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Runtime adaptive systems are able to dynamically transform their internal structure, and hence
their behavior, in response to internal or external changes. Such transformations provide the
basis for new functionalities or improvements of the non-functional properties that match
operational requirements and standards. Software Product Line Engineering (SPLE) has
introduced several models and mechanisms for variability modeling and management. Dynamic
software product lines (DSPL) engineering exploits the knowledge acquired in SPLE to develop
systems that can be context-aware, post-deployment reconfigurable, or runtime adaptive. This
paper focuses on DSPL engineering approaches for developing runtime adaptive systems and
proposes a framework for classifying and comparing these approaches from two distinct per-
spectives: adaptation properties and adaptation realization. These two perspectives are linked
together by a series of guidelines that help to select a suitable adaptation realization approach
based on desired adaptation types.

Keywords: Dynamic software product line; self-adaptive software; runtime adaptation;
variability management; survey.

1. Introduction

In order to provide better service in many areas, software systems require behavior
modification at runtime particularly in response to users’ dynamically varying needs as
well as environmental constraints [1]. Such changes could be on the features of the system
This is an Open Access article published by World Scientific Publishing Company. It is distributed under

the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is
permitted, provided the original work is properly cited.

191


http://dx.doi.org/10.1142/S0218194017500085

Int. J. Soft. Eng. Knowl. Eng. 2017.27:191-234. Downloaded from www.worldscientific.com

by 2607:9880:1958:28:38a6:ac5e:1a47:d6e on 03/07/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

192 M. Bashari, E. Bagheri & W. Du

or on how the system caters those features. This is referred to as runtime adaptation, and
a system capable of deciding about and performing runtime adaptation is called a runtime
adaptive system. Developing runtime adaptive systems has been a significant concern in
many research areas such as mobile computing, autonomic computing, robotics and
ubiquitous computing [2].

Runtime adaptation is a complex process and runtime adaptive systems are at times
prone to be unstable, inefficient and unreliable [3]. Furthermore, not taking a sys-
tematic approach toward adaptation design results in a system which is complex and
an adaptation mechanism which is hard to modify [1]. Therefore, there have been
efforts for the systematic development of runtime adaptive systems by separating the
application logic from adaptation logic [4]. Still, many of these approaches suffer from
limitations such as being domain specific, having low performance or limited adapt-
ability [3]. Therefore, the research community still tries to introduce more efficient
frameworks and processes for the development of runtime adaptive systems [2].

The Software Product Line Engineering (SPLE) paradigm [5] suggests an effec-
tive way to deal with the variability of similar products especially when satisfying
requirements of different operating environments and users. This group of similar
products is called a product family which is a group of products sharing common
features. In SPLE, the development of a system that fits the user-needs and oper-
ating environment relies heavily on the reuse of assets through two development
phases: domain engineering and application engineering [5]. In the domain engi-
neering phase, those reusable assets needed for developing products are specified and
built. These assets consist of common parts and variation points. In the application
engineering phase, the target product for the specific operating environment and user
requirements are derived using the reusable assets developed in the domain engi-
neering phase. The binding of these assets into a product is mostly performed at
design, compile or link time, after which the system stays the same during its lifetime.

SPLE and runtime adaptive systems have much in common [6]. The software
product line paradigm (SPL) is a solution for managing the variability of products in
a product family. In SPLE, the variability of the products is captured at the domain
engineering phase, and the best variant for a specific operating environment and user
requirements is selected during the application engineering phase. As such, designing
a runtime adaptive system may be considered to be a variability management
problem, where first and foremost the variability of the system is captured at design
time, and then the best product variant is selected at runtime according to context
requirements. The fact that both of these two paradigms are dealing with variability
management, one as the problem and one as a solution, has motivated researchers to
consider the synergy of these two paradigms in dynamic software product line (DSPL)
engineering [7].

DSPL is used for software development in different application areas such as
context-aware systems, post-deployment reconfiguration, and runtime adaption. In
DSPL engineering for runtime adaptation, SPL models and techniques are used at
runtime to manage and decide about the variability of runtime adaptive systems [8].
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SPL-inspired models and mechanisms are used at runtime to select the most suitable
variant of the system and adapt the system to that variant. In this paper, we focus on
DSPL engineering approaches for realizing runtime adaptation by presenting a
framework for classifying and comparing adaptation properties and implementation
concerns. Additionally, we suggest guidelines for the adoption or design of DSPL
engineering approaches using the recommended framework. In order to do so, we first
review key adaptation properties. Subsequently, we identify realization concerns for
the development of DSPL. Finally, we link adaptation properties to the idenfitied
realization concerns by providing guidelines for the selection of suitable models and
techniques.

The proposed framework is designed by defining a set of dimensions which answer
questions about how runtime adaptation could be realized using DSPL engineering
approaches. These dimensions are defined such that they can be generally used to
characterize a DSPL engineering approach. In the framework, these dimensions are
clearly described, the possible values are discussed, and examples from existing
DSPL engineering approaches are provided. In order to organize these dimensions,
our framework conceptualizes DSPL adaptation management as a MAPE-K loop [9].
Using this conceptualization, our framework dimensions are organized in a taxonomy
in which the steps of the MAPE-K loop are used to classify different dimensions of
adaptation realization.

In the following sections, we define what we mean by DSPL and then select seven
of the prominent approaches from the literature to which we shall apply the proposed
framework (Sec. 2). Subsequently, we describe what we mean by adaptation through
defining its properties and by comparing the selected approaches based on the type of
adaptation they offer (Sec. 3). Furthermore, the framework and its dimensions are
described, and this time the framework will be used to compare adaptation reali-
zation in the selected approaches (Sec. 4). After describing the framework, adapta-
tion dimensions and framework dimensions are linked together by a set of guidelines
which are used for selecting various values for the dimensions of the proposed
framework. The guidelines provide strengths and weaknesses of each possible value
according to the adaptation required when either building a new DSPL engineering
approach or choosing from already existing approaches (Sec. 5).

2. Dynamic Software Product Lines

Although SPLE models and techniques are utilized for managing variability in DSPL
paradigms, SPLE and DSPL engineering paradigms follow different goals, each of
which results in products with different nature. Hallsteinsen et al. [10] characterize
DSPL engineering with a set of properties that distinguishes it from SPL engineering
in terms of the goal and properties of their products. For instance, the goal for selecting
a different system variant in SPL is satisfying specific market needs; while, the goal in
the DSPL paradigm is satisfying the requirements of different running contexts [7].
Hallsteinsen et al. [10] also define two types of properties for DSPL engineering
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products that make them distinct from SPLE products: runtime reconfiguration and
self-management. Runtime reconfiguration properties represent a product’s ability
to ‘configure and bind variability at runtime’, ‘bind changes several times during
lifetime’, ‘change in variation points’, and ‘deal with unexpected changes’ [10]. Self-
management properties represent a product’s ability to be ‘context-aware’, ‘self-
adaptive’, and function as an ‘automatic decision maker’ [10]. Runtime reconfiguration
properties are considered mandatory for the product, but self~-management properties
are deemed as optional within the context of DSPL.

Several approaches and frameworks, which may or may not call themselves a
DSPL engineering approach, have been proposed that exploit SPL models and
techniques in the development of different systems such as service-oriented and
context-aware systems. In this study, in order to distinguish DSPL approaches from
other engineering approaches, we have adopted the DSPL definition offered by
Hallsteinsen et al. [10]. Hence, we consider an approach DSPL engineering approach
if it uses SPL assets in its development and has runtime reconfiguration properties.
Considering this definition as a guideline, we used Google Scholar to locate DSPL
studies using search terms ‘DSPL’; ‘Software Product Line Runtime adaptation’,
and ‘Software Product Line Self-adaptive’ with no restriction set on the date or place
of publication. The results, and other studies cited within these publications, were
reviewed to determine whether they matched the Hallsteinsen DSPL definition for
inclusion in the study pool. The studies documenting different aspects of a specific
approach were grouped together. A list of these study groups can be found in Table A.1
in Appendix A.

We have selected seven approaches from these studies, which will be discussed in a
comparative scale using our framework. Our criteria for the selection of these seven
approaches were as follows:

o Select studies which propose a development methodology. The studies were
classified by their focus into four groups: conceptual discussions, development
methodologies, models and languages, and other (tools, algorithms,. . .). Using this
classification, only those studies which propose a development methodology are
considered for selection.

o Select studies with greater impact on the trends in the field. The sum of citation
counts provided by Google Scholar for the study group documenting the approach
has been selected as the criterion for measuring the impact of the research on the
field.

o Select studies with well-documented adaptation realization procedures. In the case of
development methodologies, the studies were reviewed to determine if they have
addressed each of the different steps of adaptation realization and relevant knowl-
edge in the MAPE-K loop (i.e. Monitoring & Analysing, Planning, and Execution).

o Select studies which propose an original approach. Approaches were reviewed to
see if they were original or built as extensions on other approaches. The latter
group were excluded.
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The above criteria were used to build a table which is used as reference for the
selection of the seven reviewed approaches (Appendix A). Table 1 shows the selected
approaches, their relation to SPLE and their application domain. A brief overview of
these approaches is as follows:

Baresi et al.: This DSPL engineering approach utilizes SPL, Common Variability
Language (CVL) [28] and aspect-oriented programming for enabling runtime re-
configuration of business processes represented with Business Process Execution
Language (BPEL). BPEL is a language for the formal specification of business
process behavior focusing exclusively on Web services. The approach by Baresi et al.
has been built as an implementation of CVL, which is a suggested generic approach
for managing variability in domain specific languages. In this CVL-based approach,
the variants of the system are chosen by selecting the desired features from the
feature model of the system. The selected features in the feature model are mapped to
series of substitutions in the base BPEL code. Base BPEL code is a process which is
considered as a reference point for defining variability. A substitution is defined as
placing a BPEL aspect from the CVL library into placement location in the base
code. The target business process is derived using these placements after which it
replaces the current business process. Runtime reconfiguration has been enabled in
this approach by extending the ActiveBPEL engine [29] using aspect-oriented pro-
gramming to modify BPEL at runtime by changing the included aspects [30].

Bencomo et al. (Genie): Genie is a model-based approach for developing self-
adaptive systems for grid mobile computing and embedded systems. In this

Table 1. Summary of the selected approaches.

Approach References Relation to SPLE Application domain
Baresi et al. [11] Uses feature models at runtime for variability General
modeling, feature model configuration for variant
selection.
Bencomo et al.  [12-15] Uses Orthogonal variability modeling (OVM) at Grid and mobile
(Genie) runtime. computing, em-
bedded systems
Cetina et al. [16-18] Uses feature models at runtime for variability Smarthomes
(MoRE) modeling, feature model configuration for variant
selection.
Floch et al. (7,19, 20] Extends configurable product families with runtime Mobile and distrib-
(MADAM) reconfiguration. uted systems
Gomaa et al. (21, 22] Extends SPLE with reconfiguration patterns to General
(REPFLC) support runtime adaptation.
Morin et al. [23-25) Uses feature model at runtime for variability General
(DiVA) modeling, feature model configuration for variant

selection, uses aspect model weaving to generate
system architecture.
Parra et al. (26, 27] Uses feature models at runtime for variability General
(CAPucine) modeling, feature model configuration for variant
selection, uses aspect model weaving to generate
system architecture.
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approach, two variability dimensions are recognized for a system and linked to each
other in the development process: environment or context variability which repre-
sents variability in the environment and structural variability which represents
variability in the architecture of the running system. The structure of the system can
adapt according to changes in the environment by linking these two dimensions. In
the Genie approach, the environment is represented by a state transition diagram,
where states represent the states of the environment and the transitions represent
possible environment state changes which are guarded by conditions over the context
of the system. The structural variability of the system is represented with OpenCOM
DSL which is a domain specific language that represents system architecture. This
approach takes advantage of the OVM [5] for linking those models which represent
two dimensions. OVM traditionally is used for tracing variability between models at
different levels of abstraction in the software product line. Genie enables runtime
reconfiguration using OpenCOM [31] middleware.

Cetina et al. (MoRE): MoRE is a reconfiguration engine which incorporates SPLE
ideas for developing autonomic pervasive systems such as Smarthomes. This ap-
proach uses feature models as a variability space model at runtime. Runtime ad-
aptation takes place in this approach by modifying the current feature model
configuration of the system using a set of condition/resolution rules, where these
rules define which features are activated/deactivated as context conditions change.
The system managed by MoRE should be built using service-oriented architectures,
where services and devices communicate using channels. The actual system adap-
tation is performed by mappings features of the feature model to the services and
channels that realize these specific features. Therefore, a feature model configuration
is mapped to a configuration of the system, where a set of services and channels are
active while the others are inactive. This approach also proposes a technology-in-
dependent, domain-specific language named PervML [32] representing system ar-
chitecture. PervML is used for representing services and devices and how they are
connected though channels.

Floch et al. (MADAM): MADAM is a utility-based approach for building self-
adaptive systems for mobile and distributed environments. This approach extends an
SPL engineering concept named configurable product bases [33] to enable runtime
adaptation. Configurable product bases is a type of SPLE approach which requires
no product specific development during application engineering. The MADAM ap-
proach extends configurable product bases by adding a utility-based planner to it
and enabling configurable product bases to reconfigure at runtime. In this utility-
based approach, a utility function is defined over the system properties and its
context to represent desirability of the current configuration in the current context.
Therefore, the goal of adaptation becomes the maximization of the value of this
function. The planner functions by taking advantage of property predictor functions,
which can predict different properties of the system according to the system con-
figuration and the context. When the utility becomes unacceptable, the planner uses
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a brute-force technique to find a configuration with the highest predicted utility and
adapts to it.

Gomaa et al. (REPFLC): The Reconfigurable Evolutionary Product Family Life
Cycle (REPFLC) approach proposes a lifecycle for SPLE which covers product
execution phase in addition to those related to domain engineering and application
engineering. In this lifecycle, reconfiguration patterns are designed at the domain
engineering phase, alongside other domain engineering assets, in order to define
reusable patterns for safe runtime reconfiguration of components. These reconfigu-
ration patterns provide state-based and scenario-based behavioral models for an
adaptation. The state-based model represents how the system adapts in an adap-
tation while the scenario-based model represents the requirements of the situation
when the adaptation is necessary. These reconfiguration patterns are available in the
configured target system. The system uses these reconfiguration patterns to safely
reconfigure at runtime when an adaptation is required.

Morin et al. (DiVA): This approach builds on ideas from SPLE and aspect-
oriented modeling to develop self-adaptive systems. In this approach, the architec-
ture of the system is built in three layers. The bottom layer contains the application
logic; the top layer plans the adaptation; and the middle layer creates the link
between the top and the bottom layers. The middle layer creates the bottom to top
link by analyzing data from sensors and converting the data into context information
useful for reasoning. It also creates the top to bottom link by reflecting changes in the
system architecture model into the running system. The top layer uses feature
models at runtime for managing the variability of system at an abstract level.
Feature models are used to decide about the best configuration for the current
context using a reasoner. Planning results in a feature model configuration which
represents what system features should be available in this context. This feature
model configuration is then mapped to the architectural model of the system using
aspect model weaving. The approach uses a system variant configuration checker to
ensure consistency of the target architecture model at runtime.

Parra et al. (CAPucine): In this approach, software product line and service
oriented architecture have been used to create a process to build systems that
monitor context changes in order to dynamically incorporate required assets at
runtime. The variability of the system is kept modeled using a feature model. The
approach gathers context information using a context sensing middleware which has
been built based on the COSMOS framework. The changes in the context triggers
changes in the feature model based on a set of rules. This approach suggests the use
of aspect model weaving [34] for generating the architecture model of the system from
feature model configuration at runtime. In aspect model weaving, features are
mapped to aspect models representing different aspects of a given feature in the
system architecture. For a feature model configuration, the corresponding aspect
models of selected features are woven into the base model of the system to create an
integrated model of the architecture of the system. Then the approach uses FraS-
CAti [35] which is a Fractal-based Service Component Architecture (SCA) [36]
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platform with dynamic properties, to reconfigure the system according to the target
architecture model at runtime.

Although systems with the ability to adapt at runtime can be built using any of
these approaches, the types of adaptation offered by them are different. Therefore, in
what follows, we provide a method for characterizing adaptation achieved by each
specific approach. Knowing the type of adaptation which is offered by systems de-
veloped using each approach can help in the selection of a suitable one according to
specific adaptation needed for a problem domain.

3. Characterizing Adaptation Properties in DSPL

Runtime adaptation covers a wide range of runtime changes. In order to arrive at a
better understanding of the kind of adaptations which are addressed by existing
DSPL engineering approaches, we need to characterize the adaptations that can be
performed by each approach. The characteristics of alternative adaptations can be
determined by a number of points of difference (also called dimensions). These points
refer to the properties of an adaptation itself regardless of techniques and tools which
are used to realize it. In [37], 20 dimensions have been proposed for characterizing an
adaptation in a specific system. Therefore, we use these dimensions for comparing the
adaptation properties that the different approaches offer. Figure 1 shows the
dimensions classified in three categories. Those dimension whose values cannot be
determined for a DSPL approach were removed from the figure. The dimensions in
each of the goal, cause, and mechanism categories represent characteristics of the
goal of an adaptation, source of changes that causes an adaptation, and mechanism

Self-configuration

Self-optimization

Context

Adaptation System

U

Autonomous

Mechanism

Component

Architectural

Fig. 1. Dimensions characterizing an adaptation.
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Table 2. Adaptation dimension of DSPL engineering approaches.

Goal Cause Mechanism
Approach Type Evolution Type Autonomy Type
Baresi et al. — Static User Manual Code-level
Bencomo et al. (Genie) Self-configuring Static Context  Autonomous Component
Cetina et al. (MoRE) Self-healing / Static Context  Autonomous Component
self-configuring
Floch et al. (MADAM) Self-optimizing Static Context/ Autonomous Component
System
Gomaa et al. (REPFLC) — Static — Autonomous Component
Morin et al. (DiVA) — Non-static — Autonomous Component
Parra et al. (CAPucine) Self-configuring Static System  Autonomous Component

used for enabling adaptation, respectively. In Table 2, we have listed these dimen-
sions and their values for different DSPL engineering approaches. Each of these
dimensions has been discussed in the following.

3.1. Goal type

This dimension is concerned with the intent for adding runtime adaptation. In
the definition of autonomic computing [9], Kephart and Chess cite four goal types
for self-managing systems: self-configuring, self-optimizing, self-healing and self-
protecting. Goals for enabling runtime adaptation can be categorized into these
categories. In the following, these goal types have been discussed, except that of the
self-protection aspect due to the yet unavailability of a DSPL engineering approach
with this goal type.

o Self-configuring: The goal here is to enable the system to automatically reconfigure
itself as the context or requirements change such that the system satisfies the high
level policies. This is similar to product configuration in SPLE, where a product is
configured for different situations such that it satisfies stakeholders’ needs. The
goals can be defined as a condition that should be always satisfied for the corre-
sponding system; for example, the response time of a specific service of the system
should be always lower than a specific duration. In [12], the Genie approach was
used to develop a system that runs on sensor nodes in a sensor network for flood
monitoring, where the system needs to be self-configuring. In this specific problem
domain, the goal of adaptation was to enable the system to switch from the battery
preserving configuration to the high performance configuration so as to be able to
communicate faster when flood was likely to occur.

o Self-optimizing: A system supports self-optimizing adaptation when the goal of
enabling adaptation is to make the system perform optimally under different
environments and contexts. Usually, the optimality of the system is represented
with a single utility value which is typically the weighted sum of different quan-
titative attributes of the system (such as QoS attributes). For example, In [7],
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MADAM was used to develop a supporting application for service technicians
working in geographically dispersed installations. The application adapts itself to
changes in the context (such as connectivity, noise, etc.) to optimize user expe-
rience represented with a utility value.

o Self-healing: In self-healing adaptation, the goal of adaptation is to have a system
that adapts itself after a failure in order to reduce the impact of failure on the
system. A self-healing system enables search for alternatives when a component of
the system fails. For example, the MoRE approach is used for developing self-
healing Smarthomes, where failure of devices is likely to happen [16]. In this ex-
ample, failure of devices is handled by exploiting alternative ways; for example,
alarm failure results in the blinking lights of the house. As an another example,
Abotsi et al. [38] developed a DSPL engineering approach for developing a Web-
based application, where the system is monitored for critical conditions. In case of
a critical condition, a suitable variant of the system is identified and selected to
recover from the critical condition. For instance variants that use less resource
demanding contents are selected when there is lack or dearth of resources.

3.2. Goal evolution

This dimension denotes whether the goal of adaptation can change at runtime or not.
The change in the goal is usually required when the system faces an unforeseen
situation not supported by the adaptation manager of the system. The ability to
evolve the adaptation goal can range from static, where the goal of adaptation does
not change to dynamic, where the system itself can modify goals of adaptation during
the systems lifetime:

e Static: In this type of adaptive systems, the goal of adaptation stays the same
during the lifetime of the adaptive systems. These systems usually have a fixed
adaptation policy and system variants. In the case that new goals are needed, the
system should be stopped and modified to support new goals. However, the veri-
fication of these systems is usually easier considering their limited flexibility.

e Non-static: Here, the system adaptation manager provides a mechanism to in-
troduce new adaptation goals to the system at runtime [23, 39, 40]. This can range
from manual change of goals to evolution of the system by itself. The DiV A project
[23] has claimed that it has enabled manual change of system goals by providing
interfaces for modification of models both at design time and runtime. Another
notable research in enabling runtime goal evolution in DSPL proposes an approach
for supporting feature model changes as a result of runtime goal changes [39]. In
this approach, a meta variability model is defined over the variation points of the
system, which provides the information required for anticipating goal updates and
explicitly expressing how these goal updates are supported in the feature model. For
example, this meta model specifies which variation points may have new variants as
the systems evolves and what are the requirements of these new variants.
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3.3. Cause type

The trigger of an adaptation influences how monitoring and planning activities
operate in a runtime adaptive system. The types of changes which can trigger
adaptation may be generally classified as context changes, system, and user changes.

e Context: Context changes are those changes that take place in the external
environment of a system. When the system needs to responds to context changes,
it requires the right sensors to measure the properties of interest in real-time. The
gathered information is then used in planning for adaptation. Therefore, a
mechanism should be provided by the engineering approach for capturing the
context information. For example, CAPucine uses the COSMOS framework for
monitoring the context. In this framework, a component is developed for each
sensor named context node, which represents that sensor as a component.

o System: System changes are those changes that take place in a system internally.
Examples of these changes are failure of a component, performance of a compo-
nent, and exceptions. For capturing these type of changes, sensors should be
integrated within the system implementation. For example in [19], sensors are used
as part of the architecture, monitoring the performance of components such as
component response time and memory usage. These information are then used by
the adaptation manager for planning about possible system adaptations.

e User: Changes are alterations in user requirements or priorities at runtime, and
therefore the trigger for adaptation is an external entity such as a user. User pre-
ferences are usually captured using an interface. The change in requirements is
expressed in high level terms such as features, and is realized by an adaptation
manager. In the Helleboogh et al. approach [39], the user of the system can change
the operation mode of an automotive transportation system in a warehouse in re-
sponse to changes in the operating condition. For example, when a load of goods
arrive at the warehouse, the operation mode of the system is changed by the user to
efficiently unload the packages. Another example for adaptation as a result of user
preference changes is that proposed by Wolfinger et al. [41] where the users’ pre-
ferences are captured by wizard-like dialogues following a decision model. In each
dialogue, the user selects from available alternatives in a decision point while the
system offers the consequence of selecting each alternative. The adaptation target
configuration for the system is built based on user decisions captured by the wizard.

3.4. Mechanism autonomy

This dimension defines if an outside entity (mostly humans) is responsible for
planning the adaptation. This can range from completely manual to autonomous. In
autonomic computing, the degree of a system’s autonomy is demonstrated in five
levels from adaptations which are completely manual (basic level) to adaptations
which are completely automatic and where the human agent only specifies high level
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business rules and policies [9]. In the following, we only discuss the two extremes of
this range:

e Manual: In the manual adaptation mechanism, the system cannot complete an
adaptation without help from an external entity. In this type of adaptation, an
interface is usually provided for the user to specify the required adaptations of the
system. An example for manual adaptation in DSPL engineering is an approach
proposed by Baresi et al. [11], where a variability designer, in the form of an Eclipse
plug-in is used for managing the variability of the system represented by a feature
model.

e Autonomous: In an autonomous mechanism, the system plans and performs the
needed adaptations automatically. The required behavior of the system is usually
provided using high-level goals or rules. It is according to these goals or rules that
the system makes its adaptation planning. Therefore, the system should be context-
aware, which implies that it needs to monitor its internal state as well as the context.

3.5. Mechanism type

This dimension defines the type of changes that an adaptation mechanism can make
in the structure of a system to perform an adaptation. Gomaa et al. [42] classify
adaptations into three classes according to the extent by which they affect the
architecture of the system:

e Code-level adaptation: In this type of adaptation, system behavior changes al-
though its architecture stays the same. This type of adaptation can be imple-
mented by changing runtime entities using parametrization, inheritance, and
preprocessor directives in the code [43, 44]. This type of adaptation is simpler to
implement; however, it limits system adaptability since system adaptation is
limited to the code of the constituents within the system. Additionally, modifi-
cation and extension of the system is harder because, in most cases, adaptation
logic is interwoven with system code.

e Component adaptation: Here, adaptation is achieved by substituting a component
with another of similar interface though with a different behavior. This substitution
provides a plug-in mechanism, where plug-ins are replaced with other plug-ins of the
same type as the system adapts. However, some components and also the way these
component are connected to each other stay the same. An example for this is
systems developed with the MADAM engineering approach [19], where a number of
ports are defined in the architecture which can be filled with components of the same
type. In order for the system to adapt, the system middleware allows components
connected to the ports to be replaced at runtime.

o Architectural adaptation: In this type of adaptation, the structure or the archi-
tecture of the system changes to modify the collaboration between components or
the incorporation of new components in to the system.
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These dimensions can be used to characterize the type of adaptation which is
required for a system. In Table 2, the value of these dimensions for systems developed
using the seven DSPL engineering approaches covered in this paper are presented. In
the next section, we will focus on the dimensions characterizing the way adaptation is
realized in a DSPL engineering approach.

4. Characterizing Adaptation Realization in DSPL

From the early efforts made in the area of systematic implementation of runtime
adaptive systems, the separation between parts of the system focusing on adaptation
logic and application logic has been promoted [45]. Adaptation logic is concerned
with selecting the best possible variant of the running system based on the current
context while the application logic provides the required functionalities of the sys-
tem. This practical distinction makes the development of a runtime adaptive system
easier and results in a more reliable system [3]. The separation is usually imple-
mented as a two-layered structure. In this structure, an adaptation management
layer is implemented over the application layer. The adaptation management layer
accommodates adaptation logic. The application layer enables runtime reconfigu-
ration and also provides the interfaces for monitoring and reconfiguring the system
for the adaptation management layer as well as accommodating the application
logic. Figure 2 shows the adaptation manager layer and the application layer.

The focus of DSPL engineering approaches is mostly on building adaptation
managers for runtime adaptive systems. In order to break down the concerns for
building an adaptation manager, we conceptually represent an adaptation manager
as a MAPE-K loop model [9] similar to what Bencomo et al. [8] have proposed. In
their research, they have proposed a conceptual model for DSPL adaptation
management process in which the system adaptation manager can be viewed as a

Adaptation Management layer

Analyse l[: Plan

Monitor Execute
Knowledge Base

/

Application layer

Fig. 2. MAPE-K loop [9].
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MAPE-K loop. However, they do not provide the details of how this process can be
mapped to the MAPE-K loop. Here, we adopt their conceptual model for adaptation
management and provide detailed mapping between DSPL adaptation management
process and the MAPE-K loop. The MAPE-K loop (Fig. 2) model is used in auto-
nomic computing to represent the main concerns for building an autonomic manager.

An autonomic manager is responsible for handling autonomic properties of a
system. MAPE consists of the initial characters of the four main steps to be taken by
an autonomic manager: Monitor, Analyze, Plan, and Execute. The added K char-
acter following the hyphen stands for knowledge which is usually represented by
models which are used in the first four steps. The monitoring step is about capturing
those properties which are required for planning the adaptation of the system. The
analysis step addresses concerns regarding the examination of the monitored data to
get new information by considering a combination of monitored values and taking
into account the monitoring history which will be useful for the planning step. The
planning step decides if adaptation is essential and selects the best system variant if
adaptation is necessary. After planning for the adaptation, the execution step safely
executes the adaptation.

We have extracted the dimensions that can be used to distinguish between
existing DSPL engineering approaches. In order to design our framework adaptation
realization taxonomy tree, we posit that all dimensions that characterize DSPL
adaptation manager can be attributed to one of the MAPE-K steps. With this
assumption, a one level taxonomy tree was defined with its first level nodes repre-
senting different steps of the MAPE-K loop (i.e. Monitoring, Analysing, Planning,
Executing). Subsequently, relevant dimensions for each step are identified and those
dimensions are placed as a child nodes for that step in the taxonomy tree. For a
dimension related to the MAPE-K knowledge(K), the dimension was added to the
step which mainly works with that knowledge.

Figure 3 shows the resulting taxonomy. In this figure, dimensions related to knowl-
edge are shown with gray boxes while other dimensions are shown with white boxes. In
the remainder of this section, these dimensions are described in detail. Each subsection
describes one of the steps of the MAPE-K loop. For each dimension, the aspect of DSPL
engineering approach that is characterized by that dimension is described and a number
of possible values for that dimension is listed. The dashed line between dimensions
means values selected for the dimension at the beginning of the arrow directly affects
possible selectable values for the dimension at the end of the arrow. For each of these
values, its description and supporting examples from the literature are provided.

4.1. Monitoring and analysis

These two steps of MAPE-K loop are responsible for making adaptation manager
context-aware. This is essential where adaptation manager is expected to autono-
mously respond to context changes. This step captures internal or external context
through a context sensing mechanism. The information captured through the
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Fig. 3. The taxonomy of the proposed framework.

context sensing mechanism is represented contexrt model. Since the information
captured by context sensing are usually too low level to be directly usable by the
planner, they are usually extended by defining more complex context conditions
using context reasoning models. Figure 4 shows these dimensions and some of their
possible values. In the following, these dimensions are reviewed:

(i) Context model: A context model is used to represent the knowledge acquired
by the monitoring and analysis steps. This is a minimal representation of the
system context that is important for planning. Two types of common context
models are presented in the following;:

e Property-set: In this type of context model, the context of the system is
represented by a set of properties crucial for planning. The values of these
properties are updated at runtime through monitoring and analysis which may
lead to the adaptation of the system. For example in the MUSIC framework

Notification

Property-set
Context model <
Ontology
— . Rule-based
| Monitoring & Analysis Context reasoning model <
Query language
Observation
Context sensing <

Fig. 4. The taxonomy for dimension related monitoring step.
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[46, 47], the information about the environment (e.g. ambient noise) as well as
information about internal state of the system (e.g. device memory) and QoS
properties (e.g. network quality) are kept and updated as values to a number
of context variables. The planner accesses these context variables to decide
about system adaptation.

e Ontology. In this type of context model, ontology representation languages
such as OWL [48] are adopted to relate (together) the important properties of
the system using semantic relationships in the ontology. The use of an on-
tology allows a more structured representation of the context. It also enables
reasoning over the context model using existing semantics reasoners and
sharing of the context model between different systems. For example in [49],
the OWL language is used for expressing the context information in a way that
allows for reasoning. In this framework, the properties are organized using
classes and their relations are expressed using semantic relations. In another
case study [50], the OWL language is used to represent the context model of a
smart hotel. As an another example in [51], the global context which is
represented with an ontology is mapped to the feature model which represents
the variability of the system. Using this mapping, a local context of each
variant of system is found based on the features in that configuration. This will
exclude irrelevant information from reasoning in each specific context which
results in more efficient adaptation.

(ii) Context reasoning: Context reasoning extend information acquired using
context sensing by producing more contextual information using existing ones. A
context reasoner accepts one or more existing context information and produces
new more abstract information. For example, it may take information from am-
bient noise and motion sensors and specify the value for the home occupancy
information. Use of context reasoning allows providing more abstract information
for the planner which facilitates the design of reasoning in a planner. Additionally,
context reasoning can be used for alleviating the effects of noise and uncertainty
by working with multiple sources of information.

e Rule-based logic: In this type of reasoning, the new context conditions is de-
fined by creating simple rules over existing context information (e.g. propo-
sitional logic). For example in Genie [13], conditions which result in transition
from one state to another state is defined using propositional logic over
existing information. Use of rule-based logic provides a simple and perfor-
mance efficient way of finding new information over existing ones. However, in
the cases, where temporal characteristics as well as quality of information (e.g.
certainty) should be considered in context reasoning, simple rule-based
methods may not be efficient.

o Query languages: The captured information by context sensing usually pro-
vides a stream of observed values (with different timestamps, confidence, and
etc). Therefore, query languages and their corresponding reasoners are used in
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some context managers. These query languages facilitate expression of more
complex context condition. For example, the context manager in DiVA
project provides a query language named EQL which is a language similar to
SQL which works on a sliding window of sensor events. Similarly, MoRE uses
an ontology as its context model and SPARQL is used for context reasoning.

(iii) Context sensing: In order to be context-aware, a DSPL engineering approach
should provide a way for defining context sensing mechasnism which enables
capturing situational information (e.g. internal state, environmental context).
This separates activities for capturing information from other adaptation activi-
ties and prevents other entities in adaptation management from becoming in-
volved in the internal process for obtaining these information. Context sensing
mechanisms are usually implemented by enforcing a standard for designing sen-
sors (e.g. defining standard interfaces for sensor components) which provide a
unified way for capturing contextual information. This enables the use of a central
middleware for management of contextual information. Additionally, the mid-
dleware provides functionalities such as organizing, storing, or querying context
information. For example, in [27], the sensors are realized as components named
context nodes which are organized in a hierarchy. Although these components may
have different properties such as active or passive, they all provide same interface
which allow them to be accessed by the context manager in a similar way. Context
sensing middleware also allow reuse of general sensors such as CPU load sensors.
For example, context manager library for the DiVA project provides a library of
sensors which can be reused in different projects. This context sensing is usually
provided in two ways: observation and notification.

e Observation: The context sensing mechanism which enables observation
allows the planner to query contextual information. Therefore, the planner is
responsible for getting new context changes (e.g. in a specific interval) in order
to get new context information. This is a simple type of monitoring but it may
cause overhead as it is needed to query new information regularly in order to
have model of the context.

e Notification: Context sensing mechanisms which enable notification allow the
planner to be notified of changes in certain contextual information as the they
take place. Therefore, the planner gets notified as soon as an interesting sit-
uation takes place and reduces the overhead. However, it requires interfaces in
the middleware to be called when those changes happen.

4.2. Planning

In a typical software product line process, the application engineers develop a suitable
variant of the product for a specific user by selecting and instantiating assets devel-
oped during domain engineering with the help of variability models. In the context of
DSPL engineering, variant selection should be performed at runtime, usually without



Int. J. Soft. Eng. Knowl. Eng. 2017.27:191-234. Downloaded from www.worldscientific.com

by 2607:9880:1958:28:38a6:ac5e:1a47:d6e on 03/07/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

208 M. Bashari, E. Bagheri & W. Du

any external help. Therefore, the system should take the role of the application en-
gineer to select and instantiate new assets to generate a new variant of the system. We
refer to this process as planning. Most efforts in the DSPL community have been in
the area of developing planning approaches [8]. A planner uses situational information
provided in the context model to decide if an adaptation is necessary, and if so, to find
the desired variant for the current situation. The possible variants of the system are
represented in a variability space model. The planner uses a planning model to select
the next variants of the system from the variability space model. The planning model
represents how the system selects the desired variant according to the current context
and variant of the system. Variability space models may define possible variants of the
system in terms of their features or architectural structure. Since the planner works by
selecting variants from the variability space model, the level used for variability space
model specifies the planning level. Planning level specifies the aspect of the system on
which planners reason (i.e. feature or architecture). If feature-level planning is used,
the desired variant of the system will be represented by its features which needs to be
transformed to architectural structure of the system using a transformation mecha-
nism. This architectural structure is then used in the execution step to reconfigure the
running system to the selected target system. Figure 5 shows these dimensions and
some of their possible values which will be reviewed below.

(i) Variability space model: The variability space model represents the
alternative variants of the system and their difference points. The model can
represent variability at different abstraction levels. For example, the variability

Enumeration

Variability space model Dpes

Feature model

- State transition diagram

Planning model ECA Rules
Utility-function
. Feature
‘ Planning Planning level <
Architecture
i Rule-based
Planning type Goal-based

Utility-based

Direct link

Transformation Aspect model weaving

Transformation rules

Fig. 5. The taxonomy for dimension related planning step.
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of a system can be represented by what are the properties of different contexts
the system can operate in [51, 52] or what components are different between the
variants of the system.

o FEnumeration: In this type of variability modeling, the possible variants of the
system and their properties are enumerated as a set of possible variants [53].
The planner selects the most suitable variant of the system for the current
context from the enumerated set and adapts to it. Those systems that model
their variability using this type of modeling are generally simpler to design
and validate. However, it is likely that the size of the possible variants of the
system increases rapidly and becomes unmanageable as the system grows [23].
This type of variability modeling is usable when the possible set of variants of
the system is possible to define. For example, in a case study of using DSPL
[15], the enumeration model is used to model three possible variants of a
network discovery agent. These variants showed what kinds of roles the agent
can have in the service discovery process at runtime.

o Variation points: In this type of variability space modeling, difference points in
a base system are specified and called variation points. A type is defined for
each variation point within the system, where different alternatives of the same
type can be selected for each variation point. The adaptation in the system
takes place by the replacement of alternatives with the same type in the var-
iation points of the system. The current variant of the system can be specified
by knowing the alternatives that have been selected for the variation points.
An example for this type of variation management is the MADAM approach
[19], where ports are defined in the architecture of the system. Ports are the
locations where different components with the same interface can be substi-
tuted with one another. Variation points provide a simple and manageable
solution for managing variability in a system [7]. However, one problem facing
this type of variability modeling is that it does not support cross-cutting var-
iations, where the selection of alternatives in one variation point puts con-
straints such as exclusion or inclusion on other variation points [7].

e Feature modeling: Feature models [54, 55] are widely used in SPL engineering
for representing the variability of the product family [17, 23, 27, 56, 57]. A
feature model provides a hierarchical structure that represents the organi-
zation of the features which are ‘increments in product functionality’ [58].
When decomposing a feature into sub-features, the sub-features may be op-
tional or mandatory, or may form Xor-, Or-, or And-groups. These relations
express the possible variability of the system. Feature models also represent
cross-cutting variations using integrity constraints. Feature models are
commonly used as a variability space model in DSPL engineering approaches
because of their power to represent complex variability of a system.

o Context variability model: In this type of variability space modeling, a context
variability model which represents the dominant contextual drivers for
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variation (e.g. different locations) is defined beside the feature model. This
model is linked to feature model in a way that selection of different dimen-
sions of it constrains the feature model variability space [59—62]. This creates
an orthogonal link between context and features which facilitates relating
different context conditions to an appropriate feature configuration by
eliminating irrelevant features during feature model configuration. For ex-
ample in [59] another feature model is used as context variability model. This
context variability model is linked to the main feature model using feature
model integrity constraints.

(ii) Planning model: The adaptation planner of a system is usually implemented

using a reasoner which considers the variability model, the context, and the
current variant of the system as inputs. It then develops the most suitable variant
for the current context according to its planning knowledge [1]. The planning
knowledge could be hard-coded into the reasoner or expressed explicitly by a
model which is available at runtime and used by the reasoner. Using models for
representing the planning knowledge eliminates the need for the development of a
new reasoner from scratch for every system developed with a DSPL engineering
approach. A planning model specifies the policy of the system for selecting the
suitable variant of the system by having access to the current variant of the system
and the current context at runtime [6]. The type of planning model is determined
by the planning method that is used in the system. Here, we cover the planning
models used by the reviewed systems in this study.

e State transition diagrams: In these models, which can only be adopted when
enumeration is used for representing the variation space model, the adapta-
tion policy of the system is represented using a state transition diagram. The
states are variants of the system and the transitions are the possible adap-
tations. The guard condition of a transition defines the situation in which
that specific adaptation could take place. One problem associated with the
state transition diagram is that they are not easy to maintain after they are
initially designed because of their relatively complex structure [23]. An ex-
ample of using this approach to define the adaptation policy is a case study of
the Genie framework [12], where a state transition diagram is used to specify
when a flood monitoring agent should change its behavior according to its
context and what target variant it should adapt to.

o ECA rules: Event-Condition-Action rules represent what actions the system
should perform in response to an event when certain conditions hold [23].
Events could be changes in the context (e.g. network traffic) or system in-
ternal state (e.g. processor usage); Conditions are defined over the current
environment or the current variant of the system; and finally Actions can be a
set of activations and deactivations over the system components or similar
changes in system features. Expressed using different languages and models,
the ECA rules usually have the advantage of being readable [63]. The
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planning model of the system can also be modified easily by adding and
removing ECA rules. However, a problem with ECA rules is that when the
number of rules are large, conflicts are likely to arise between the rules.
Detecting such conflicts are difficult [63]. In such a case, it is ambiguous how
the system should act, and a conflict resolution mechanism is essential, for
example, giving priorities to some actions. An example for using ECA rules to
define adaptation policy is a case study where the ECA rules are used in a
dynamic access control product line to specify the changes in the available
functionality of the system as users with different roles use the system [64]. In
this system, the ECA rules specify access to what functionality should be
granted to a user according to his role.

o Utility functions: In this type of planning modeling, the planning model con-
sists of a utility function which is usually a heuristic representation of the
desirability of adapting to a variant of the system or performing an action in a
specific context [63]. This utility function is used to select the most desirable
variant of the system to adapt or determine the action that should be performed
in each context of the system. An example for this is the MADAM approach
[19], where a utility function represents the desirability of each system variant
which is a weighted sum of the important properties of the system. In another
example [65], features in the feature model are annotated with quality attribute
and value for a quality attribute of a configuration is calculated using aggre-
gated functions. The desirability of a configuration is defined by a single value
which equals the weighted sum of all quality attributes for that configuration.
Using these information, an optimization method is used to find a configuration
between possible configurations of the partially configured feature model which
maximizes this value. One problem associated with the utility function is the
difficulty usually encountered in the design of such function that would pre-
cisely model the desirability of the system [7].

(iii) Planning level: The planning level dimensions specifies if planning is
performed over the features of the system or the architectural entities of the
system. The planner may see the system as a number of components col-
laborating with each other and therefore decides which components should
be active, their configuration and how they should collaborate (e.g. [7, 12]).
Similarly, the planner can view a system according to its feature, therefore
deciding what features should be active in the system according to its context
(e.g. [16, 23]). The selection of appropriate planning level removes unnec-
essary details while preserving the required information for planning.

e Feature: Similar to feature model configuration in SPLE, the planner could
decide at the feature level which would abstract away realization details.
Planning on the features promotes the separation of concerns by dissociating
the context requirements from realization details [66]. However, using planning
on features necessitates the implementation of a transformation mechanism
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which converts the feature level configuration to the architectural configura-
tion [23]. For example, in a robotic case study [67], the adaptation planner for
the robot software selects required features according to the context. The
feature model configuration is used by a weaver to compose related architec-
tural models to create architectural configuration model of the system.

o Architecture: Here, planning is performed on architectural entities (such as
components). Planning on architectural entities is usually harder than
planning on features, because reasoning becomes more complicated when
context requirements and implementation constraints are taken into con-
sideration at the same time. For example, in [19], the requirements of the
system are defined on the properties of the components and the planner tries
to find the components which satisfy these requirements best.

Planning type: Planning type represents the kind of planning method are
employed for selecting the most suitable variant of the system. Selecting the most
suitable variant of the system is usually expressed informally in SPLE [6], but it
should be specified explicitly and formally in DSPL in order to automate the
selection process. Generally, planners can be categorized into three groups [68]:

e Rule-based: In rule-based planning, adaptation takes place by following a set
of rules which specify what actions should be performed in each particular
context [8]. In this planning type, the planning strategy is usually modeled
using ECA rules or state-transition diagrams and the strategies are then
enforced by a reasoner. In this type of planning, adaptation rules are usually
defined at design time which requires thorough knowledge of the operating
environment at design time [8]. However, some rule-based planners allow the
modification of the rules at runtime [23]. In a case study of MoRE engine used
in the context of Smarthomes [16], adaptation rules are organized as a set of
condition/resolution rules. The conditions are specified using propositional
logic over context variables. The planner is made of a reasoner which checks if a
condition holds for any of the rules and performs the resolution for those rules
whose condition holds.

e Goal-based: In goal-based planning, the high level goal of the adaptation is
defined, and finding how to achieve the goal is left to be figured out by the
planner. In goal-based planning, unlike rule-based planning where the actions
of the system in different contexts are specified at design time, the most
suitable action to be performed is figured out at runtime by using a planning
method. Usually in this planning type, the effects of different actions on the
adaptation goals are formally defined. Subsequently, the problem of finding
the most suitable action is reduced to a satisfiability problem (SAT) [51, 69]
or a constraint satisfaction problem (CSP) [70-72] which is then solved using
a SAT-solver or a CSP-solver. For example, in Parra et al. [70], a CSP solver
is used at runtime to find the most suitable variant of the system which
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satisfies the goals of adaptation. The goals of adaptation are expressed
through constraints over system quality of service properties.

o Utility-based: Goal-based planners categorize the current configuration of the
system into two possible states: desirable when the goals of the adaptation are
satisfied and undesirable when the goals are not satisfied. However, it is not
always possible to satisfy all goals of the adaptation at the same time or
exactly specify the goals of adaptation. Therefore, the goal of planning can be
changed to keeping the system at the most desirable state. In such cases, a
utility which is a quantitative value representing the desirability of the cur-
rent system variant in the current context is defined for the system [73]. This
utility is approximated by a utility function over the properties of the system
and the system context. Similarly, the best action is usually chosen using a
heuristic which approximates the effect of each action on the utility of the
system. For example, in [46], the planner of an adaptive travel assistant
mobile application uses a utility function to approximate the fulfillment of
user preferences in different situations. This prediction function is used to find
the configuration of the system which has the highest predicted utility. In
another example [74], the problem of feature configuration is represented as
multiobjective optimization with various criteria and then different multi-
objective evolutionary algorithms are used in order to find the best configu-
ration for that feature model.

(v) Transformation: In the DSPL adaptation managers which perform planning

on the feature level, the planner specifies the target configuration of the system
in terms of features other than architectural configuration which necessitates a
linking strategy between feature and architectural configuration of the system.
This mapping is usually addressed by a transformation mechanism which can
create target architectural configuration of the system based on the selected
features. A similar situation arises in the SPLE product configuration, where
target product configuration is specified in terms of features. There are some
work in SPLE which focus on relating the variability space model of the system
to system code [75, 76] or its architectural model [77-80], or its domain specific
modeling language in the design of a planner [81]. DSPL engineering approaches
have been inspired by such SPLE approaches in their development of a trans-
formation mechanism between feature configuration and the architectural
configuration at runtime. Here are three approaches used for this purpose:

o Direct link: One simple way of linking models at two levels is to create a direct
mapping between the features in the high level model to the architectural
model in system implementation [82]. Consequently, the architecture model
of the system after adaptation can be built by selecting the fragments of the
architecture model that are mapped to the selected features of the system.
However, this type of linking is not practical in certain cases, because direct
mapping between features and the architectural model fragments would not
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exist [82]. In these cases, the linking between the feature model and the
architecture model can only be enabled if the feature model is built consid-
ering the architecture. However building the feature model by considering the
architecture does not provide proper separation of concerns. An example of
using direct link for relating these two models is the MoRE approach [16],
where the link between features and architecture model of the system is
defined by a superimposition operator which takes features as input and
returns the components and connectors which should be active.

o Aspect model weaving: Model-Driven Development (MDD) techniques allow
for the automated generation of detailed architecture models from high level
designs. Specially for creating a detailed architecture model from the con-
figured feature model, aspect model weaving can be used as presented in
SMARTADAPTERS [83] and Kompose [84]. In these approaches, system
architectural commonalities are represented in a base model. To create the
final model of the system, each feature is mapped to a set of aspect models
which are then woven into the base model if that feature is selected in the
feature model configuration of the system. For example in [85], this approach
was used to build an adaptive home automation system for dependent people.
In their system, the authors defined a pointcut model representing, where an
aspect could be woven into the system and an advice model which represents
what can be woven at joint points. When the system adapts, the advices are
woven into the pointcut model according to the weaving directives.

e Transformation rules: In this linking strategy, in addition to the feature model
of the system, an alternative feature model is defined over the variability of the
architecture model such that all possible variants of the architecture model
could be represented by that feature model configurations. Subsequently, this
feature model is linked to the main feature model of the system using a set of
transformation rules. The configuration for the feature model over the ar-
chitectural model can be found using these transformation rules whenever a
feature model configuration is available. For example, in [86], this approach
was used to link between features of the system and the architecture model in
an adaptive video surveillance system. The system was modeled using two
feature models one on the features and another on the components. These two
models were linked using a set of rules represented using propositional logic.
When the system adapts, the planner finds a configuration for the feature
model over components satisfying the rules using a SAT solver.

4.3. Execution

In traditional software product lines, the target system is developed and deployed
after its configuration has been specified. But adaptation manager in DSPL should
reconfigure a running instance such that current variant gives its place to the target
variant while ensuring system consistency. The execution step is responsible for this
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part of system adaptation. The planner provides the architecture model of the target
system to the execution steps. The architecture model specifies the configuration of
architectural entities (e.g. components, services, connectors) and how they are put
together. The execution step uses a runtime reconfiguration mechanism to safely
introduce, remove, or modify wvariation entities. The variation entities are those
architectural entities by which adaptation is made possible through adding, removing,
or modifying them. The selection of architecture model, variation entity, and runtime
reconfiguration mechanism is affected by the architectural style which has been
selected for the system. Figure 5 shows these dimensions and some of their possible
values which we review in the remainder of this sub-section.

(i) Architecture model: When an adaptation occurs, the planner should provide
the configuration of the target variant of the system to be used for the actual
reconfiguration. This model is an abstract view of the system with which all
possible variability of the system can be represented. In other words, it is de-
tailed enough so that every possible adaptation which the planner can perform
can be reflected in it. This model is used by the reconfiguration mechanism to
find points in the system which should change as a result of adaptation.

o Custom languages: Since this model of the system is available at runtime, it
should be abstract to enhance memory and processing efficiency. Therefore,
approach-specific models are defined in some cases [12, 16]. For example, in
MoRe [16], an architecture model named PervML [32] has been proposed and
adopted, where only the component and their connections are represented as
a graph. Some other approaches [24, 27] use the architecture model which is
used by the adopted reconfiguration middleware to define the system

Custom Languages

Architecture model Process Modeling Languages

‘ Architecture Description Language

Component-based

Architectural style Service-oriented

SCA

‘ Execution Component

Service

Variation entity

Aspect

Connector

Component model
Runtime reconfiguration <
- Dynamic aspect weaving

Fig. 6. The taxonomy for dimension related execution step.
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architecture. Fore example, in [12], OpenCOM DSL which is used by the
OpenCOM middleware to specify system architecture is used.

e Process modeling languages: Business process modeling languages are widely
used for defining how services interact in order to fulfill the requested func-
tionality of the system. This models is usually abstract enough for repre-
senting structure of the system for planning and used in some approaches as
architecture model of system. For example, the system adapts dynamically by
changing the process that defines the service interaction in [11], which is
expressed using the BPEL.

o Architecture description languages (ADL) this type of formalism is used for
conceptually specifying architecture of the system. This model is used by
system architect to design the system in the high level and therefore can be
used for representing system architecture by a planner. For example, in [87],
an ADL is proposed for dynamic service-oriented product lines which allows
representing variability of architecture as well as structural elements and
configuration of it.

(ii) Architectural style: Architectural style defines the highly granular entities of
the system and how they are connected to each other. Although, selection of
architecture style is not directly related to adaptation, the selected architecture
style affects the selection of architecture model, variation entity, and runtime
reconfiguration mechanism. Therefore, we have considered it as one of the
dimensions. In the following, we discuss the suitability of two of the most
common architectural styles for use in DSPL engineering approaches:

o Component-based: In component-based architecture, components communi-
cate through connectors to provide the required functionalities of the system.
Although components are built to work independently from their context, they
are not usually designed to be reconfigurable at runtime. Thus, architectural
pattern have been proposed to facilitate runtime variability [1, 88]. Gomma
et al. [22] propose a process for developing a component-based DSPL, where the
architecture is built using reusable architectural patterns (such as master/slave,
client/server), and for each of these architectural patterns, a specific reconfig-
uration pattern is defined. Modeled with state and scenario-based models, these
reconfiguration patterns provide a safe mechanism for reconfiguration.

o Service-oriented: Both service-oriented architectures and software product
lines share the common goal of reusing existing assets for developing new
products. A number of approaches have already been proposed for developing
service-oriented product lines [89-92]. Service-oriented architecture has also
been used for developing dynamic reconfigurable systems because, it eases the
dynamic composition of self-contained and loosely-coupled services [2, 46, 93].
Considering the motivations for using service-orientation both for software
product lines and dynamic reconfigurable systems, there have been a number
of works that developed service-oriented DSPLs [11, 16, 27, 42, 94-96].
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Cetina et al. [16] propose a service-oriented DSPL engineering approach for
pervasive systems (e.g. Smarthomes). Pervasive systems are highly dynamic
in nature since new entities are frequently introduced to the system or re-
moved. In their approach, Cetina et al. define two categories of components:
devices and services which implement system functionality. These components
are connected using communication channels. The system adapts by activating/
deactivating both services and communication channels.

o Service component architecture: This hybrid architecture tries to combine
components-based and service-oriented architecture in order to take the
benefits of both of them. In this architecture, the functionalities are provided
by components which their interfaces are defined as services. Therefore
components interact by calling each other’s services. This architecture takes
advantage of service-oriented systems benefits such as well-defined commu-
nication interfaces, simpler integration, and dynamism in context of com-
ponent-based environment. For example [27] adopts this approach in order to
facilitate dynamic binding and unbinding of components at runtime.

(iii) Variation entity: Variation entities are parts of the system that change when
the adaptation is carried out. The type and the granularity of the variation
entities affect the type of adaptation which is supported by the system.

o Components: According to the definition of a component by Szyperski [97],
components can be deployed independently, and their context dependencies
are always specified explicitly. This disconnection of the component from its
environment allows the component to be used as the variation entity in the
adaptation. However, it has been argued that components do not have the
same granularity as features most of the time [69] and they may be more
coarse or fine grained. In order to support feature realization with a higher
granularity than that seen in components, reconfiguration can be defined over
a component collection. For example, in the Genie approach, a collection of
components which address a specific area of concern is called a component
framework. Component frameworks act as the variation entity in adapta-
tions. One concern with using components as variation entities of the system
is that certain features do not have corresponding components at the com-
ponent level. For example, the implementation of an authorization feature
may be distributed between multiple components. Another concern with
using components as variation entities is in maintaining states of the com-
ponents as they are replaced with other components while the system adapts.

o Aspects: Aspect-oriented programming and dynamic aspect weaving can be
used in order to enable runtime reconfiguration in a DSPL adaptation platform.
However, efforts for using aspect-oriented programming in both software prod-
uct lines and DSPL have shown that this approach may lead to certain problems
[11, 98]. Features are more abstract than aspects, and a feature may be repre-
sented by many aspects; therefore, handling the linking between the features of
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the system and the aspects may become unmanageable. In an example of using
aspects for realizing features [99], each feature is implemented by a set of aspects.
These aspects are implemented following a set of design patterns in order to
enable both static and dynamic binding of the features in a system.

e Services: Services can be simply deployed into a system and easily composed
with each other. They also have characteristics such as being loosely coupled,
self-describing and having well-defined interfaces which make them viable
candidates for runtime adaptive systems. For example, Rouvoy et al. [46]
used services as the variation entities for ubiquitous environments, where new
services constantly enter and leave the system. Additionally, alternative
third-party services can be discovered and added to the system so they enable
open adaptation, where the system can evolve into new variants which have
not been considered at design time. However, a problem of using services as
reconfiguration entities appears when we attempt to define the links between
services and system features. Similar to components and aspects, services are
not the most accurate representatives of the features in a system.

e Connectors: Connectors define how the constituent elements of a system are
connected together. The connectors in a system could be glue codes, com-
munication channels, or workflows. The connectors usually define the flow of
the data in the system. Therefore, they are selected as the variation entity
when the flow of data defines the behavior of the system. Examples of this
function for the connectors may be encountered in data processing systems
(e.g. video filters [65, 86]) and business processes [88, 100]. An example of
using connectors at runtime adaptation is the MoRe framework [22], where
connectors activate/deactivate in order to introduce new services and devices
in a Smarthome application.

(iv) Runtime reconfiguration: In order to execute the actual adaptation actions,

the execution platform should provide the ability to modify the architectural
configuration of the running system (such as the binding and unbinding of the
components) and observe the running system’s architectural configuration.
These functionalities are usually provided by an application-independent mid-
dleware which frees the system from dealing with actual adaptation concerns by
taking responsibility for performing the adaptation while providing interfaces for
managing that. These middleware usually work by implementing a reflection
mechanism. Reflection in the middleware [101] is the ability to provide intro-
spection and intercession. A reflective middleware provides a model of the system
which allows for any system change to be reflected on the model and likewise for
any change on the model to be reflected on the system. Therefore, the planner can
access the representation of the architectural configuration of the system using
this model (introspection). It can then reconfigure the system by modifying this
model (intercession). In this dimension, two of the mechanisms used by mid-
dleware that enable runtime reconfiguration in the system is reviewed.
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o Component model: A component model is a definition of the semantics and
syntax of components which show what they do, how they are structured and
how they are composed [102]. A system can reconfigure at runtime if the
architecture and its component conform to a component model that allows
runtime reconfiguration. For example, OpenCOM middleware [31] uses a
component model for enabling runtime reconfiguration in the system. This
middleware is used in the Genie tool for developing DSPLs. OpenCOM is a
reflective middleware which supports hierarchical implementation of the
system using component frameworks. Component frameworks are sets of
components addressing a specific feature of the system. The Fractal compo-
nent model [103] is another hierarchical component model that can be ex-
tended and customized. The OSGi framework [104] is yet another component
model which works on services and supports runtime installation, starting,
restarting and uninstallation of services.

o Dynamic aspect weaving: Dynamic aspect weaving can be utilized to modify
the aspects of the system at runtime. This ability can be used to adapt the
system when the variation entities of the system is aspects [105]. For example,
in [106], features are implemented using dynamic aspects in AspectJ [107].
These dynamic aspects are added or removed at runtime using dynamic aspect
weaving. In another work, Baresi et al. [11] used dynamic aspect weaving in a
business process to add/remove features at runtime, which were represented
with aspects of BPEL code.

4.4. Comparing DSPL engineering approaches using
the proposed framework

Table 3 shows the value of each dimension in our framework for each of the
approaches that have been reviewed. In this table, columns show the MAPE-K loop
steps and their respective model and mechanism dimensions and rows indicate the
reviewed DSPL engineering approaches.

In the following, we use Table 3 to compare each of the selected approaches:

Baresi et al. In this work adaptation planning is performed by a human expert
through a user interface. As a result, monitoring and planning steps are not appli-
cable to this approach. In addition, considering BPEL code as the variation entity is
a distinctive feature. This has necessitated the use of dynamic aspect weaving as the
runtime reconfiguration mechanism. However, the adoption of BPEL as variation
entity restricts this engineering approach’s application domain to systems which can
be designed and implemented through business processes.

Bencomo et al. (Genie): The notable design decision in this approach is the use of
two variability space models. Enumeration is used for defining the context variability
whereas variation points are used for determining the architectural variability of the
system. These two variability models are linked directly using the OVM. Further-
more, planning is different from other approaches as it is defined by a state transition
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diagram. These two features create an intiutive and simple adaptation management
mechanism. As a drawback, however, the management of context variability and its
link with the architectural variability becomes more difficult as the system grows.

Cetina et al. (MoRE): In this approach, OWL is used to develop the context
model of the system. The approach enables complex context reasoning using the
SPARQL language. Another notable dimension of design in this system is the use of
connectors as variation entities. This is specially useful in the context of Smar-
thomes, where new devices are introduced at runtime.

Floch et al. (MADAM): The use of utility-based planning is a distinctive feature
for this approach. The planning model for this approach is a utility function which is
defined over the architectural configuration of the system. The application of the
utility-based approach liberates the adaptation manager designer from the task of
explicitly defining adaptation actions such as ECA rules and transition diagrams.
However, defining a precise utility functions is rather complex.

Gomaa et al. (REPFLC): The distinctive feature of this approach is that it uses
ECA rule planning such that the rule actions work directly on the architecture of the
system. These rules are part of reconfiguration patterns which are defined in the
domain engineering process. As these reconfiguration patterns are directly applied to
the architecture itself, defining a transformation mechanism or architecture model
becomes unnecessary. However, the design of these reconfiguration patterns is an
arduous task since they directly impact the system’s architecture.

Morin et al. (DiVA): The approach suggests a general architecture with flexibility
for planing and execution. This allows the selection of appropriate planning and
execution mechanisms based on the condition of the application domain. Addition-
ally, this model uses the WildCAT context-sensing middleware which provides EQL,
a language capable of querying the values for context reasoning.

Parra et al. (CAPucine): This approach uses the COSMOS framework in order to
enable context-awareness. Additionally, as its important feature, this approach uses
aspect model weaving to create the architecture model of the target system. This
allows the system developer to define more complex relationships between the feature
model and the architecture model of the system. However, the same also necessitates
the design of rather more complicated (as a result, harder-to-maintain) aspect
models. One other notable design decision, in this approach, is the selection of SCA
as the architectural style, which takes advantage of several benefits of both service-
oriented and component-based architectural style.

5. Guidelines for Selection of a DSPL Approach

Our proposed framework can be used for aiding one in selecting or designing a DSPL
engineering approach. In order to adopt or develop a DSPL, one can select appro-
priate values for different dimensions of the proposed framework according to the
specific needs of the problem domain. The selection of possible values for this frame-
work is mostly reliant on the type of adaptation sought. This can be called expected
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DSPL specification. Then, the DSPL specification can be compared with the specifi-
cation of existing approaches to find exact or partial matches, where models and
mechanisms can be borrowed in order to build a new DSPL engineering approach.
In the following, we provide general guidelines for the selection of appropriate
values for different dimensions of the framework organized by the steps of the
MAPE-K loop. Additionally, we discuss how selecting different values for the
dimensions affect adaptation properties of the final product whenever possible.

e Monitoring and analysis design

— Context model: Design of a context model is mainly determined by properties of
the context and aspects of those properties that are significant for the planner.
These aspects include context properties history, quality, and interrelation,
among others. Using property-sets for representing context provides simple yet
efficient solution which can be simply extended to represent those aspects.
However, using ontologies provides a new set of capabilities for the context model
which cannot be easily achieved using property-sets. For example, it allows se-
mantic reasoning on the context model and enables possible sharing of context
information between different systems which can be useful in the case of decen-
tralized adaptation when multiple agents work together to plan an adaptation.

— Context reasoning model: Since the reasoning model is used to analyze the
information represented by the context model, the selection of a reasoning model
is essentially affected by the context model. For example, using ontologies for
representing the context model calls for using semantic reasoning and therefore
semantic reasoning models. However, the complexity of a context reasoning
mechanism and as a result its reasoning model depends on the analysis required
for the operation of the planner. This could range from a simple rule-based
mechanism, where reasoning model would be simple rules such as thresholds, to
complex machine learning mechanisms where a large number of context prop-
erties are considered at the same time to speculate about the context situation.

— Context sensing: Generally, the design or adoption of a context sensing
mechanism is mostly reliant on the sources of the changes resulting in an ad-
aptation (e.g. context, system, or user), its type (e.g. functional, non-functional
or technological) and the system platform (e.g. software or hardware) [37]. We
refer the interested reader to guidelines and taxonomies currently existing in
the literature [93, 108, 109].

e Planner design

— Variability space model: Variability space model can be used to represent a
system variability in terms of its context, its features, or its architecture. Two or
more variability space models can be used in a system to show its variability from
two aspects at the same time. Different variability space models may suit dif-
ferent aspects of the system. For example, in [13], enumeration is used to rep-
resent context variability while variation points are used for architecture
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variability. One other notable factor affecting the selection of a variability space
model is the complexity of variability in the system. For example, although
enumeration works effectively when the number of system variants is limited, it
is not efficient in systems with higher number of variants.

Planning model: Since the type of planning model is mainly specified by the
planning type used in a DSPL engineering approach, we have incorporated
discussion about it in the planning type part.

Planning level: Deciding on the features of the system separates planning
concerns from implementation requirements. Such separations will result in a
more elegant and readily understandable adaptation logic, which allows easier
extension as it is less likely to be faulty. Furthermore, planning at the feature
level is closer to the procedures in an SPL engineering process and has the
benefit of easier adoption when an SPL engineering approach is extended to
DSPL. However realizing this separation will require a mechanism to link high-
level features to the architecture level details. Developing a mechanism that
creates this link is not generally effortless and will result in overhead at runtime.
Planning type: If planning is not autonomous and the variants of the system are
selected by an external entity such as the user, planning does not necessarily need
to be implemented in the system. Otherwise, the type of planning for the system
depends largely on the type of the goal that is pursued by the adaptation. In cases,
when the system adapts in a limited way and this adaptation can be specified at
design time, rule-based approaches seem to be the better option for adoption. In
circumstances, when the adaptation of the system may not be specified at design
time and can only be figured out at runtime according to specific situations, goal-
based and utility-based approaches are the more appropriate choice. Goal-based
approaches are suitable when the goal of the adaptation is to enable the system to
self-configure and self-heal, and it can be specified formally. Utility-based
approaches seem to be the better fit for a self-optimizing context when the de-
sirability of the system can be specified with a quantitative value.

Another important aspect in selecting the planning approach is the impact of
the approach on the regular operations of the system. Factors such as criticality,
overhead, reliability and resilience of adaptation should be taken into account
when a planning approach is selected. For instance, rule-based approaches usu-
ally have less overhead on the system which should be considered in the running
environments when system resources are limited. Given their easy verification at
design time, rule-based approaches are generally more reliable. However, it
should be noted that verifiers do exist that can be used to validate adaptation at
runtime using methods such as simulation or model checking [23, 110].

Transformation: The direct link between a system’s feature model and its ar-
chitectural model is simple to understand and establish. Since the features and
architecture part of the system have different natures, this mapping does not
always exist. However, the limitation can be bypassed if the feature model is
built by considering system architecture. In more complicated situations, more
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complex approaches such as transformation rules and aspect model weaving
should be used. It is sometimes necessary to run a SAT solver at runtime when
transformation rules are used. Running the SAT solver at runtime increases the
adaptation overhead. Furthermore, developing and maintaining consistent
aspect models which are used by aspect model weaving is itself an arduous task
considering that aspect models are hard to understand. One other difference
which should be considered when selecting a mechanism is that the direct link
and aspect model weaving mechanisms do not address the implementation of
cross-cutting variation (e.g. inclusion of a component excludes the existence of
another one), while cross-cutting variation can be addressed using integrity
constraints over feature models when transformation rules are used.

¢ Execution design

— Architectural model: The architectural model works as a basis for changes per-
formed by runtime reconfiguration middleware of a system. Use of an architec-
tural model understandable by the reconfiguration middleware facilitates the
adaptation process. Otherwise, additional transformation from architectural
model produced by the planner to a model or a set of actions understandable by
the runtime reconfiguration middleware is necessary. One other factor which
should be considered in the selection or adoption of an architectural model is
selection of appropriate level of abstraction, where all possible architectural
variants of system can be expressed while unnecessary implementation related
details are removed. Using appropriate level of abstraction for architectural
models reduces the complexity of the planner.

— Architectural style: The dynamism of a system is influenced by the architec-
tural platform upon which the system is built. In systems with a component-
based architecture, behavioral and component adaptation can be performed by
changing component parameters or by replacing a component with another
component with the same interface. Yet, the component dependency in a
component-based architecture usually prevents architectural adaptation.
Therefore, an architectural pattern (e.g. C2 [111], Weaves [112]) should be used
in order to enable architectural adaptation, which may not always be feasible.
Furthermore, the service-oriented architecture is built on loosely-coupled ser-
vices by explicitly defining the manner in which these services interact using
workflow services, business process languages, or communication channels.
Similarly, component adaptation can be achieved by replacing a service with
another service with the same interface while architectural adaptation can be
performed by changing services interactions.

— Variation entity: Similar to the architectural platform, the selection of a vari-
ation entity depends on the degree of the dynamism required for the system. In
the problem domains, where component adaptation satisfies adaptation
requirements, the variation entity is usually a component or a service. In cases,
where an architectural adaptation is required, connectors such as channels
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should be adapted in addition to components and services. In the context of
DSPL engineering and feature-based planning, aspects have smaller granularity
than features, and implementing features using aspects would be effective.
However, in order to adapt the system at feature-level at runtime, aspects can
be used to modify code of the connectors (e.g. workflow specification languages
such as BPEL which work on services). Another important factor in selecting
the variation entity of the system is state preservation; components usually
have a state which should be preserved if the component is replaced with a new
component. Component state preservation requires a supporting mechanism
(such as [22, 113]). However, services can be implemented in a stateless manner
such that any adaptation over them does not affect the state of the system.

— Runtime reconfiguration: The selection of runtime reconfiguration mechanisms
is affected by the variation entity as well as the dynamism required for the
adaptation. Dynamic aspect weaving is used when the variation entity is an
aspect. Otherwise, other mechanisms are used to enable runtime reconfigura-
tion (e.g. component models). Considering that the planner in a DSPL usually
operates on the model of the running system, the middleware which is used for
enabling runtime reconfiguration should support reflection or allow extension
for supporting reflection. Extendibility of the middleware and its component
model is usually essential. The component model usually needs to be extended
to allow for sensors to be placed within the system or to implement mechanisms
for getting and setting component state information.

6. Summary

With the burgeoning demand for runtime adaptation in emerging applications, the
field witnesses considerable increase in research. However, developing runtime
adaptive systems is considered a complex and challenging task, and existing
knowledge in the field requires more research for a wide range of approaches. DSPL
engineering approaches suggest the use of extensive product line engineering vari-
ability models and mechanisms for the management of runtime adaptation. Research
in this area has shown that DSPL is a promising path for developing new solutions.
This paper has focused on providing a comprehensive framework for comparing
different DSPL approaches as well as a set of guidelines used to select the appropriate
one. We studied these approaches from two perspectives namely adaptation prop-
erties and adaptation realization. Different properties of adaptation for a DSPL
engineering approach were then reviewed. A framework for comparing adaptation
realization in DSPL was consequently proposed. In this framework, the adaptation
management was seen as a MAPE-K loop, and a taxonomy for adaptation realiza-
tion was developed. Using this framework, seven prominent DSPL engineering
approaches were compared. Additionally, guidelines were introduced to create the
link between the adaptation and its realization properties by outlining dimension
values for realization scenarios which best suit different types of adaptations.
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