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Abstract. The problem of assembling effective expert teams based on
project needs is central to expert networks such as LinkedIn. However,
current team formation methods typically depend on keyword-matching
techniques that fail to capture the nuanced semantics of natural lan-
guage project descriptions. This results in inadequate modeling of re-
quired expertise and suboptimal team selection. Addressing this gap, we
propose a contextual, prompt-driven framework for team formation that
infers latent expertise from rich textual descriptions of project goals. Our
approach fine-tunes a T5-Large sequence-to-sequence model to trans-
late project prompts into expert team compositions by benefiting from
enhanced expertise annotations. To facilitate this task, we curate, and
publicly release, a dataset based on DBLP V14 collection, augmented
with high-confidence expertise labels generated by large language mod-
els. Experimental results across multiple evaluation metrics show that
our proposed model outperforms existing state-of-the-art baselines, un-
derscoring the importance of contextualized representations in expert
discovery and team assembly.
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1 Introduction

Effective team formation is a central challenge in collaborative environments
spanning academia, industry, and online platforms. In the context of expert net-
works, the team formation problem refers to identifying a subset of professionals
from a social graph such that their collective expertise satisfies the skill require-
ments of a given project [18]. Unlike the expert finding problem, which returns
a ranked list of individuals most relevant to a given query, the team formation
problem additionally requires that the selected experts not only collectively fulfill
the required skills but also exhibit strong connectivity within the underlying col-
laboration network [12]. Since finding an ideal team is an NP-hard problem [8, 13,
18, 27, 36], many studies have proposed approximate algorithms [2, 4, 11, 14, 15,
17, 18], neural network-based approaches [6, 9, 10, 16, 21, 23, 24, 26, 27] and most
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recently, Large Language Model (LLM)-based architectures [5, 32] to identify
optimal teams while balancing multiple objectives (e.g., budget, collaboration)
efficiently.

Existing methods for team formation typically assume that the required skills
are explicitly specified. However, this assumption breaks down in real-world sce-
narios, where project descriptions are often expressed in natural language with-
out a clear enumeration of required skills. In such cases, identifying suitable
experts necessitates a deeper semantic understanding of the project’s context
beyond surface-level keyword matching. A few recent works have begun address-
ing this challenge by leveraging auxiliary metadata, such as project titles or brief
textual summaries, to infer the underlying expertise needs [10, 21, 28].

In this light, we believe that prompt-based retrieval and generation frame-
works [33, 35] offer a promising direction for team formation, as they allow mod-
els to process detailed natural language inputs more faithfully reflecting how
project requirements are articulated in real-world contexts [3]. Unlike rigid, skill-
list-based formulations, contextualized prompts encode nuanced semantic cues
and often implicitly capture the expertise required for a given task. Compared
to traditional keyword-based or short-text inputs, they provide a more expres-
sive and complete representation of project intent. Despite these advantages,
most existing approaches to the team formation problem remain limited to shal-
low representations, relying on explicit keyword sets [14, 17] or metadata fields
such as titles and predefined research areas [9, 10, 28]. These formulations fall
short when project descriptions are unstructured and required skills are rarely
enumerated explicitly.

Another key bottleneck in advancing prompt-based team formation is the
lack of suitable datasets. Existing resources rely on coarse proxies, such as co-
authorship or paper-author links, that fail to capture the alignment between
natural language project descriptions and the required team skills. As a result,
supervised models in this space remain underdeveloped. The development of
better methods would require datasets that explicitly link rich textual prompts
to suitable expert teams while preserving the implicit semantics of required skills.

To overcome the limitations of existing team formation approaches, we intro-
duce Prompt-based Expert Team Formation (PTF), where the goal is to generate
an expert team from a natural language prompt (e.g., a project description) such
that the selected members collectively fulfill the implicit skill requirements3.
This task reflects how project needs are communicated in real-world settings
and addresses the gap between textual project intent and structured expertise
representations. Our key contributions are as follows:

1. We construct and publicly release a dataset based on the DBLP V14 col-
lection [31], augmented with high-confidence expertise annotations derived
from large language models. This resource supports both prompt-based and
traditional team formation methods.

3Our dataset and code are publicly available at https://github.com/
littlebeanbean7/Prompt Based Team Formation



Say the Task, Build the Team 3

2. We formulate the task as a conditional sequence-to-sequence (seq-to-seq)
generation problem, enabling models to map project prompts directly to
coherent expert teams.

3. We conduct comprehensive empirical evaluations, demonstrating that our
approach outperforms state-of-the-art baselines across multiple metrics, high-
lighting the value of contextualized representations in expert discovery.

2 Related Work

2.1 Team Formation and Expert Retrieval

The team formation problem has been studied across various domains, with early
efforts focusing on optimization and graph-based methods. In recent years, ma-
chine learning approaches have gained traction, leveraging the power of neural
networks to better model team dynamics and improve performance. The team
formation problem was initially addressed using optimization-based techniques.
Early work in this area focused on mathematical models to optimize team com-
positions. Baykasoglu et al. [2] proposed a fuzzy optimization model to select
teams by considering various factors like skills, compatibility, and availability.
Fitzpatrick and Askin [11] proposed a heuristic solution method. As the field
advanced, researchers began to incorporate social networks and game-theoretic
principles into team formation. Wi et al [34] introduced a hybrid approach that
integrates genetic algorithms with social network analysis to form project teams.
Lappas et al. [18] tackled the problem of forming a team that collectively covers
a required set of skills while minimizing communication costs within a social
network. Zihayat et al. [36] proposed to form expert teams by considering both
the required skills and the authority levels of individuals within a social network.

With the rise of machine learning, a variety of neural networks were uti-
lized to solve the team formation problem. Sapienza et al. [30] introduced a
deep learning framework designed to recommend optimal teammates in coop-
erative environments. Rad et al. [26] presented a variational Bayesian neural
network architecture to form expert teams that collectively cover a set of re-
quired skills, leveraging historical collaboration data. The model handles data
sparsity and scales efficiently to large expert networks by incorporating uncer-
tainty through variational inference. Rad et al. [23] proposed a heterogeneous
graph utilizing embedding methods to capture the complex relationships in the
collaboration network. Kaw et al. [16] applied graph attention networks (GATs)
to team formation, demonstrating the ability of attention mechanisms to focus
on the most relevant skills and expertise when forming teams. Fani et al. [9] in-
troduced a temporal training strategy for neural models to capture the evolution
of experts’ skills and collaboration ties over time. Although neural approaches
have advanced the team formation problem, they still treat expert selection as
a set of independent decisions by framing it as a multilabel classification task.
This simplification fails to capture the complex dynamics of real-world teams.
Recently, LLM-based architectures have been applied to team formation prob-
lem. Dara et al. [5] integrated retrieval-augmented generation (RAG) techniques
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with deep learning models. Thang et al. [32] attempted to introduce sequence
to team formation. They found that Transformer-based seq-to-seq models are
the most powerful. Despite the potential of LLMs to handle rich textual data,
both of the recent studies still relied on keyword-based representations of project
requirements. They did not process natural language project descriptions or rea-
son over implicit expertise needs embedded in free-text prompts when forming
teams. And the seq-to-seq model by Thang et al. [32] did not consider the order
of skills.

2.2 Prompt-Based Generation and Sequence Models

Prompt-based learning has emerged as a powerful paradigm for leveraging pre-
trained language models with minimal task-specific supervision. Early approaches
such as GPT-3 [3] demonstrated that large language models can perform vari-
ous tasks through few-shot prompting without fine-tuning. This inspired a shift
from model-centric to data-centric paradigms. Language models fine-tuned with
prompts have shown effectiveness in complex retrieval, reasoning, and recom-
mendation tasks [7, 19, 29]. In the context of team formation, this approach
enables the model to better understand skill-expert matching by framing the
input as a structured prompt. Our method follows this paradigm by fine-tuning
a pretrained seq-to-seq model on prompt-structured inputs for the team rec-
ommendation task. Our work proposes a novel formulation of team formation
as a conditional sequence generation task, where input prompts include both
structured annotations (expertise) and contextual project descriptions, and the
output is an ordered team of expert identifiers. This shift enables the model to
reason jointly over explicit and latent signals, leveraging the expressive power
of modern seq-to-seq models. Unlike prior graph- or keyword-based approaches,
our method can operate directly on natural language inputs and generalize to
more realistic, less constrained team formation scenarios.

3 PTF: A Prompt-based Expert Team Formation Model

To address the task of Contextual Prompt-Driven Team Formation, we propose
a generative framework that takes a natural language project description as in-
put and synthesizes a team of experts whose aggregated expertise satisfies the
implicit and explicit skill requirements embedded in the prompt. We formalize
Contextual Prompt-Driven Team Formation as a conditional seq-to-seq genera-
tion problem. Given a project pi described by natural language text di, and an
associated set of inferred expertise annotations Ei, the objective is to generate
a team Ti = {a1, a2, . . . , ak} such that each expert aj contributes at least one
relevant skill and the team’s aggregated expertise satisfies both the implicit and
explicit requirements embedded in the prompt.

To this end, we develop a model that takes as input a contextualized represen-
tation of the project, comprising both free-text description and structured exper-
tise cues—and outputs an ordered sequence of expert identifiers. We implement
this using a fine-tuned T5 model [29], although the framework is model-agnostic
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and compatible with alternative encoder-decoder or decoder-only language mod-
els. Formally, each input is encoded as:

X = T (C (‘‘Queries: ’’, Ei, ‘‘ Context: ’’, di))

where C(·) denotes the string-level concatenation of structured expertise and
textual description using fixed input prompts, and T (·) denotes tokenization
using the T5 tokenizer. The inclusion of Ei serves as an inductive prior, offering
a high-level abstraction of project requirements that complements the natural
language signal in di, thereby enhancing the model’s capacity to align tasks with
appropriate expert candidates.

The output sequence corresponds to the predicted expert identifiers T̂i =
{â1, â2, . . . , âki

}, where each token âj denotes an expert selected to form the team
for project pi. The model learns to maximize the likelihood of generating the
correct sequence Ti, conditioned on the input pair (di, Ei), where di is the natural
language project description and Ei is the set of structured expertise annotations
inferred for the task. We formalize this as a sequence-level optimization problem
using the standard cross-entropy loss:

L(θ) = −
N∑
i=1

ki∑
j=1

logP (aj | di, Ei; θ)

Here, N is the number of training samples, ki = |Ti| denotes the length of
the ground-truth team for project i, and P (aj | di, Ei; θ) is the probability of
generating the j-th expert in the sequence given the input prompt and current
model parameters θ. This formulation captures the autoregressive nature of the
generation task, enabling the model to condition each expert prediction on both
the project context and previously generated experts.

The full training pipeline is detailed in Algorithm 1. During each iteration,
project prompts and corresponding ground-truth teams are converted into token
sequences via the modified tokenizer and passed through the encoder-decoder ar-
chitecture using teacher forcing. Gradients are computed via backpropagation
on the weighted sequence-level loss and used to update the model parameters
via AdamW [20] optimization. The procedure is fully compatible with any au-
toregressive language model supporting conditional decoding, including both
encoder-decoder and decoder-only variants.

Overall, the training setup is designed to jointly leverage semantic richness
from natural language descriptions and structural signal from inferred expertise
annotations. It ensures that the model not only learns to decode plausible ex-
pert identifiers but also internalizes the nuanced skill composition required for
coherent and functionally aligned team formation.

4 Proposed Dataset Construction

We construct a dataset that includes detailed project descriptions, inferred ex-
pertise annotations, and relevant metadata to support expert team formation
based on contextual prompts.
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Algorithm 1 Prompt-Based Team Formation Training

Input: Training set D = {(di, Ei, Ti)}Ni=1

Input: Max epochs Emax, learning rate η, batch size B
Output: Trained model parameters θ
foreach (di, Ei, Ti) ∈ D do

xi ← concat(‘‘Queries: ’’, Ei, ‘‘ Context: ’’, di)
Xi ← Tin(xi) ; // Tokenize input

Yi ← Tout(Ti) ; // Tokenize target

for e = 1 to Emax do
Sample mini-batch B = {(Xi, Yi)}Bi=1

foreach (Xi, Yi) ∈ B do

Ŷi ←Mθ(Xi) ; // Generate output sequence

Li ← −
∑|Yi|

j=1 logPθ(yij | yi,<j , Xi)

θ ← θ − η · ∇θ

(
1
B

∑B
i=1 Li

)
return θ

Source Dataset. We use the DBLP V14 collection as the foundation due to
its rich metadata and broad coverage of computer science publications [31]. Our
focus lies on publications from top-tier conferences and journals. Since no pub-
licly available datasets provide verified ground-truth expert teams, prior work
in team formation commonly adopts the assumption that co-authors of high-
quality publications form effective teams [9, 15, 26–28]. We refine the original
dataset D into a filtered subset D′ using the function f defined as:

D′ = f(D) = {pi ∈ D | v(pi) ∈ V, |A(pi)| ≥ 2, 100 ≤ |L(pi)| ≤ 5000}

where v(pi) denotes the publication venue of paper pi, V is the curated set of
top-tier venues, A(pi) represents the set of distinct authors of pi, and L(pi)
indicates the length of its abstract (in characters). We retain only multi-author
papers with non-trivial abstract content, which ensures both collaboration and
sufficient textual context for prompt generation.

Author Expertise Augmentation. The DBLP V14 dataset does not pro-
vide explicit author-level expertise, which is essential for solving the team for-
mation problem. While DBLP includes metadata such as paper keywords and
fields of study [1], these attributes are associated with papers, not authors. Since
effective team formation requires reasoning over the expertise of individuals, we
augment the dataset with author-level expertise annotations.

To obtain these annotations, we employ GPT-4 [22], to infer a ranked list of
ten expertise areas from generic to specific E(pi) for each paper pi ∈ D′, defined
as: g : D′ → E. The generation process relies on carefully designed prompts that
instruct the model to extract latent expertise based on available metadata. The
system prompt used to guide GPT-4 is shown below:

You are a helpful and honest assistant for labeling expertise required from
authors to write academic research papers or publications. Expertise means the
expert knowledge or skills the authors must have to write the paper or publication.



Say the Task, Build the Team 7

Table 1. Key statistics of constructed dataset.

Metric Count

Number of Papers 26,051
Number of Unique Authors 21,911
Number of Collaborations among Authors 104,158
Avg Characters per Abstract 1,076

The paper or publication’s title, abstract, keywords provided by authors, field of
study labeled by others, and publication venue are provided. Please provide the top
ten expertise areas required from authors to write it. The expertise you generate
should be in order from generic to specific. All output should be in English. You
must be at least 70% confident about the expertise and research topic. Otherwise,
generate “NA”.

This procedure yields a set of ten expertise labels for every paper in D′, with
no instance resulting in an “NA” response. The final dataset D′′ contains the
original abstract, author information, and the associated expertise annotations.

Cross-Model Validation of Expertise Augmentation. To assess the
reliability of the expertise augmentation generated by GPT-4, we employed two
additional large language models—LLaMA 3.1 and Qwen 2.5—as independent
validators. Out of 26,051 annotated papers, only 27 (0.1%) received a “No” re-
sponse from either model, and only 4 papers (0.015%) received a “No” from
both. These results indicate high agreement across models and support the reli-
ability of the GPT-4-generated expertise labels. Key statistics of the final dataset
D′′ appear in Table 1.

Input Representations for Baseline Comparison. To assess the effec-
tiveness of the proposed expertise annotations, we evaluate three additional in-
put types commonly used in traditional team formation methods: (1) TF-IDF

terms, (2) Field of Study, (3) Keyword. The Field of Study and Keyword
metadata are provided in the DBLP V14 dataset. For the TF-IDF terms input,
we construct term-based representations using the same textual sources used
for expertise annotation: titles, abstracts, keywords, fields of study, and publi-
cation venues. We concatenate these sources, apply standard text preprocessing
techniques—including lowercasing, tokenization, stopword removal, and stem-
ming—and extract all unigrams, bigrams, and trigrams. We compute TF-IDF
scores and retain the top 1,000 terms with the highest scores across the dataset.
Table 2 summarizes the vocabulary size for each input type. For illustration, we
include a concrete example from a paper titled Correctness and parallelism in
composite systems. Figure 1 shows the distribution of the number of terms per
paper for the three input types of the dataset.

5 Experiments and Discussions

Experimental Setup. We evaluate PTF using a train-test split with a test
ratio 20% of the constructed dataset. To ensure that the model only predicts
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Table 2. Vocabulary size and a representative example of input representations.

Type Total Example of One Paper’s Content

TF-IDF 1,000 acm, architectur, assumpt, comput, comput scienc, cor-
rect, databas, degre, exist, extens, layer, make, near-
est, nearest neighbor, neighbor, number, paper, par-
allel, principl, proceed, recent, scienc, search, semant,
start, studi, symposium, theoret, theoret comput, the-
oret comput scienc, theori, transact, use, varieti, year

Field of Study 13,036 Computer science, Correctness, Composite number,
Theoretical computer science, Nearest neighbor search

Keyword 116,237 composite system, nearest neighbor search

Expertise 39,636 Computer Science, Database Systems, Transaction
Management, Parallel Computing, Concurrency Con-
trol, Distributed Systems, Theoretical Computer Sci-
ence, Composite Systems, Correctness in Computing,
Nearest Neighbor Search

Fig. 1. Distribution of number of terms of TF-IDF, Field of Study and Keyword meta-
data in the dataset used for experiments.

author identifiers it has encountered during training, we restrict the test set to
projects whose associated authors also appear in the training set, this procedure
follows prior research such as [5, 23–28]. This constraint reflects a closed-world as-
sumption and allows fair evaluation of the model’s generalization to new project
descriptions rather than unseen authors.

All experiments share the same train-test split, and all T5-based models
are trained using identical hyperparameter configurations for consistency. We
report performance using standard information retrieval metrics, including pre-
cision@10, recall@10, mean reciprocal rank (MRR), normalized discounted cu-
mulative gain at rank 10 (NDCG@10), mean average precision (MAP), and F1
score, following prior work in neural team formation [6, 28, 32].

5.1 Performance Analysis

To examine how input and model capacity influences effectiveness, we consider
three input variants: (1) Expertise, using only the inferred expertise annota-
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Table 3. Comparison of PTF performance with different T5 model sizes using expertise
and abstract as input. T5-Large achieves the best results, demonstrating the benefits
of increased model capacity.

Input Model Precision Recall MRR NDCG MAP F1

Expertise
PTFs 0.0049 0.0165 0.0161 0.0129 0.0083 0.0163
PTFb 0.0123 0.0392 0.0306 0.0296 0.0209 0.0412
PTFl 0.0107 0.0334 0.0237 0.0248 0.0183 0.0364

Abstract
PTFs 0.0056 0.0184 0.0180 0.0145 0.0093 0.0202
PTFb 0.0178 0.0546 0.0388 0.0409 0.0303 0.0626
PTFl 0.0305 0.0930 0.0600 0.0690 0.0530 0.1024

Expertise + Abstract
PTFs 0.0059 0.0192 0.0189 0.0151 0.0096 0.0205
PTFb 0.0184 0.0585 0.0412 0.0434 0.0320 0.0651
PTFl 0.0299 0.0928 0.0611 0.0687 0.0524 0.1016

tions; (2) Abstract, using only the project abstracts; and (3) Expertise +

Abstract, using both combined; and we evaluate the performance of PTFs (uses
T5-Small as base model), PTFb (uses T5-Base as base model), and PTFl (uses
T5-Large as base model). The results are summarized in Table 3.

Comparing across three types of inputs, both Expertise + Abstract and
Abstract-only as input representations provide substantial benefits over using
structured expertise alone, indicating that full project descriptions provide the
richest source of contextual information for team formation.

Expertise + Abstract achieves the best overall scores. However, it is no-
ticeable that Abstract-only achieves comparably good performance, suggesting
that adding expertise annotations adds minor redundancy or even noise to the
input. These results reinforce the effectiveness of contextualized text input and
highlight that each design choice in PTF—including the use of both structured
and unstructured signals—offers measurable value, even if not strictly additive.

Looking into each of the three types of inputs, PTFl achieves the highest
scores across all evaluation metrics when using both Expertise + Abstract

and Abstract-only as input, including more than a 50% relative gain in F1 score
compared to PTFb with Expertise + Abstract as prompt. This indicates that
larger models are significantly more capable of capturing the semantic complexity
of contextualized project descriptions and generating higher-quality expert team
predictions. The smaller PTFs and PTFb variants offer more efficient alternatives
when computational resources are limited. However, the substantial performance
improvement of PTFl highlights the scalability and headroom of prompt-based
models when deployed with more powerful language model backbones. Interest-
ingly, PTFl does not outperform PTFb when using Expertise as the sole input. We
hypothesize this is due to the limited semantic richness in Expertise-only input,
which may not sufficiently leverage the larger model capacity. This suggests that
model size alone does not guarantee improved performance, particularly when
input representations are sparse.
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5.2 Baseline Comparison Across Input Representations

To the best of our knowledge, all existing approaches to the team formation
problem rely on traditional term-based input representations. No prior work has
incorporated contextualized textual descriptions or framed team formation as
a prompt-based generation task. To enable a fair comparison, we evaluate our
baseline model PTFb against existing methods using term-based input types.

First, we experiment with four types of term-based input representations:
(1) TF-IDF, (2) Field of Study, (3) Keyword, and (4) expertise annotations. For
methods that rely on Field of Study and Keyword metadata, we restrict the
experiments to 20,915 papers and 20,209 papers respectively in our dataset that
contain relative information. Despite this size reduction, we maintain the same
train-test partitioning used across all experiments.

We compare our work with the following baseline methods: Random: a baseline
that assigns experts to teams uniformly at random; this method does not rely on
input features. FNN: a feed-forward neural network without Bayesian components,
following the implementation in [6]. BNN: a Bayesian neural network proposed
in [25], which incorporates uncertainty in expert selection. Coherent: a neural
model introduced by [28] that jointly models collaboration likelihood and skill
coverage to construct coherent expert teams. Translative: Transformer-based
seq-to-seq model structure proposed by [32]. It is the current state-of-the-art.

Table 4 reports the performance of baseline methods and PTFb across the four
term-based input types. Baseline models (FNN, BNN, Coherent and Translative)
rely on term-based features, while PTFb processes the same inputs in a prompt-
based seq-to-seq setting. Note that the baseline models’ performance reported in
Table 4 would not match with the models’ original papers, due to each original
paper’s experiment setups are different.

Across all term-based input types, PTFb outperforms the baselines on Preci-
sion, Recall, and F1 score. The most significant improvements are observed with
expertise annotations, where PTFb outperforms all other models by a wide
margin. Translative model is the runner-up. It especially performs well for
Keyword inputs. For Field of Study and Keywords inputs, PTFb gets higher Pre-
cision@10, Recall@10, whereas Translative model gets higher MRR. This indi-
cates that the Translative model is good at ranking the first author, whereas
PTFb retrieves more relevant authors overall. FNN model performs better than
BNN model and Coherent model for TF-IDF inputs. FNN model is a non-Bayesian
model comparing the other two models. It could be that the Bayesian component
is not always beneficial.

Performance increases further using PTFl and combining expertise annota-
tions with full project abstracts as input, demonstrating the additive value of nat-
ural language context. As Translative model uses a seq-to-seq model structure,
besides expertise annotations alone, we also use expertise annotations combined
with abstracts as input into this model. To realize it, we transform abstracts into
chunked trigrams. However, adding abstracts as input makes the Translative

model’s performance drop. We think this is due to the Translativemodel treats
the input as structured, clean skills, and the unstructured abstract likely dis-
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Table 4. Performance of baseline models and PTFb across different term-based input
types (TF-IDF terms, Field of Study, Keyword, and Expertise annotations) in com-
parison of PTFl and Translative models with Expertise + Abstract as input.

Input Model Precision Recall MRR NDCG MAP F1

TF-IDF

Random 0.0003 0.0009 0.0016 0.0006 0.0007 0.0002
FNN 0.0049 0.0136 0.0195 0.0100 0.0068 0.0000
BNN 0.0003 0.0008 0.0019 0.0005 0.0008 0.0003
Coherent 0.0001 0.0007 0.0015 0.0004 0.0007 0.0008
Translative 0.0030 0.0084 0.0146 0.0084 0.0063 0.0000
PTFb 0.0084 0.0275 0.0228 0.0208 0.0142 0.0282

Field of Study

Random 0.0001 0.0004 0.0011 0.0002 0.0005 0.0003
FNN 0.0000 0.0001 0.0009 0.0001 0.0005 0.0003
BNN 0.0002 0.0005 0.0013 0.0002 0.0006 0.0003
Coherent 0.0008 0.0000 0.0018 0.0005 0.0008 0.0009
Translative 0.0059 0.0175 0.0261 0.0176 0.0144 0.0000
PTFb 0.0094 0.0294 0.0211 0.0220 0.0162 0.0326

Keyword Random 0.0001 0.0005 0.0012 0.0002 0.0006 0.0003
FNN 0.0001 0.0004 0.0012 0.0002 0.0006 0.0003
BNN 0.0001 0.0002 0.0013 0.0001 0.0007 0.0004
Coherent 0.0000 0.0005 0.0015 0.0003 0.0007 0.0010
Translative 0.0076 0.0241 0.0330 0.0239 0.0200 0.0000
PTFb 0.0093 0.0309 0.0228 0.0232 0.0171 0.0328

Expertise

Random 0.0003 0.0009 0.0016 0.0006 0.0007 0.0002
FNN 0.0002 0.0004 0.0263 0.0004 0.0007 0.0002
BNN 0.0002 0.0007 0.0015 0.0004 0.0007 0.0003
Coherent 0.0001 0.0007 0.0013 0.0004 0.0006 0.0008
Translative 0.0054 0.0170 0.0245 0.0168 0.0136 0.0000
PTFb 0.0123 0.0392 0.0306 0.0296 0.0209 0.0412

Expertise+Abstract
Translative 0.0037 0.0110 0.0163 0.0109 0.0089 0.0000
PTFl 0.0299 0.0928 0.0611 0.0687 0.0524 0.1016

tracted the model. The attention probably got spread over too many irrelevant
inputs. This shows the Translative model’s limitation for long text inputs.

These results emphasize a fundamental limitation in the existing team for-
mation models: although they can operate on structured inputs, they fail to
exploit the latent semantic cues present in descriptive project text. In contrast,
prompt-based model PTF effectively leverage both structured and unstructured
input, enabling more accurate and context-aware expert team prediction.

5.3 Sensitivity Analysis

To evaluate how the number of input expertise terms affects model performance,
we conduct a sensitivity analysis for the PTF models. This experiment tests the
model’s robustness to varying degrees of structured input and aims to quantify
the incremental benefit of additional expertise annotations. All experiments use
the same architecture and hyperparameter settings to ensure comparability.
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Fig. 2. Sensitivity analysis of model performance with varying numbers of expertise.

We vary the number of expertise terms from 2 to 10, incrementing by two.
Figure 2 shows that increasing the number of expertise terms generally leads to
better performance. For PTFb and PTFl models, the largest gains occur between
2 and 6 terms, after which the performance improvements of PTFb taper off
and the performance of PTFl decreases. This suggests diminishing returns from
additional expertise information beyond a certain threshold.

These results indicate that while a small number of structured expertise
signals can significantly enhance model performance, richer input provides more
stable and accurate team predictions. However, they also highlight that the mod-
els can perform reasonably well with partial input, which supports their potential
deployment in settings where complete expertise profiles may be unavailable.

5.4 Findings Summary

Our experimental results reveal several key insights into the effectiveness and
limitations of the proposed prompt-driven team formation framework. First, the
combination of a seq-to-seq model such as T5 with contextualized text input
leads to substantial performance gains. This confirms the value of leveraging
detailed project descriptions to infer latent skill requirements, something that
traditional keyword- or metadata-driven methods cannot capture effectively. Sec-
ond, while structured expertise annotations alone underperform relative to full
abstracts, they still offer a compact and informative representation of author
capabilities. In settings where contextualized input is unavailable, these annota-
tions serve as a viable alternative and can complement free-form text when com-
bined. However, our experiment results suggest that their additive value may be
limited, potentially due to noise introduced during automatic annotation. Third,
model capacity also plays a critical role in maximizing the benefits of contextual
input. Larger variants such as PTFl demonstrate a clear advantage over smaller
models, indicating that prompt-based generation relies heavily on the model’s
expressive power to align expertise with project semantics. As a cost, fine-tuning
the PTFl models consume more computation resources. Fourth, an important
but underexplored factor in this work is the role of generation-time hyperpa-
rameters—such as beam size, top-k sampling, diversity penalty, and repetition
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penalty—which influence the diversity and quality of the predicted expert teams.
This study maintains consistent decoding settings across all experiments to en-
sure comparability, but future work could systematically investigate how these
parameters affect team composition, especially under constraints like diversity,
novelty, or fairness. Overall, our findings validate the core intuition behind PTF:
contextual prompts combined with fine-tuned sequence models offer a powerful
new paradigm for expert team formation. Yet the effectiveness of this approach
depends on high-quality input representations, appropriate model capacity, and
potentially, a more adaptive decoding strategy.

6 Conclusion

We proposed a framework for contextual prompt-driven team formation that
effectively utilizes contextualized text inputs. By fine-tuning a T5-Large model
on a novel enriched dataset, our model shows substantial improvements over
traditional techniques. The findings highlight the importance of comprehensive
project descriptions and expertise representation in enhancing team formation
outcomes. This work lays the groundwork for future research into more effec-
tive and scalable team formation solutions. In the future, we plan to add more
datasets from other domains and prepare a unique benchmark Test Set so that
all models can compare based on that.
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