
Automated Composition of Service Mashups
Through Software Product Line Engineering

Mahdi Bashari1(B), Ebrahim Bagheri2, and Weichang Du1

1 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
{mbashari,wdu}@unb.ca

2 Department of Electrical and Computer Engineering,
Ryerson University, Toronto, Canada

bagheri@ryerson.ca

Abstract. The growing number of online resources, including data and
services, has motivated both researchers and practitioners to provide
methods and tools for non-expert end-users to create desirable appli-
cations by putting these resources together leading to the so called
mashups. In this paper, we focus on a class of mashups referred to as
service mashups. A service mashup is built from existing services such
that the developed service mashup offers added-value through new func-
tionalities. We propose an approach which adopts concepts from soft-
ware product line engineering and automated AI planning to support
the automated composition of service mashups. One of the advantages
of our work is that it allows non-experts to build and optimize desired
mashups with little knowledge of service composition. We report on the
results of the experimentation that we have performed which support
the practicality and scalability of our proposed work.

Keywords: Service mashups · Feature model · Software product lines ·
Automated composition · Planning · Workflow optimization

1 Introduction

More and more companies are now making their application services publicly
available to non-affiliated developers through online platforms such as Program-
mableWeb. These services can be accessed through well-defined RESTful APIs.
Many of these services are highly reliable and provide functionalities that cannot
be otherwise easily implemented by smaller software development companies or
end-users such as Google Maps, Zazzle and Paypal, just to name a few. There-
fore, the popularity of such publicly available online services and the ease of
adoption of their REST-based SOA architectures have motivated researchers
and practitioners to develop tools and methods which allow end-users to seam-
lessly build new services by composing existing APIs [4]. Such services are often
known as service mashups. A service mashup is a service which is composed of a
number of other services and provides added-value through new functionalities.

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 20–38, 2016.
DOI: 10.1007/978-3-319-35122-3 2

Automated Composition of Service Mashups 21

The added value of service mashups is through the emergence of newer func-
tional capabilities that were not available prior to the integration of the already
existing services.

There is considerable amount of research on semi-automatic and automatic
methods for composing service mashups [10]. Most of these approaches assume
that the end-user is familiar with the specifics of each and every instance of
services’ execution and invocation criteria, i.e., their pre-requisites, input and
output types and other types of execution requirements. However, when consid-
ering the fact that the objective of such work is to enable automated runtime
selection and composition of services from the available service possibilities with
minimal user intervention and high-availability, this becomes a noticeable short-
coming. It can prevent non-expert users who do not have the required knowledge
to benefit from and use such approaches.

In order to address this issue, we follow an intuitive approach to separate
the non-expert end-users from the complexities of the services by using concepts
from Software Product Lines (SPL). It has already been argued in the literature
that while end-users might have difficulty understanding the underlying specifics
of services, they are more comfortable when dealing with higher-level represen-
tations of functionality expressed through SPL features [13]. A feature is often
defined as an incremental prominent or distinctive user-visible functionality of a
software and is therefore quite understandable for the end-users. In other words,
while the end-user may not know which specific services are collectively needed
to satisfy her requirements, she would know which user-visible functionalities
are expected from the final product.

The integration of services and features have already been extensively investi-
gated in the literature [13]. We specifically base our work on the model proposed
by Lee and Kotonya where features are operationalized through atomic or com-
posite services [13]. In this model, two distinct lifecycle phases are introduced:
(i) domain engineering phase: during which appropriate services that can oper-
ationalize features are identified, and are connected to their corresponding fea-
tures, and (ii) application engineering phase: during which the end-users select
their desired features through which the right services are identified. Our work is
positioned within the application engineering phase of this model and provides
mechanisms for automatically composing and optimizing a service mashup based
on the user-specified feature requirements.

In this paper, we provide the following concrete contributions:

– We propose an AI planning based method for automated service mashup com-
position which operates based on feature model configurations as the main
input model for specifying user requirements and generates a WS-BPEL work-
flow that satisfies those requirements.

– We further propose a method for optimizing the created WS-BPEL workflow
by considering the concepts of safeness and threat from the planning domain
in order to inject parallelism into the generated workflow and improve its exe-
cution efficiency (e.g. reduce execution time).

22 M. Bashari et al.

The rest of this paper is organized as follows: Sect. 2 will cover the required
background information and the problem statement. In Sect. 3, we will describe
the details of the proposed approach. Section 4 will then provide the details of
the experiments and the insights gained from them. The related work is covered
in Sect. 5 and finally, the paper is concluded in Sect. 6.

2 Problem Statement and Background

The objective of our work is to enable non-expert end-users to automatically opti-
mially compose publicly available services in order to satisfy the requirements
without being concerned with the technical details of service composition. To
achieve this objective, we rely on the integration of services and software prod-
uct line features. As mentioned earlier, researchers such as Lee and Kotonya
[13] have already explored and concretely investigated how services and features
can be integrated. There is ample literature that builds on a two-phase lifecycle
that integrates services and features in its first phase and then, in the second
phase, uses the integrated model to derive a product that satisfies the end-users’
desired feature selections [13]. The derived product will then be operationalized
by the services that are connected to the selected features. In this paper, we
assume that the first domain engineering phase of the lifecycle, i.e., the con-
nection between services and features, has already been completed using one
of the established methods in the literature [13]. Our focus will therefore be to
systematically support the application engineering phase of the lifecycle. Cur-
rent automated service composition methods work on inputs such as OWL-S
service descriptions [10], temporal logic [5], or other languages, which are used
to specify the characteristics of the desired composed service mashup. However,
we are interested in an input specification model abstract enough to be used by
non-expert end-users to specify their requirements and an output that would
be concrete enough to be directly executable. For this purpose we use feature
models as the input specification model and generate the final outcome of the
composed service mashup in WS-BPEL.

Order
processing

Shipping
Scheduling

Invoice
Creation

Currency
conversion

Territory
support

International Domestic Tax
calculation

Google
Wallet PayPal

Payment
Processing

Integrity Constraints:
Domestic requires Tax calculation
International excludes Tax calculation
International requires Currency Conversion

Optional Mandatory Or Alternative And

Fig. 1. A sample feature model for an order processing mashup family.

Automated Composition of Service Mashups 23

2.1 Feature Models

Feature models are among the widely used variability modeling tools used in
Software Product Line Engineering (SPLE). A feature model provides a hierar-
chical tree structure that represents the organization of and the relation between
the features. Features can be structurally related to each other through optional,
mandatory, Xor-, Or-, or And-group relations. These relations express the pos-
sible variabilities of the product family. Feature models also represent cross-
cutting variations using integrity constraints. The use of feature models has the
advantage of being understandable while having the power to represent complex
variability of a family and therefore is usually used as a shared model between
users and system developers in software product line engineering [14].

Figure 1 depicts a feature model for a product family that processes a pur-
chase request and creates an invoice in different ways. The product family repre-
sented through the ‘Order Processing’ root node has four sub-features, namely
invoice creation, shipping scheduling, payment processing, and territory support,
where shipping scheduling and payment processing features are optional. Ter-
ritory support sub-features are mutually exclusive. Furthermore, the selection
of the ‘international’ feature prevents the selection of the ‘tax calculation’ fea-
ture and requires the selection of the ‘currency conversion’ due to the integrity
constraints.

A feature model configuration is a subset of the features in a feature model
which satisfies the structural and integrity constraints, and represents a viable
instance of the family. Prior work has shown that a feature model configuration
can be used as an effective tool for representing the end-users’ requirements
[14]. For example, the selection of features marked with a checkbox in Figure 1
represents a valid feature model configuration that can also be considered to be
the requirements expressed by an end-user.

2.2 Business Process Execution Language (BPEL)

The Web Service Business Process Execution Language (WS-BPEL), commonly
interchangeable with BPEL, is a well-known standard for the specification and
execution of service-oriented business processes. In WS-BPEL, processes are
built using WSDL-SOAP services and processes themselves are exposed as
WSDL-SOAP web services. Control flows in WS-BPEL are expressed by struc-
tured activities and data is passed between services by sending variables as
parameters. Figure 2 represents a graphical representation for a WS-BPEL code
for the possible realization of the feature model configuration in Fig. 1 where
features marked with checkboxes are selected. The general process for a service
composition is made of hierarchical organization of activities using <flow> and
<sequence> tags. The activities in <flow> can be executed in any order or in
parallel while activities in a <sequence> tag should be executed in order. The
synchronization between activities in a <flow> tag can be done using <link>
tags which has been shown by yellow arrows in Fig. 2.

24 M. Bashari et al.

Fig. 2. Graphical representation of a possible WS-BPEL process for order processing.

The atomic activities in WS-BPEL are made of service invocations, receiving
a callback for a service invocation, and a number of WS-BPEL actions or control
activities which will not be considered in this paper for the sake of simplicity and
without loss of generality. Each service invocation may receive some variables
as input and may return one or more outputs. WS-BPEL code can be readily
executed using existing WS-BPEL engines.

In the next section, we will describe our proposed automated mashup compo-
sition and workflow optimization method which receives the end-users’ require-
ments through a feature model configuration process and automatically builds
a fully executable WS-BPEL process to serve as the target service mashup.

3 Proposed Approach

In our work, an input feature model configuration serves as the end-users’
requirements and it is realistically assumed that the features of the feature model
configuration have already been connected to relevant services during the domain
engineering phase [13]. We refer to the feature model configuration and the ser-
vices connected to the features as the domain model. The objective is to generate
a fully executable WS-BPEL process based on the domain model. Our proposed
method first creates a workflow model that consists of all the features present in
the domain model through an AI planning problem. The obtained workflow is
then optimized and converted into WS-BPEL. In the following, we first formally
define the domain model.

Automated Composition of Service Mashups 25

3.1 Domain Model Specification

We define the domain model to consist of five sub-models, namely feature model,
service model, context model, service annotations, and feature model annota-
tions. We start by formally defining a feature model configuration and a workflow
and then define the models that connect these two together.

In order to define feature model configuration, we first need to define the
feature model. A feature model can be formally defined as:

Definition 1 (Feature model). A feature model is a tuple fm = (F,P,FO,
FM , FIOR,FXOR,Freq,Fexc) where

– F is a set of features;
– FO : F �→ F is a function which maps an optional child feature to its parent;
– FM : F �→ F is a function which maps a mandatory child feature to its parent;
– FIOR : F �→ F and FXOR : F �→ F is a function which maps child features

and their common parent feature, grouping the child features into optional and
alternative groups, respectively;

– P : F �→ F is a function which maps each feature to its parent and hence we
have P = FO ∪ FM ∪ FIOR ∪ FXOR;

– Freq ⊂ F × F is a set of requirement relations which represents dependency
between features.

– Fexc ⊂ F × F is a set of exclusion relations between features which repre-
sents pair of features that both can not be selected in a valid feature model
configuration.

Consequently, a feature model configuration is defined as follows:

Definition 2 (Feature model configuration). A feature model configuration
is a set C ⊆ F where

– if f ∈ C then P(f) ∈ C
– if f ′ ∈ C and (f, f ′) ∈ FM then f ∈ C
– if f, f ′ ∈ F and f ′′ = P(f) = P(f ′) and (f, f ′′), (f ′, f ′′) ∈ FXOR then f ∈

C ⇒ f ′ /∈ C
– f, f ′ ∈ F and (f, f ′) ∈ Freq then f ∈ C ⇒ f ′ ∈ C
– f, f ′ ∈ F and (f, f ′) ∈ Fexc then f ∈ C ⇒ f ′ /∈ C.

In order to operationalize a feature model configuration in a SOA model, the
orchestration of features implemented using services needs to be implemented
in a workflow. A workflow specifies the sequence of interactions between the
services. Our objective is to first develop a workflow from a feature model con-
figuration and then convert that into WS-BPEL. We define a workflow based on
a service specification as:

Definition 3 (Service). A service specification s = (I,O,Oc) is a triple where

– I is a set of entities that the service accepts as input when invoked.
– O is the set of entities that the service returns as output after being invoked.
– Oc is the set of entities that is received in service callback.

26 M. Bashari et al.

Definition 4 (Workflow). A workflow is a triple w = (E,N, E) where

– E is a set of entities which can be used as input or output in the operations of
the workflow. Each entity e ∈ E has a type.

– N is a set of operation nodes which can be:
• An invocation node is a triple (s, I,O) where s ∈ S represents the invoked

service and I and O specify the mapping relation between workflow enti-
ties, and input and output of the services.

• A receive node is a pair (s,Oc) where s ∈ S represents the invoked ser-
vice which has resulted in callback and Oc specifies the mapping relation
between workflow entities and the outputs of service callback.

– E ⊂ N × N shows directed edges between operation nodes such that for each
n, n′ ∈ N , (n, n′) ∈ E , the operation of node n should be performed before n′

in the execution process.

In order to be able to automatically make a transition from a feature model
to a workflow, we define a context model, which represents the environment in
which the service mashup will operate in. Relations between the feature model,
services and the context model are represented with annotations on these mod-
els. These annotations are used for creating a workflow from the feature model
configuration. We formally define a context model as:

Definition 5 (Context model). A context model is a triple c = (cT , cE , S)
where

– cT denotes context types, which is a tuple (Θ,Φ,F) where
• Θ is a set of data types
• Φ is a set of fact types
• F : Φ �→ Θ × × Θ is a function which specify the data type of entities

that each fact type is defined on.
– cE is context entities which is a pair (E, T) where

• E is a set of entities that exist in the context
• T : E �→ Θ is a function which defines the type of each entity

– S is context state which is a set S ⊂ Φ × E × × E such that for each fact
f = (φ, e1, ..., ei) ∈ S ⇒ (φ, T (e1), ..., T (ei)) ∈ F and shows the facts which
are true in that context.

In our context model definition, context entities are similar to object
instances passed between functions, and context types are used for strictly spec-
ifying entity types. Furthermore, the context model also consists of the context
state, which is defined by facts. Facts can express the relationship between zero
or more context entities. Let us elaborate on this using Fig. 3. In this example, c
and po are two context entities, which are of customer and purchase order types,
respectively. Furthermore, the fact ordered(c, po) expresses that customer c has
ordered the purchase order po. This fact is represented using fact type ordered
which relates an entity of type customer to an entity of type purchase order. We
will explain in the following how the context model information will be used to
annotate features.

Automated Composition of Service Mashups 27

Fig. 3. An annoated feature model for the order processing family.

Based on the context model, each feature in the feature model needs to be
annotated with three sets: (i) the set of entities that are required by a service
consisting of this feature; (ii) the set of facts that should be true in the current
state of the context model in order for the service that consists of this feature
to safely execute, and (iii) the set of facts that will become true in the context
model once a service that consists of this feature is executed. These annotations
can be formally defined as:

Definition 6 (Feature model annotation). The annotation for feature
model fm is a function AFM which maps each feature f in the feature model
to a triple (Ef ,Pf , Ef) where

– Ef ⊂ E is the set of entities that must exist in a context model in order to
execute any service mashup with feature f .

– Pf ⊂ Φ × E × × E is the set of facts which should be true in the context
model in order to execute a service mashup with feature f .

– Ef ⊂ Φ × E × × E is the set of facts that will be true in the context model
after executing a workflow with feature f .

Figure 3 shows the annotations for our order processing feature model. As
seen in the figure, for each feature, Ef ,Pf , Ef are defined as needed. For instance,
the figure shows that for the ‘Invoice Creation’ feature to be included in the goal
service mashup, a context entity i of type Invoice needs to be present in the
context model. Furthermore, when the service mashup consisting of the ‘Invoice
Creation’ feature is executed, the fact hasInvoice(po, i) will become true as an
effect, which means purchase order entity po will have an invoice entity i.

In addition to feature model annotations, we also annotate the services in a
similar vein. The annotation of services with pre-conditions and post-conditions
(effects) has been already widely used in the literature [10] and we adopt a
similar strategy.

Definition 7 (Service annotation). A service annotation for service s is a
tuple As = (PI ,QI ,RI ,PC ,QC ,RC) where

28 M. Bashari et al.

– PI ,PC ⊂ P ×IO ××IO are the facts that should be true over the entities
interacting with the service (including inputs, output, callback output) in order
to invoke the service and receive any callback.

– QI ,QC ⊂ R × IO × × IO are the facts that become true over the entities
interacting with the service after the service is invoked or the callback has been
received.

– RI ,RC ⊂ R × IO × × IO are the facts that become false over the entities
interacting with the service after the service is invoked or the callback has been
received.

For example in the service Request Shipping Info in Fig. 2, assuming
the input customerInfo is of type customer, the output shippingInfo is
of type shippingInfo, and the callback output shippingSchedule is of type
schedule in the context model, one could define the annotations for this
service as QI = {hasShippingInfo(customerInfo, shippingInfo)}, QC =
{hasShippingSchedule (customerInfo, shippingSchedule)}, and the other
annotation sets would be empty. This annotation means after the invocation
of this service the value of the output would be the shipping information for the
input customer and after receiving the callback the value of the callback output
would be the shipping schedule for the input customer.

In our model, the feature and service annotations serve as a bridge between
the feature and service spaces and allow us to automatically compose a service
mashup based on the end-users’ feature selections.

Problem Statement. Given a context model type cT , a feature model fm, a
feature model configuration C, a feature model annotation AFM , a set of services
S, and their corresponding annotations AS , the goal is to find a workflow w using
services in S which satisfies the requirements of feature model configuration C.

3.2 Proposed Solution

We propose to formalize the above problem statement as a planning problem
and provide a solution through AI planning. The AI planning model would be
concretely defined by the initial context state as the starting point of the planner
and the expected context state as the goal of the planner. Therefore, we need
to formalize how the initial context state, expected goal state and the service
invocations can be defined with an AI planning context to generate a workflow.

We adopt the widely used STRIPS planning specification model to provide
our problem formalization, which can easily be converted to a Planning Domain
Definition Language (PDDL) model. A planning problem in STRIPS [7] can be
defined as below:

Definition 8 (Planning problem). A planning problem is a triple p =
(Sinitial, Sgoal, A) where:

– Sinitial, Sgoal are the initial and goal states. These states are represented by a
set of atomic facts,

Automated Composition of Service Mashups 29

– A is the set of available actions. This set includes all the actions that
can be done in order to change the state. Each action a ∈ A is a tuple
(I, Fpre, Fadd, Fdel) where

• I is the set of parameters that an action takes.
• Fpre is the set of atomic facts which should be in a state in order for that

action to be applicable in that state (i.e. action a is applicable in state S
where Fpre(a) ⊆ S).

• Fadd is a set of facts which are added to a state after the action has been
applied to the state.

• Fdel is a set of facts which are deleted from the state after the action has
been applied to the state. Therefore, if Ssucc be the state after applying
action a to state S then Ssucc = S − Fdel(a) ∪ Fadd(a).

Definition 9 (Planning problem solution). Sequence s = <a1, ..., ai> is a
solution to planing problem p = (Sinitial, Sgoal, A) if

– a1 is applicable on state Sinitial;
– for each 1< j ≤ i action aj is applicable in state S which has been resulted

by consecutive application of action a1, ..., aj−1 on the initial state Sinitial;
– consecutive application of actions a1, ..., ai on initial state Sinitial will result in

a state S such that Sgoal ⊆ S.

In the proposed method, we formalize the problem as a method for find-
ing a workflow expressed through a sequence of service invocations and call-
backs, which results in the expected context state and satisfies the requirements
expressed in the configured feature model.

Generating Initial and Goal States. Initial and goal states of the planner
are built by aggregating the annotations of the feature model configuration,
which represents the end-users’ requirements. For a feature model configuration
C, initial and goal states for planning problem p = (Sinitial, Sgoal, A) would be:

– Sinitial =
⋃

f∈C Pf

– Sgoal =
⋃

f∈C Ef

Generating Actions. In our planning model, actions are considered to be
the service operations that can be executed in the final service mashup. These
actions are invocations of different services or receiving callbacks. Each of these
actions affects the context state.

– Invocation. An invocation of service s = (I,O,Oc) with annotation As =
(PI ,QI ,RI ,PC ,QC ,RC) can be defined as an action ainvoke(s) = (I, Fpre,
Fadd, Fdel) where

• input of the action is I = I ∪ O ∪ Oc

• Fpre = PI

• Fadd = QI and a predicate showing that service s callback is pending
(callbackPending(s)) if it has a callback

• Fdel = RI

30 M. Bashari et al.

1: function Optimize(workflow w = (E,N, E))
2: repeat
3: W ← {}
4: for all e = (n1, n2) ∈ E do
5: E ′ ← E ∪ {(n′, n2) s.t. (n′, n1) ∈ E}
6: ∪{(n1, n

′) s.t. (n2, n
′) ∈ E} − {(n1, n2)} :

7: w′ ← (E,N, E ′)
8: if Safe(w′) then
9: W ← W ∪ {w′}

10: end if
11: end for
12: w ← Select(W)
13: until TerminationCondition(w)
14: return w

Algorithm 1. Pseudo-code for workflow optimization.

– Callback is of service s = (I,O,Oc) with annotation As = (PI ,QI ,RI ,
PC ,QC ,RC) can be defined as an action acallback(s) = (I, Fpre, Fadd, Fdel)
where

• input of the action is I = I ∪ O ∪ Oc

• Fpre = PC ∪ {callbackPending(s)}
• Fadd = QC

• Fdel = RC ∪ {callbackPending(s)}

Workflow Creation. Now that the planning goal and planning problem
domain are concretely defined, a planner can be used in order to find a solution
for the planning problem. The solution will be a sequence of actions which takes
us from the initial context state to the expected context state. Based on the solu-
tion of the above planning problem s = <a1, ..., ai>, a workflow w = (E,N, E)
can be built where:

– The workflow entities set E =
⋃

f∈C Ef .
– The operation node set N = n1, ..., ni is made from the action sequence where

nj is built based on aj where the service for the operation is the correspond-
ing service for that action. Similarly, the assigned input and output for the
operation node are corresponding entities assigned to action parameters.

– The edge set E is {(nj−1, nj) such that 1<j ≤ i} which means the operation
nodes should be executed in the order specified in the action execution.

Workflow Optimization. Although the generated workflow can be used to
generate WS-BPEL code, given that the AI planners produce strictly sequential
plans, the generated workflow would not benefit from potentially more efficient
and valid plans which use parallel execution of operations when possible. Using
parallelism in a service workflow can significantly affect the efficiency of the

Automated Composition of Service Mashups 31

1: function Safe(workflow w = (E,N, E))
2: for all n ∈ N do
3: for all p ∈ P(n) do
4: safeCausalLinkFound ← false
5: for all n′ ∈ N do
6: if After(w,n′, n) and p ∈ Q(n′) then
7: if ¬ThreatExists(w, n, n′, p) then
8: safeCausalLinkFound ← true
9: end if

10: end if
11: end for
12: if ¬safeCausalLinkFound then
13: return false
14: end if
15: end for
16: end for
17: return true

Algorithm 2. Pseudo-code for examining safeness of a workflow.

composed service [20]. Therefore, once a plan is generated by the AI planner, we
take an additional step to optimize the workflow.

Workflow optimization can be performed by consecutive removal of the edges
in the workflow which do not affect the safeness [15] of the workflow. The details
of our method for optimization has been shown in Algorithm 1. In the main
loop in the algorithm (Lines 2–13), the edges are removed consecutively until
the termination condition (Line 13) is met. In each iteration of the loop, each
edge in the workflow is examined (Line 4) to see whether the workflow stays safe
even after the removal of that edge or not (Line 8). If so, the edge is added a
set W (Line 9). The new workflow after removal of an edge would be a revised
workflow which would not include the removed edge but instead new edges are
added to preserve the connectivity of the workflow. This is done by adding edges
from the start node of the removed edge to the immediate nodes after the end
node of the removed edge and similarly the immediate nodes before the start
node and the end node of the removed edge (Lines 5–6). This ensures that the
order of execution for the nodes before and after stay the same. After all edges
are examined, the best workflow is selected from the set W and the current
workflow is replaced by that workflow (Line 12).

The definition of Select and TerminationCondition depends on the
optimization method which has been selected. The definition for Safe which
is responsible for examining the safeness of a workflow has been defined in Algo-
rithm 2. The definition of this function has been inspired by the safeness condi-
tion in partial order planning [15]. In this function, the main loop iterates over
all operation nodes of the workflow (Lines 2–16) and its immediate inner loop
iterates over all facts that is required to be true as the precondition of the node
(Lines 3–15). For each precondition fact p of each node n, this algorithm iterates

32 M. Bashari et al.

1: function ThreatExists(workflow w, node n, node n′,fact p)
2: for all n′′ ∈ N do
3: if ¬After(w,n′′, n′) or ¬After(w, n, n′′) and p ∈ R(n′′) then
4: return true
5: end if
6: end for
7: return false

Algorithm 3. Pseudo-code for examining existence of threat to a causal link.

over all the nodes in the workflow (Lines 5–11) in order to find an operation
node n′ which makes that fact true and is executed before node n (Line 6). The
relation between node n′ and n is called causal link for p. If such a node is found,
it is examined if a threat to that causal link exists (Line 7). If there is no threat
to the causal link between two nodes, a safe causal link has been found (Line 8).
If there exists no safe causal link for a precondition fact of a node (Line 12), the
workflow is not safe.

A threat exists for a causal link when there exists an operation node that
can be executed between the two nodes of the causal link and makes the fact
of the causal link false. The function which examines a causal link for possible
threat has been shown in Algorithm 3. This algorithm works by iterating over
all nodes in the workflow and analysing if it can pose a threat to the causal link
(Lines 2–6). A node can be considered a threat to a causal link if it does not
execute before the start node or after the end node of the causal link and makes
the related fact to that causal link false (Line 3).

Although the optimization process keeps the workflow safe, it does not ensure
that the workflow has the same preconditions and effects. A small modification
can be done in the input workflow in order to ensure that workflow preconditions
and effects remain the same during and after the optimization. This modification
adds a new start operation node with no precondition and workflow precondi-
tions as the effects to the beginning of the workflow and an end operation node
with no effect and with expected effects as the preconditions to the end of the
workflow. Considering that the optimization will not affect preconditions, it can
be easily proven that if the start and end nodes are removed from the workflow
after optimization, it will satisfy the expected preconditions and effects.

In order to make the derived workflow executable, it needs to be converted
into WS-BPEL. In WS-BPEL, each flow is defined by a <process> tag which
is made of the <variables> tag and a set of actions organized with <sequence>
and <flow> tags. Actions in the flow tag can be executed in parallel while
actions in the sequence tag should be executed sequentially. Often more than
one WS-BPEL code can satisfy user’s goals. Here, we adopt the method used
in [18] for creating an efficient WS-BPEL code from the created workflow. This
method takes as input a workflow represented as a directed graph and generates
an efficient WS-BPEL representation.

Automated Composition of Service Mashups 33

4 Experiments

In order to perform experiments, we have developed a fully integrated toolset
that supports our proposed approach. In our implementation, we have used OWL
as the representation language for the context model as suggested in [10], OWL-
S for representing services and their annotations [9], and SA-FMDL format for
representing the feature model and its annotations [2]. For planning, the FF
planner [9], which is a fast PDDL planner is used and for optimization a greedy
implementation is used that chooses an action with the best immediate gain.
Our experiments were performed on a machine with Intel Core i5 2.5 GHZ CPU,
6 GB of RAM, Ubuntu 14.04, Java Runtime Environment v1.8.

4.1 Workflow Generation

The main focus of our experiments with regards to workflow generation is the
assessment of the scalability of the proposed method in terms of its running
time. We evaluate the efficiency of the method from two perspectives:

– Experiment 1.1 (Scalability in terms of services repository size): How
does the workflow generation time increase as the number of services in the
repository grows?

– Experiment 1.2 (Scalability in terms of feature model configuration
size): How does the workflow generation time increase as the size of the feature
model configuration grows?

In order to run the experiments, three models were required: context model,
services and their annotations, feature model and its annotations.

Context Model: We have developed an OWL ontology for the context model
with 30 entity types and 600 fact types. This context model is used to annotate
the services and the feature model.

Services and Their Annotations: In order to generate the services and their
annotations, we developed a random OWL-S service description generator which
creates service description with inputs, outputs, precondition, and effects ran-
domly picked from our context model. This OWL-S service description generator
is highly customizable with different service model characteristics (e.g. number
of inputs, outputs, precondition, and effects). Three service repository sets have
been created where services in the repositories of different sets have different
numbers of precondition and effects. In our experiments, we used 3, 6, and 9
as the number of preconditions and effects. Each of these repository sets has
10 different repositories of sizes between 1,000 to 10,000. Totally, 30 different
service repositories have been created.

Feature Model and Its Annotations: We used the SPLOT feature model
generator to generate a feature model with 1,000 features. In order to annotate
this feature model, a customized feature model annotation generator is developed
which randomly picks annotations from the context model and assigns them

34 M. Bashari et al.

Fig. 4. Workflow generation time in terms of service repository and FM conf. size.

to the features of the feature model. Using this annotation generator, three
different annotation sets were created for the feature model where the number
of annotations for each feature was 2, 8 and 16. In the first experiment, a feature
model configuration with 50 features is selected and the time to generate the
workflow using service repositories of different sizes is measured. This operation
is done repeatedly 20 times with different feature model configurations of the
same size and the average time for generating the workflow is calculated. This
experiment is repeated for all three repository sets. Figure 4 (left) shows how the
workflow generation time increases with the increase in the size of the service
repository. As it can be seen from the figure, the increase in time is linear and
does not significantly increase with the increase in the number of services in the
repository and remains practical (around 2.4 s for 9,000 services).

In the second experiment, the service repository with 1,000 services and an
average sum of precondition and effects of 6 is selected. In this setting, the time
for generating workflows for feature model configurations of different sizes is
measured. The feature model configuration is generated by a tool which gets a
feature model and desired number of features in the configuration and returns a
random valid feature model configuration with that size. For each configuration
size, 20 different configurations is generated. For each number of annotations,
the average time required for generating the workflow is calculated for different
configurations. Figure 4 (right) shows the average workflow generation time with
different feature model configuration sizes for different number of annotations.
As seen in the figure, the generation time remains linear for various configuration
sizes when the number of annotations are 2 and 8 per feature. However, when the
number of annotations are increased to 16, the generation time becomes expo-
nential and shows rapid increase. It is important to note that (i) even with the
increase, the time is manageable for practical purposes, i.e., 2 s for 1,000 services
and 500 requirements. (ii) Literature suggests that the number of annotations
is typically in the range of 5–6 annotations per feature [1], in which case, the
performance of the generation algorithm is linear.

4.2 Workflow Optimization

The focus of the second set of experiments is on the investigation of the scalability
of the optimization method. We explore the optimization method scalability when

Automated Composition of Service Mashups 35

Fig. 5. Workflow optimization and execution time in terms of workflow size.

the size of workflow increases. In addition, we explore whether the optimization
method is able to decrease the time-to-completion of the service mashup.

– Experiment 2.1 (Optimization scalability in terms of workflow size):
How does the workflow optimization time increase with the increase in the size
of workflow (in terms of growth in the number of workflow nodes)?

– Experiment 2.2 (Effectiveness of the optimization in terms service
mashup time-to-completion): How much does the time-to-completion of a
service mashup is decreased as a result of the optimization?

In order to run this experiment the models from the previous experiment
were used. The service repository with 1,000 services and an average number of
preconditions and effects of 6 were employed. The services were annotated with
random time-to-completion with a normal distribution N (200 ms, 50).

For the first experiment, 20 different configurations in each workflow size
category is randomly selected and the average time for workflow generation
and optimization is calculated. Figure 5 shows how workflow generation and
optimization time increases as the size of workflow grows. This shows that the
workflow optimization method is considerably slower than the planning method.
However, given the fact that the optimization method is only a one time task,
its benefits in terms of reducing the time-to-completion is noticeable.

In the second set of experiments, the objective is to measure whether the
optimization method has been to generate workflows that have a lower time-to-
completion (execution time) or not. For this purpose, the time-to-completion of
the generated workflows were calculated both before and after the optimization.
Figure 5 shows the result of the optimization. As seen in the figure, the time-to-
completion of a workflow increases as the size of the workflow increases. However,
the optimization method has been able to maximize parallelism in the workflow
such that there is no noticeable growth with the increase in the workflow size.
For instance, for a workflow with 100 activities, which on average take 20 s prior
to optimization, the optimization method has been able to reduce the time-to-
completion to 1 s.

5 Related Work

Our work is positioned among considerable other research on service composition
using AI planning methods. Given the fact that planners usually take initial and

36 M. Bashari et al.

goal states as the way to define the planning problem, adopting this approach
for modeling the expected outcome of a service composition is quite intuitive.
Therefore, many existing approaches specify the expected outcome using a plan-
ner input language or a model that is easily convertible to a planner input [10,12].
For example, in [12], an XML dialect of PDDL is used to define the expected
service specification. However, specification of requirements in those languages
requires expert knowledge. In order to facilitate the design of service mashups
in some approaches, the concrete service mashup is generated from the abstract
process created by the user using some GUI interface. For example in [16], users
drag and drop required components of their service mashup into a canvas and
create the flow by connecting these components using arcs where this process is
facilitated using semantic annotations for components. Such approaches still rely
on the users for designing the logic of the service interactions. Another way used
for specifying service requirements is through natural language specifications.
For example in [8], an approach is proposed where a composite service is created
based on a request in natural language using semantic annotation of the com-
ponents. Although natural language seems an easy to use method of specifying
requirements, it does not provide the user with a tangible model of functional-
ities which makes it confusing to use and unreliable. Feature models provide a
tangible way to represent functionalities and have been used to represent service
families. However, existing automated approaches only suggest methods which
customize the services [1,3]. For example, Baresi et al. [3] use aspect-orientation
in WS-BPEL to activate/deactivate aspects in WS-BPEL code of the service
composition in order to customize it.

WS-BPEL allows sequential as well as parallel invocation of services. How-
ever, most AI planning methods come up with total-ordered sequential composi-
tion of services [20]. For example in [6], a planner is used to find the goal service
composition which is sequential although WS-BPEL is used to represent the
composition. Some of the other automated service composition methods gener-
ate compositions which take advantage of parallelism [11,20]. For example in [20],
service composition is modeled as a tree search problem where the goal is to find
a service composition with maximum parallelization. In another example [11],
the service composition problem is modeled as a sub-graph search in a service
dependency graph where the goal is to find a composition which satisfies its func-
tional requirements as well as optimizing different quality attributes such as par-
allelism. However, enabling parallelisim is embedded in the composition process
of these methods. In order to compose services with parallel execution, [19] sug-
gests that partial-order planning methods need to be used. However, none of the
existing service composition methods use partial-order planning because exist-
ing partial-order planners are significantly less efficient than total-order planners
[17]. We suggest that enabling parallelism in the workflow can be viewed as an
optimization problem. The idea of optimizing a total-order plan in order to take
advantage of parallelism has been explored in the planning area [21]. However,
it has not been used in the context of service composition. Our approach uses
the ideas from the planning domain to propose an optimization model where
different optimization methods can be used in order to enable parallel execution
of operations in a workflow.

Automated Composition of Service Mashups 37

6 Conclusion

In this paper, we propose a method for the automated composition of service
mashups. The service mashup composition process is operationalized through
a novel approach that combines the modeling power of software product line
feature models with AI planning techniques. The novelty of our work is in that
end-user requirements are expressed as feature model compositions, which have
been shown to be understandable by end-users. We automatically transform the
feature model composition into a viable executable workflow through the map-
ping of the feature space into the AI planning domain. Given the fact that AI
planning techniques only generate strictly sequential plans, we further develop
an algorithm to optimize the developed workflow through the introduction of
parallelism. The final outcome of our approach is an optimized executable busi-
ness process represented in WS-BPEL format. Through our experiments we have
shown that our work is scalable and is also able to efficiently produce workflows
that are optimized using parallelism.

References

1. Asadi, M., Mohabbati, B., Groner, G., Gasevic, D.: Development and validation
of customized process models. J. Syst. Softw. 96, 73–92 (2014)

2. Bagheri, E., Asadi, M., Ensan, F., Gasevic, D., Mohabbati, B.: Bringing semantics
to feature models with SAFMDL. In: Proceedings of CASCON 2011, pp. 287–300.
IBM Corporation (2011)

3. Baresi, L., Guinea, S., Pasquale, L.: Service-oriented dynamic software product
lines. Computer 45(10), 42 (2012)

4. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: the new generation of
web applications. IEEE Internet Comput. 5, 13–15 (2008)

5. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via
planning in asynchronous domains. Artif. Intell. 174(3), 316–361 (2010)

6. Chafle, G., Das, G., Dasgupta, K., Kumar, A., Mittal, S., Mukherjea, S., Srivastava,
B.: An integrated development environment for web service composition. In: ICWS
2007, pp. 839–847. IEEE (2007)

7. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(3), 189–208 (1972)

8. Fujii, K., Suda, T.: Semantics-based dynamic web service composition. Int. J. Coop.
Inf. Syst. 15(03), 293–324 (2006)

9. Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through
heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001)

10. Hristoskova, A., Volckaert, B., Turck, F.D.: The WTE framework: automated con-
struction and runtime adaptation of service mashups. Autom. Softw. Eng. 20(4),
499–542 (2013)

11. Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: Qsynth: a tool for QoS-
aware automatic service composition. In: ICWS 2010, pp. 42–49. IEEE (2010)

12. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with OWLS-XPlan. In: AAAI Fall Symposium on Semantic Web and Agents (2005)

13. Lee, J., Kotonya, G.: Combining service-orientation with product line engineering.
IEEE Softw. 27(3), 35–41 (2010)

38 M. Bashari et al.

14. Lee, K., Kang, K.C., Lee, J.J.: Concepts and guidelines of feature modeling for
product line software engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319,
pp. 62–77. Springer, Heidelberg (2002)

15. McAllester, D., Rosenblatt, D.: Systematic nonlinear planning. In: Proceedings
9th National Conference on Artificial Intelligence (AAAI-91), Anaheim, CA. pp.
634–639 (1991)

16. Ngu, A.H.H., Carlson, M.P., Sheng, Q.Z., Paik, H.Y.: Semantic-based mashup of
composite applications. IEEE Trans. Serv. Comput. 3(1), 2–15 (2010). iD: 1

17. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proceedings
of the 17th International Joint Conference on Artificial Intelligence, vol. 1, pp.
459–464. Morgan Kaufmann Publishers Inc. (2001)

18. Ning, G., Zhu, Y., Lu, T., Wang, F.: BPELGEN: an algorithm of automatically
converting from web services composition plan to BPEL4WS. In: ICPCA 2007, pp.
600–605. IEEE (2007)

19. Peer, J.: Web Service Composition as AI Planning - A Survey. University of St.
Gallen, Switzerland (2005)

20. Rodriguez-Mier, P., Mucientes, M., Lama, M.: Automatic web service composition
with a heuristic-based search algorithm. In: ICWS 2011, pp. 81–88. IEEE (2011)

21. Siddiqui, F.H., Haslum, P.: Plan quality optimisation via block decomposition.
In: Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, pp. 2387–2393. AAAI Press (2013)

	Automated Composition of Service Mashups Through Software Product Line Engineering
	1 Introduction
	2 Problem Statement and Background
	2.1 Feature Models
	2.2 Business Process Execution Language (BPEL)

	3 Proposed Approach
	3.1 Domain Model Specification
	3.2 Proposed Solution

	4 Experiments
	4.1 Workflow Generation
	4.2 Workflow Optimization

	5 Related Work
	6 Conclusion
	References

