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ABSTRACT

Query Performance Prediction (QPP), is concerned with assessing
the retrieval quality of a ranking method for an input query. Most
traditional unsupervised frequency-based models and many recent
supervised neural methods have been designed specifically for
predicting the performance of sparse retrievers such as BM25. In
this paper we propose an unsupervised QPP method for dense neural
retrievers which operates by redefining the well-known concept
of query robustness i.e., a more robust query to perturbations is an
easier query to handle. We propose to generate query perturbations
for measuring query robustness by systematically injecting noise
into the contextualized neural representation of each query. We
then compare the retrieved list for the original query with that of
the perturbed query as a way to measure query robustness. Our
experiments on four different query sets including MS MARCO,
TREC Deep Learning track 2019 and 2020 and TREC DL-Hard
show consistently improved performance on linear and ranking
correlation metrics over the state of the art.
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1 INTRODUCTION

Despite advances on tasks such as ad hoc retrieval [36, 58, 60],
conversational search [24, 62], and question answering [32, 59],
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recent research has shown there is still much room for improvement
especially on harder queries [2]. In order to identify such hard-
to-satisfy queries, the Information Retrieval (IR) community has
explored the task of Query Performance Prediction (QPP), which
aims to estimate the quality of the retrieved list of documents for a
given query [1, 5, 6, 15, 28, 33, 34, 43, 66].

Background Literature. Earliest post-retrieval QPP methods of-
ten relied on frequency-based statistical characteristics of each
query and its associated list of retrieved documents [15, 66]. These
statistical characteristics included measures such as the similarity
between the query and the retrieved documents [52], the diver-
gence between the retrieved documents and the corpus [16], and
the distribution of the relevance scores obtained for the retrieved
documents, to name a few [15, 52, 64]. More recently, several su-
pervised QPP such as NQA-QPP [27], BERT-QPP [1] and qppBERT-PL
[20] [18] have shown to outperform traditional QPP methods for
sparse retrievers [20, 33]; however, they all require a large number
of training instances (e.g., the MS MARCO dataset) 1, 19, 20, 22, 39].
Context of Our Work. With the growing influence of neural-
based models [21, 55], dense retrievers are now the state-of-the-art
baselines for many tasks in IR [26, 32, 36, 40, 42, 59]. Given most
existing QPP methods are designed for sparse retrievers (except few
recent ones such as [53]), they are primarily using statistics that
hint at how sparse retrievers function [12]. In contrast, while dense
retrievers may implicitly consider such statistics when trained on a
corpus, they are less sensitive to frequency statistics and primarily
rely on the semantics and context of the query and the document
collection [4]. In addition, it has been shown that score-based QPP
metrics would not necessarily work well when predicting the per-
formance of neural models primarily because the distribution of
retrieval scores in neural models is different from sparse retriev-
ers [19, 23, 39, 53]. To the best of our knowledge, there are only a
few studies that have explored QPP for dense retrievers such as
Singh et al. [53] that employ pairwise rank preference probabilities
obtained from strong re-rankers.

Overview of Approach. An ideal QPP method for dense retriev-
ers would be one that would take advantage of the characteristics
of dense retrievers in order to accurately determine query perfor-
mance. The major characteristic of dense retrievers that differenti-
ates them from sparse retrievers is the fact that they encode queries
and documents within a low-dimensional embedding space. Thus,
we focus on embedding representations of queries and documents
to perform QPP. The intuition behind our work is based on the no-
tion of query robustness [61]. The idea of query robustness has been
explored in the context of QPP for sparse retrievers, often based on
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the notion of pseudo-relevance feedback and reference lists [19, 46—
48,51, 56, 66]. A query is considered to be robust if its performance
is not significantly impacted by perturbations applied to the query
[12]. We propose a method, called Dense-QPP, to perform QPP for
dense retrievers by generating query perturbations based on the
embedding representations of input queries. Earlier works on QPP
for sparse retrievers apply query perturbations by rewriting the
initial query as sparse retrievers deal with keyword-based represen-
tation of the query [65, 67]. However, we propose to generate query
perturbations by modifying the embedding representations of each
query as this is the representation used by dense neural retriev-
ers. In our approach, a query perturbation would be obtained by
systematically injecting noise into the embedding representations
of queries by which we are in essence slightly moving the query
away from its original position in the embedding space to a new
position. A less robust query would be one that would experience
a noticeable change in its retrieval. We take such differences as a
sign of query difficulty.

Summary of Experiments. We perform extensive experiments
on four widely used query collections on the MS MARCO passage
collection as well as TREC DL query sets from 2019 and 2020 [13, 14,
41] as well as DL-Hard query set which includes more challenging
queries [38]. We show that Dense-QPP exhibits a more consistent
and improved performance compared to the state-of-the-art QPP
methods when predicting the performance of two SOTA first-stage
dense retrievers, i.e, S-BERT [44] and ANCE [58].

2 PROPOSED APPROACH

Let Q = {q;} be a set of queries, and C = {d;|1 < j < N} represent
the corpus which consists of N documents. In the retrieval task,
we let Dy, € C; Dg, # 0 be the set of the ranked list of retrieved
documents for a query g;. We formulate a retriever function F as
Dy, = F(qi,C). The QPP function ¢(q;) is responsible for predicting
the quality of retrieved documents Dy, produced by the retriever
F(gi, C) by estimating the rank-based evaluation metric M. Let M
be the original quality of the retrieved document list. Then ¢(g;)
aims to minimize the gap between the predicted performance M
and the actual performance of the retrieved results M. Common IR
metrics can be plugged into Mand M, e.g., reciprocal rank.

A dense retriever such as Fj,,,, encodes a query and its set
of retrieved documents as embedding representations denoted by
E(q;) and E(d}), respectively. With a dense retriever Fjepse, We
retrieve a ranked list of documents Dge"“ for a given query q as
Df]lie"se = Fyense(E(qi), C). Given Fyeps. as the dense retriever, we

will generate a perturbed set of queries Q= {qi} that would allow
us to measure the robustness of the queries in latent space. Since the
representations of the queries are in the embedding space, we gener-
ate query perturbations in a similar space. Therefore, we propose a
neural architecture that injects noise, in the form of Additive White
Gaussian Noise (AWGN), into the representations of each query to
produce query perturbations. Methods based on query perturbation
measure the robustness of a query by the contrast between the set
of retrieved documents for the original query and its perturbed
version. We chose AWGN over other conventional noise forms
due to its characteristics: (1) AWGN has a uniform power spectral
density across frequency. This means by using AWGN embedding

Negar Arabzadeh, Radin Hamidi Rad, Maryam Khodabakhsh, and Ebrahim Bagheri

vector elements will receive noise with different frequencies in a
uniform amount; and, (2) AWGN has a Gaussian distribution, which
is desirable as noisy perturbations in the real world are modelled
by Gaussian distribution [8, 37].

Let X; = [X1, X2, -+, Xn] be the embedding representation of
the input query g; i.e., X; = E(q;). We propose the following neural
architecture to produce query perturbations where G is the Gauss-
ian noise layer responsible for adding AWGN to the input vector, y
is average and o2 is the variance of the added noise.:

hg, = G(Xip.0°)
X;i = I (hg;, W, b)

Here, X; is the generated perturbation for query g;. We denote
the weight and bias matrices between Gaussian and output layers
with W and b, respectively. Here, F is the activation function of the
output layer. For the sake of simplicity, we use a linear activation
function. The characteristics of the added noise are controlled using
the y and o2 parameters. Ultimately, we are looking for white
Gaussian noise with an even distribution that does not lean the
dense representation of the queries towards a particular direction.
Therefore, we use zero-mean as suggested in [10, 11]. In order to
determine the appropriate value for o2, we adopt the concept of
Signal-to-Noise Ratio (SNR) [30] and refer to it as the Embedding-
to-Noise Ratio (ENR) in the context of our work. Considering the
initial embedding of a query as the input signal, we can calculate
the proper amount of variance for the additive noise by fixing the
value of ENR:

(1)

Pembedding

ENR = (2
noise

where Pempedding and Proise are the second moment values of the
vectors. Since the added noise is AWGN, we reformulate Pjise as:

Proise = E[xznoise] = 112 +0? (3)
where xp0ise are values of the noise vector drawn from Gaussian
probability distribution and E[] is the expected value of a given

variable. Since y = 0, we reformulate Equation 3 as Pppise = a2.
Using the same technique, Peypedding can be shown as:
2
Pembedding = E[x emhedding] (4
where x is the elements of the embedding vector of the query.
Given Equations 2-4, o2 of the additive noise can be calculated as:
E[xzembedding]
r=— (5)
where y is the desired value that represents the ratio of ENR
over the entire process. We can reformulate Equation 5 to have o2
which is the only parameter that controls noise on one side:
5 E[xzembedding]
0= ———M8M8M8M8— (6)
Y
We note that the same noise is used for all the queries, to ensure
the distribution of the amplitude of the noise is consistent across
all queries. Let us assume Df]lie”se is the list of documents for the

original query, and Dgf”se is the list of documents for the perturbed

query, we consider the similarity between Dgf”se and Dgf”se as an
indicator of query performance and refer it as Dense-QPP metric:

Dense — QPP(qi, Fiense, C) = Sim(Dg,-ense’Dgfnse) )

We adopt the Ranked Bias Overlap [57] metric to compute Sim.
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Table 1: Performance on MS MARCO, DL-2019, DL-2020 and DL-Hard dataset in terms of Pearson p (P — p), Kendall (K - 7)
measures when predicting S-BERT (on the left) and ANCE (on the right). Italic values indicate a statistically non-significant
correlation with a p-value < 0.05. Bold and underline values indicate the highest and the runner up correlation in each column.

S-BERT ANCE
MS MARCO DL-2019 DL-2020 DL-Hard MS MARCO DL-2019 DL-2020 DL-Hard

P-p K-t P-p K-t P-p K-t P-p K-7|P-p K-t P-p K-7 P-p K-7 P-p K-1
Clarity 0.065 0.053 | 0.217 0.111 | 0.196 0.137 | 0.232 0.110 | 0.161 0.196 | 0.353 0.237 | 0.281 0.215 | 0.221  0.230
QF 0.175 0.115 | 0.071 0.022 | 0.148 0.029 | 0.044 0.051 | 0.071  0.034 | 0.129 0.098 0.283  0.257 | 0.155 0.118
NQC 0.219  0.202 | 0.560 0.419 | 0.336 0.228 | 0.418 0.276 | 0.109 0.140 | 0.504 0.335 | 0.442 0.328 | 0.235 0.300
WIG 0.048 0.032 | 0.139 0.071 | 0.153 0.032 | 0.093 0.072 | 0.100 0.100 | 0.159 0.120 0.230 0.195 | 0.166 0.133
n(o) 0.128  0.128 | 0.501 0.361 | 0.242 0.158 | 0.400 0.259 | 0.030 0.042 | 0.361 0.233 | 0.199 0.181 | 0.242  0.197
SMV 0.183  0.127 | 0.577 0.428 | 0.360 0.246 | 0.396 0.314 | 0.109 0.152 | 0.518 0.337 | 0.417 0328 | 0.174 0.290
UEFNQC 0.218  0.166 | 0.607 0.428 | 0336 0.228 | 0441 0.298 | 0.198 0.219 | 0.520 0.350 | 0.458 0.348 | 0.229  0.309
Neural-QPP | 0.060 0.055 | 0.209 0.057 | 0.152 0.015 | 0.232 0.080 | 0.073 0.060 | 0.047 0.004 | 0.220 0.087 | 0.142 0.063
Pclurity 0.213  0.135 | 0.428 0.314 | 0.183 0.201 | 0.088 0.053 | 0.125 0.086 | 0.383  0.247 | 0.209 0.308 | 0.157 0.172
NQA-QPP 0.267 0.216 | 0.269 0.129 | 0.221 0.159 | 0.113 0.240 | 0.267 0.221 | 0.115 0.140 | 0.147 0.152 | 0.334  0.264
BERT-QPP 0.292 0.223 | 0.334 0.143 | 0.378 0.273 | 0.435 0.181 | 0.271 0.218 | 0.144 0.165 0.362 0.268 | 0.213 0.143
gppBERT-PL | 0.277  0.230 | 0.299  0.131 | 0.344 0.224 | 0.405 0.171 | 0.251  0.208 | 0.229 0.189 | 0.313  0.205 | 0.303  0.254
Deep-QPP 0.021  0.016 | 0.139  0.103 | 0.262 0.197 | 0.096 0.048 | 0.130 0.132 | 0.182 0.195 | 0.195 0.126 | 0.154 0.131
QPP-PRP 0.010 0.014 | 0.275 0.203 | 0.181 0.142 | 0.181 0.098 | 0.015  0.014| 0.296 0.186 | 0.320 0.269 | 0.115 0.104
Dense-QPP | 0.335 0.296 | 0.683 0.437 | 0.390 0.274 | 0.465 0.339 | 0.296 0.242 | 0.528 0.363 | 0.443 0.332 | 0.315 0.310

3 EXPERIMENTAL SETUP

Codebase. For reproducibility, our code and data is publicly avail-
able at https://github.com/Narabzad/Dense-QPP

Datasets: We evaluate the performance of Dense-QPP as well as the
SOTA QPP baselines on queries from four widely adopted datasets
including 6, 980 queries in small dev set of MS MARCO passage
collection [41], TREC Deep Learning tracks from 2019 and 2020,
namely DL-2019 [13] and DL-2020 [14] as well as DL-Hard [38].
The main difference between the MS MARCO collection and the
other collections is that MS MARCO has sparse labels, i.e., only less
than 10% of queries have more than one relevant judged document
per query [3]. The other three collections, i.e., DL-2019, DL-2020
and DL-Hard, are accompanied with a large number of human-
labelled relevance judgements per query. This is important since it
is possible to have a higher confidence in the results obtained from
queries that have a higher number of relevant documents. DL-2019
includes 43 thoroughly judged queries and DL-2020 consists of 53
extensively judged queries. In addition, we consider DL-Hard which
includes 50 queries. We consider the official evaluation metric for
each dataset, i.e., MRR@10 for MS MARCO and nDCG@10 for
DL-2019, DL-2020 and DL-Hard as the target metric to be predicted.
Evaluation Metrics: The common approach for evaluating a QPP
method is to use correlation metrics between the ranked list of
queries based on their predicted difficulty and their actual perfor-
mance [12, 15]. We measure Kendall and Pearson correlations in
which higher correlation values reflect more accurate performance
prediction.

Retrievers: We adopt two widely used Sentence-BERT (S-BERT)
[44] and ANCE [58] retrievers. S-BERT and ANCE have shown
strong retrieval performance as well as low computational over-
head compared to other neural-based retrievers[29, 45]. We use
pre-trained models on MS MARCO from Hugging Face to encode
the four query sets and the MS MARCO passage collection and
perform the retrieval. In general, these bi-encoder-based dense re-
trievers encode both the query and the documents into fixed-length
vectors using a transformer-based neural network. These encoded
vectors are then compared using a similarity metric, such as cosine
similarity, to retrieve the most relevant documents for a given query.
For further information, we refer to the original papers [32, 44, 58].

Baselines: We compare our proposed Dense-QPP method against
the state-of-the-art supervised and unsupervised post-retrieval QPP
methods [1, 12, 27]. The unsupervised traditional term-statistics
QPP baselines we consider in this paper include the WIG [66],
Clarity [15], QF [66], NQC [52],UEFNgc [50] and SMV [54]. We
also consider Pejqrity [49] which is initially a pre-retrieval method
but it could leverage NQC to interpolate with and be considered
as a post-retrieval QPP method. n(oy,) [17]. More recent super-
vised QPP methods have outperformed their unsupervised coun-
terparts on various query sets and different document collections
[21, 27, 63]. The supervised QPP methods, which we have employed
in this paper include Neural-QPP [63], NQA-QPP [27] , BERT-QPP [1],
gppBERT-PL [20], Deep-QPP [18]. Lastly, we include the recently
proposed QPP-PRP [53], similar to our proposed method, QPP-PRP
is unsupervised and is the only baseline originally designed for
QPP on dense retrievers.

Hyperparameter Setting: Based on the Central Limit Theorem
(CLT) [25] and to generate white Gaussian noise, we sample mul-
tiple noises to ensure that generated noises accurately represent
the probability distribution function of white Gaussian noise. As
suggested in [7, 9, 35], we have sub-sampled 30 noises. We generate
the Gaussian noise vectors by setting ¢ = 0 and selecting o w.r.t to
y values. We perform an element-wise addition of the noise vector
to the embedded query vector and retrieve the perturbed query
from the embedded document index using the Faiss library [31].
Additionally, as suggested in [1], we tune the hyper-parameters of
all of the baselines as well as our method and the number of top-K
retrieved documents K € {100, 200, 300, ..., 1000} for TREC DL-2019
on TREC DL-2020 and vice-versa. For DL-Hard, we tune the hyper
parameters on non-overlapping queries from DL-2019 and DL-2020
and for MS MARCO dev set, we tune it on 5,000 randomly sampled
queries from the remainder of the MS MARCO dev set (excluding
6,980 queries in MS MARCO small dev).

4 RESULTS

Table 1 reports the results of our proposed Dense-QPP method as
well as the baselines based on Pearson p linear and Kendall 7 rank-
ing correlations. Based on the results, we make several observations:
(1) Among the unsupervised baselines, those that are based on the
distribution of retrieval scores perform better than the others. For
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instance, NQC, SMV and n(a,i ) show a better performance compared
to Clarity and QF, which were not even able to exhibit statistically
significant correlation with the actual query performance in some
cases. (2) Within the supervised QPP baselines, Neural-QPP suffers
from extremely low correlation values. We hypothesize that this
might be due to the fact that Neural-QPP is built from weak signals
coming from unsupervised QPP methods, which are themselves
not strong signals for QPP in the context of dense retrievers. In
addition, Neural-QPP requires large amounts of training data and
has also previously shown poor performance when there is limited
training data available [1]. Similarly, Deep-QPP while it has shown
to be effective in estimating the difficulty of queries with sparse
retrievers, it failed to show consistent and promising performance
for dense retrievers. On the other hand, NQA-QPP, BERT-QPP and
gppBERT-PL show higher degrees of correlation with actual query
performance, specifically on MS MARCO. However, both of these
approaches lack consistency across different query sets. (3) Our
proposed Dense-QPP outperforms all of the baselines on all query
sets except DL-2020 for ANCE. On the DL-2020 query set, the rank-
ing correlations of UEF ygc is slightly higher than Dense-QPP. For
DL-Hard, we also note that NQA-QPP performs slightly better in
terms of Pearson p; however, even in this circumstance, the rank-
ing correlation obtained by Dense-QPP on DL-Hard outperforms
that of NQA-QPP. In both cases where Dense-QPP shows inferior
performance w.r.t. the baseline, the performances have not shown
statistically significant difference through paired t-test with a p-
value of 0.05. (4) Our proposed method shows the most consistent
performance across all the query sets, i.e., it is the only method
that shows consistently high performance on all datasets and all
correlation metrics when predicting the performance of both QPP
methods. (5) We mention that Dense-QPP is generalizable across
different neural rankers. To show this, as seen in Table 1, while in
general, the baseline QPP methods were more successful on ANCE
compared to S-BERT; however, our proposed Dense-QPP method
consistently outperforms the baselines on both ANCE and S-BERT,
indicating its generalizability. (6) Lastly, we note that among the
baselines, QPP-PRP was the only one that was originally designed
for dense retrievers. We show that QPP-PRP is not able to show
consistent performance on all datasets e.g., on MS MARCO, its
correlation is not statistically significant. In addition, our proposed
Dense-QPP shows superior performance w.r.t this baseline on all
the datasets and across both of the retrievers.

It is important to note that by comparing the reported correlation
values of the baseline methods when predicting the performance of
sparse retrievers on MS MARCO and TREC DL 2019 and 2020, as
reported in [1], compared to their performance on predicting the
performance of dense retrievers, we observe that all the baselines
show relatively lower correlation when predicting the performance
of dense retrievers. We hypothesize that this may be because (i)
the retrieval effectiveness of dense retrievers is often much higher
compared to sparse retrievers [32, 36, 39], and hence, the better
performance of a ranker over a range of queries makes it hard to
distinguish between these queries and consequently, makes the
QPP task more difficult on dense retrievers; and, (ii) other than
the supervised methods that can be used equally for both dense
and sparse retrievers, the other QPP metrics were not specifically
intended for predicting the performance of dense retrievers as they
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Figure 1: Impact of noise variance on the performance of
Dense-QPP. The variance of injected noise (X-axis) vs perfor-
mance (Kendall and Pearson) of Dense-QPP (Y-axis).

leverage signals that are based on corpus statistics, which would not
be strong indicators for the performance of dense retrievers. How-
ever, our proposed Dense-QPP method is intentionally designed for
predicting the performance of dense retrievers by injecting noise
into the embedding representation of queries and documents.
Further, we investigate the impact of the distribution of the
injected noise on the performance of Dense-QPP. We sweep the
variance of the injected noise in Equation 6 and depict the results
in Figure 1 for S-BERT. We do not sweep the mean as the mean
should always be set to zero as discussed in Equation 4. As shown in
Figure 1, by increasing the noise variance, the correlation between
the dense retriever’s actual performance and the predicted perfor-
mance of Dense-QPP increases. However, after a certain degree
of increase, the prediction performance would show a downward
trajectory. We hypothesize that as the degree of noise increases,
the alternative query starts to become too far from the original
query. As such, the retrieved documents from the noisy query will
lose their resemblance to those from the original query; therefore
leading to decreased performance. Similarly, when the noise level is
below a certain level, the retrieved results of the noisy query would
not differ much from the original query and thus the predicted per-
formance is low. However, by conducting sensitivity analysis on the
four datasets, we observe that a variance of 5 — 7% for the injected
noise results in the best performance. As shown in our experiments,
the appropriate value for o can be effectively identified through
hyperparameter tuning on a held-out set or cross-validation.

5 CONCLUDING REMARKS

We propose an unsupervised QPP method specifically for predict-
ing the performance of dense retrievers. Our work is motivated by
the concept of query robustness for measuring query difficulty. We
measure query robustness by generating query perturbations for an
input query. To generate perturbations, we introduce a systematic
approach for injecting noise into the embedding representation
of each query derived from the neural ranker. We show that our
proposed approach has a consistently better performance on two
different neural rankers compared to the state-of-the-art when pre-
dicting over four different query sets on MS MARCO V1 collection.
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