arxiv.org/abs/1811.10734
http://arxiv.org/abs/1811.10734
https://doi.org/10.21105/joss.00876
https://doi.org/10.21105/joss.00876
https://doi.org/10.1145/3366423.3380027
https://doi.org/10.1145/3442381.3449914
https://doi.org/10.1145/3459637.3481992
https://arxiv.org/abs/2005.07496
https://arxiv.org/abs/2005.07496
https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1145/3450352
https://doi.org/10.1145/3450352
https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1007/978-3-319-93037-4_16
https://ojs.aaai.org/index.php/AAAI/article/view/16600
https://ojs.aaai.org/index.php/AAAI/article/view/16600
https://arxiv.org/abs/2202.09177
https://arxiv.org/abs/2202.09177

	Abstract
	1 Introduction
	2 Dynamic Heterogeneous Network Representation Learning
	3 PyDHNet Structure
	3.1 Network Representation Learning Component
	3.2 Network Evaluation Component

	4 PyDHNet Demonstration
	5 Execution Performance
	6 Concluding Remarks
	References

