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Abstract
Prior research has demonstrated that reformulation of queries can
significantly enhance retrieval effectiveness. Despite notable suc-
cesses in neural-based query reformulation methods, identifying
optimal reformulations that cover the same information need while
enhancing retrieval effectiveness is still challenging. This paper
introduces a two-step query reformulation framework for gener-
ating and selecting optimal target query variants which not only
achieve higher retrieval performance but also preserve the original
query’s information need. Our comprehensive evaluations on the
MS MARCO dataset and TREC Deep Learning tracks demonstrate
substantial improvements over original query’s performance.
CCS Concepts
• Information systems→ Information retrieval; Information
retrieval query processing; Query reformulation.
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1 Introduction
In information retrieval (IR), the quality of search results is often
dependent on how the query reflects the user’s intent [18]. In many
cases, the users face difficulties in precisely articulating their infor-
mation needs, which can adversely affect the retrieval performance
[36]. The literature has shown that it is possible to use different
query formulations to represent the same information need through
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both an ambiguous complex query and also, a clear concise query
[23, 31]. Table 1 presents empirical evidence of the advantages of
effective query reformulation. Examples from the MS MARCO pas-
sage retrieval dataset [24] demonstrate how modified queries can
significantly improve retrieval outcomes, as measured by the Mean
Reciprocal Rank (MRR) metric. For example, the query “What is
datum target” obtained MRR@10 of 0.17. However, reformulating
this query to “datum target definition” increases its effectiveness to
MRR@10 of 1. For this reason, researchers have explored howmeth-
ods such as query expansion and reformulation [8, 28] to modify or
expand user queries to better align with the intended information
need. Although these methods have demonstrated effectiveness on
traditional sparse retrieval methods [35], their performance is often
suboptimal on more recent neural dense retrievers, occasionally
even reducing the effectiveness of the search results [4]. Empirical
evidence shows that dense neural retrievers require more advanced
query reformulation techniques, which would do more than merely
expanding or slightly modifying the original query by thoroughly
rephrasing the query to maximize retrieval effectiveness [22, 38].
To the best of our knowledge, there is no previous query reformula-
tion approach that shows improvement over both sparse and dense
neural based retrievers [32]. Motivated by these observations, the
formulation of an optimal target query could potentially enhance
the effectiveness of both sparse and dense neural information re-
trieval methods. The objective of the target query should be to
increase retrieval effectiveness for the original user query.

One potential strategy for generating such a target query would
be to use a pseudo-relevance feedback [9, 12] where the top docu-
ments retrieved for the original query are used as a source for gen-
erating alternative queries. Nogueira et al. [26, 27] have shown that
it is possible to use a transformer architecture to learn document to
query translations. Such an approach could be used for generating
alternative queries for the original queries by translating the top
retrieved documents into potential alternate queries. Although this
method has potential, it fails to produce effective queries for at least
two Reasons: (R1) The transformer might generate queries that
do not necessarily capture the information needs depicted by the
document. This discrepancy often happens when the document
captures a range of information and therefore capturing its con-
tent in a concise short query may not be possible. Therefore, a
generated query for such a document would potentially not be an
accurate representation of the user’s needs. (R2) Second, the use of
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Table 1: Examples of Original query and alternative Target
query from MS MARCO dataset.

Query MRR@10
Original: what is datum target 0.17
Target: datum target definition 1.00
Original: what is crime rate for new port richey fl 0.00
Target: what is the crime rate of new port richey 0.33
Original: tire wear patterns and causes 0.50
Target: what causes uneven tire wear 1.00

pseudo-relevance feedback has the potential to include marginally
relevant or less relevant documents to the query at the top of the
ranked list of documents depending on the difficulty of the query
for the retrieval method. Given the fact that finding a target query
is mostly meaningful for more difficult queries [2, 16], such queries
will experience less than optimally relevant documents. Therefore,
using such documents to generate alternative queries would possi-
bly only lead to generating target queries that experience significant
semantic drift from the users’ information needs [39]. Therefore,
there is a need for a systematic approach to generating queries that
not only address the information needs specified in the original
query but also lead to improvement in effectiveness.

In this paper, we introduce a two-step query reformulation frame-
work designed to address the challenges identified in generating
effective queries. First, using a fine-tuned transformer model, we
generate potential alternative queries, based on pseudo-relevant
documents retrieved during an initial search phase. Secondly, we
employ a cross-encoder model trained to select the best target query
by predicting their retrieval effectiveness. Our approach aims to
consistently produce target queries that not only align with the
original query’s information need but also have the potential to
enhance retrieval effectiveness.
2 Proposed Approach
2.1 Problem Definition
Given a query 𝑞 and a collection of documents𝐶 , the retriever𝑀 is
tasked with retrieving the top-𝑘 documents 𝐷𝑞 = [𝑑1𝑞, 𝑑1𝑞, . . . , 𝑑𝑘𝑞 ],
represented as𝐷𝑞 ← 𝑀 (𝑞,𝐶). Each query𝑞 is accompanied by a set
of judged relevant documents 𝑅𝑞 , where each document 𝑑 ∈ 𝑅𝑞 has
been annotated as satisfying the information need behind the query
𝑞 so called as 𝐼𝑞 . The performance of an IR system is assessed using
an evaluation function 𝜇, where 𝜇 (𝑞, 𝐷𝑞 |𝑅𝑞) quantifies the quality
of the ranked list of retrieved documents. The objective of our work
is to reformulate an input query into a target query variant that
not only shares the same information need but also represents the
main query in an easier-to-address form for the retrieval method.
Simply put, our goal is to find an alternative query variant 𝑞𝑡 such
that 𝜇 (𝑞𝑡 , 𝐷𝑞𝑡 |𝑅𝑞) > 𝜇 (𝑞, 𝐷𝑞 |𝑅𝑞) where the target query variant 𝑞𝑡
and original query 𝑞 share the same information need i.e., 𝐼𝑞 = 𝐼𝑞𝑡
but they are represented in a different lexical form.
2.2 Query Variants Generation
To reformulate the original query into a more effective alternative
target query, we first generate a set of query variants �̂�𝑞 for the orig-
inal query 𝑞, where both 𝑞 and every 𝑞 ∈ �̂�𝑞 share the same infor-
mation need. To generate these query variants, inspired by previous
work [26, 27], we adopt a document-to-query translation approach.

This involves translating a document into a query representation
using a transformer model trained on existing query-relevant doc-
ument pairs available in the relevance judgment dataset [1, 11, 32].
The transformer model, denoted as T , learns to generate queries
for an input document based on the association between existing
queries and their relevant documents. Formally, the translation
can be represented as: 𝑞𝑑 ← T (𝑑) where T is a non-deterministic
function, i.e., applying T to document 𝑑 several times would yield
different 𝑞𝑑 . As such, T𝑚 represents 𝑚 repeated applications of
T . The details of the transformer architecture are provided in the
experimental setup section of this paper. Given this transformer, it
would now be possible to generate queries for each document.

We apply the document-to-query translation function T to every
document that could potentially answer the initial query 𝑞. The hy-
pothesis is that documents answering the query 𝑞 will likely share a
common information need. We use the top-retrieved documents for
query 𝑞 in the initial round of retrieval and apply T on it. Applying
T on documents 𝑑𝑖 ∈ 𝐷𝑘

𝑞 , results in �̂�
𝑘,𝑚
𝑞 where it represents𝑚

repeats of applying T on the top-𝑘 retrieved documents for 𝑞 :

�̂�
𝑘,𝑚
𝑞 = {T𝑚 (𝑑) | 𝑑 ∈ 𝐷𝑘

𝑞 } (1)

2.3 Query Variant Classification
The generated �̂�𝑞 queriesmay suffer from being noisy due to several
reasons (R1 and R2 in the Introduction):
1) Not all the top-retrieved documents 𝐷𝑞 necessarily contain rele-
vant information with respect to 𝑞. As such, they might not address
the information need behind the query 𝑞, and consequently, they
cannot generate a target query variant 𝑞𝑡 that satisfies 𝐼𝑞 = 𝐼𝑞𝑡 .
2) The transformation function T is not fully error-free. Therefore,
since T is a noisy process, not every query generated from T
necessarily represents an alternative version 𝑞 of the original query
𝑞 that leads to higher performance, i.e., 𝜇 (𝑞, 𝐷𝑞 |𝑅𝑞) > 𝜇 (𝑞, 𝐷𝑞 |𝑅𝑞).

Due to these reasons, not all query variants 𝑞 ∈ �̂�𝑞 satisfy our
two target query conditions. To identify appropriate target queries
that meet our desirable criteria, we train a query variant classifier
𝜙 aiming to identify target queries from �̂�𝑞 that share the same
information need with the original query while showing higher
effectiveness. The labels for classifier 𝜙 (𝑞, 𝑞) are defined as:

𝜙 (𝑞, 𝑞) =
{
1 if 𝜇 (𝑞, 𝐷𝑞 |𝑅𝑞) > 𝜇 (𝑞, 𝐷𝑞 |𝑅𝑞) ∧ 𝐼𝑞 = 𝐼𝑞

0 otherwise
(2)

We apply 𝜙 (·) to query variants and original query to obtain
the target query set Q𝑡

𝑞 by contrasting the original query and its
retrieved documents with a query variant and its retrieved doc-
uments. Our goal is to identify a set of target query variants Q𝑡

𝑞

such that every query 𝑞𝑖 ∈ Q𝑡
𝑞 satisfies the two target query condi-

tions mentioned earlier. Additionally, we note that Q𝑡
𝑞 ⊆ �̂�𝑞 . We

train the query variant classifier through contrastive learning via a
cross-encoder network [25] where positive and negative labels are
obtained as in Equation 2. Positive labels indicate those variants
that lead to better performance than the original query, while neg-
ative labels indicate those that show worse performance than the
original query. To learn the target query predictor𝜙 , as suggested in
previous works and inspired by the success of contrastive learning
[19, 34, 37], we leverage the comparison of information obtained
from the original query and its query variant. In the cross-encoder
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Table 2: Performance of our proposed approach as well as the original retrievers on TREC DL-19 and DL-20 datasets.

Architecture
DL-19 DL-20

Original Ours Original Ours

mAP@1k NDCG@10 mAP@1k NDCG@10 mAP@1k NDCG@10 mAP@1k NDCG@10

Sparse 0.3714 0.4936 0.3457 0.5206 0.3414 0.4826 0.356 0.5053
DE-NN 0.3606 0.6481 0.3898 0.6737 0.3907 0.6458 0.3777 0.6487
DE-LI 0.3864 0.67 0.4174 0.6916 0.4059 0.6678 0.4183 0.6769
DE 0.3479 0.6368 0.4411 0.6543 0.3759 0.6565 0.4316 0.6882

architecture, where the token interactions from the information of
the original query interact with information pieces from the variant,
we concatenate the query variant 𝑞𝑑 with its first retrieved doc-
ument, as well as their relevance score 𝑆 (𝑞𝑑 , 𝑑) which represents
the association between the query and the document. Adding the
associated scores between the inputs has previously been shown to
lead to improvements in classification tasks [7]. We feed the cross-
encoder network F with the same information from the original
query. As such, the input to the 𝜙 function for a pair of query 𝑞 and
a query variant 𝑞 would be:

𝜙 (𝑞, 𝑞) = F (𝑞 ⊕ 𝑑1𝑞 ⊕ 𝑆 (𝑞, 𝑑1𝑞), 𝑞 ⊕ 𝑑1𝑞 ⊕ 𝑆 (𝑞, 𝑑
1
𝑞
)) (3)

where ⊕ is a concatenation operator followed by special [SEP]
token. In network F , we apply a linear layer on the first vector pro-
duced by the transformer [CLS], to produce a scalar value 𝜙 (𝑞, 𝑞).
We leverage a sigmoid layer and a Binary Cross Entropy loss func-
tion to train F where𝑁 = |�̂� | is the total number of pairs of original
query and query variants for training purposes:

𝐿 = − 1
𝑁

𝑁

𝑖=1

(
𝜙 (𝑞𝑖 , 𝑞𝑖 ) log(𝜙 (𝑞𝑖 , 𝑞𝑖 ) ) + (1 − 𝜙 (𝑞𝑖 , 𝑞𝑖 ) ) log(1 − 𝜙 (𝑞𝑖 , 𝑞𝑖 ) )

)
(4)

3 Experiments
3.1 Datasets and Retrievers
Datasets. We use the MS MARCO passage collection V1 [24],
which contains over 8.8 million passages. We report the perfor-
mance on MS MARCO Dev set which includes 6,980 queries, each
annotated on average with 1.06 relevant documents. We further
conduct experiments on the TREC Deep Learning Track 2019 and
2020 datasets [13, 14]. The former contains 43 queries, while the
latter query set includes 54 queries. On average, they have 215
and 210 annotated documents per query, respectively. The main
difference between these query sets and MS MARCO Dev set is that
while MS MARCO Dev set has been sparsely and binary labelled,
these query sets have been judged more comprehensively [5]. The
official evaluation metric for TREC DL-19 and DL-20 is nDCG@10
and MRR@10 for MS MARCO Dev set, which we adopt in our work.
We additionally report the effectiveness on a deeper rank and report
Mean Average Precision at 1000.
Retrievers. We evaluate the robustness of our proposed approach
across different retriever types, including both sparse and dense
models. We selected BM25, a widely used traditional bag-of-words
high-dimensional sparse retriever, as representative of this category
[20]. For dense retrievers, we include the following methods:
Dual-encoder-based retrievers: Bi-encoders or dense retrievers
have become notable for their ability to learn dense, contextual-
ized representations of queries and documents [6]. We utilized the
widely adopted Dual-Encoder (DE) architecture from the Sentence
Transformers library, which employs a Siamese network structure

Table 3: Comparison of hard queries in MS MARCO Dev set,
categorized into 10 difficulty-based buckets.

Model Training 0-10% 10-20% 20-30% 30-40% 40-50%

Sparse
Original 0 0 0 0 0
Ours 0.018† 0.018† 0.018† 0.018† 0.013†

DE-NN
Original 0 0 0 0 0.104
Ours 0.026† 0.026† 0.026† 0.026† 0.169†

DE-LI
Original 0 0 0 0 0.119
Ours 0.018† 0.024† 0.022† 0.026 0.191†

DE
Original 0 0 0 0.022 0.078
Ours 0.018† 0.022† 0.032† 0.032† 0.134†

to generate semantically meaningful sentence embeddings that can
be compared using cosine similarity [30].
DE-nearest neighbor negatives:We also incorporate ANCE (Ap-
proximate Nearest Neighbor Negative Contrastive Estimation) [37]
which enhances training by incorporating hard negative mining,
selecting negatives closely related to the query in the embedding
space. This method is referred to as Dual-Encoder with Nearest
Neighbor Negatives (DE-NN).
DE-late interaction:We also evaluated our query variant selec-
tion strategy using the ColBERT (Contextualized Late Interaction
over BERT) model [21]. ColBERT allows for a more granular com-
parison between query and document tokens by facilitating late
interaction between their representations. Consequently, we refer
to this retriever as Dual-Encoder with Late Interaction (DE-LI).

3.2 Experimental Setup
Transformer Model. To generate alternative queries using trans-
former models, we utilize the docT5query [26] which fine-tunes T5
[29] to generate queries from a given passage.
Training Set. For each query, we generate 100 alternative queries
by setting 𝑘 = 10 to retrieve top-10 most relevant documents and
𝑚 = 10 to produce 10 variations of alternative query. As men-
tioned earlier, the transformer function T is noisy and might assess
perturbed query alternatives. To reduce this noise, we assess the
similarity score between the main query and each transformer-
generated alternative query. We filter out query pairs that have a
similarity below a certain threshold e.g., less than 0.1. Furthermore,
to mitigate potential training bias, we balance the dataset based on
the distribution of labels across the queries.
Classification Model and Hyperparameters. We fine-tune the
BERT-based-uncased [15] through a cross-encoder and the Sentence
Transformers [30] Library with learning rate of 2e-5 and a warm-up
phase comprising 10% of the total training steps. Training proceeds
for one epoch with a batch size of 16, and the CrossEntropyLoss
function is employed to optimize the model.
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Table 4: Improvements on hard queries of the MS MARCO Dev set.

Architecture Number of Queries MRR@10
Sparse 111 out of 4,224 0.165
DE-NN 321 out of 2,908 0.261
DE-LI 293 out of 2,834 0.217
DE 319 out of 3,011 0.239

3.3 Results
Query Sets with Deep Labels. By comparing the performance
of different models in Table 2, we observe that: (1) Our approach
consistently improved performance across different retrievers types
on both DL-19 and DL-20 datasets in terms of nDCG@10. (2) For
the recall-oriented metric i.e., MAP@1k, our method outperforms
the original models in all variations. However, with BM25 on DL-19,
the original model scored higher, though this difference was not
statistically significant (paired t-test, p-value < 0.05).
Query Sets with Sparse Labels. To better understand how our
approach performs on datasets with sparse relevance judgments,
we use the MS MARCO Dev set. Unlike DL-19 and DL-20, this set
features fewer relevance documents per query. Previous research
indicates that at least 40% of the queries in this set are not effectively
addressed by any existing retrieval method, i.e., effectiveness of
zero for these queries [4, 10]. To evaluate our approach on datasets
with challenging queries, we assess whether our query variant
classifier effectively aids them. We define difficult queries as those
that exhibit poor performance with a given ranking method [3,
17, 33]. Specifically, we categorize the most difficult queries for a
ranker as those that rank in the lower half of retrieval effectiveness
compared to other queries. Therefore, to identify difficult queries,
we rank the queries in the MS MARCO Dev set by their MRR@10,
the official metric for this dataset, and select the bottom 50% as
difficult queries. This selection process results in 3,490 queries
from a total of 6,980. We further divide these difficult queries into
five finer-grained difficulty buckets to analyze the performance of
baseline rankers and our proposed method within each bucket.

Table 3 presents the performance results across various difficulty
buckets. Notably, the bottom 3 buckets, which comprise the lowest
30% of queries, show a reciprocal rank value of 0 for all neural
rankers, indicating their inability to retrieve a relevant document
within the top-10 ranked documents for roughly 2,000 queries. In
contrast, our approach has managed to effectively address some of
these hard queries in each difficulty bucket. Although the MRR@10
scores achieved by our method are low, it is important to consider
that no neural baseline in our study could address any queries in
this group, with all achieving an absolute MRR@10 score of zero.
These findings underscore the capability of our method to handle
difficult queries more effectively than existing neural rankers.

Furthermore, Table 4 details the number of queries that our
method improved from a baseline performance of zero to higher
retrieval effectiveness. For instance, using the DE-NN, our method
managed to address at least partially 321 out of 2,908 queries that
initially had zero retrieval effectiveness. The third column shows
the average retrieval effectiveness (MRR@10) for these improved
queries, which, for example, is 0.261 for the 321 DE-NN queries.
Oracle Analysis. We also analyze the frequency of target queries
in the MS MARCO Dev set. As mentioned earlier, we display the

Table 5: Comparison of different ranking models’ performance
(MRR@10) on MS MARCO Dev set.

Architecture Original Oracle
Sparse 0.184 0.409
DE-NN 0.322 0.638
DE-LI 0.327 0.634
DE 0.298 0.598

Figure 1: Oracle Distribution for each methodology.
frequency of the number of target queries available when building
�̂�
𝑘,𝑚
𝑞 with 𝑘 and 𝑚 set to 10, i.e., when |�̂�𝑞 | = 100 across 6,980

queries in the MS MARCO Dev set. Specifically, we investigate how
many of these queries satisfy our dual criteria of demonstrating
higher retrieval effectiveness while preserving the same informa-
tion need. The results are displayed in Figure 1. Irrespective of the
retriever type, approximately 4,000 of the 6,980 queries, or 57%, have
at least one target query where 𝜙 (𝑞, 𝑞) = 1. This demonstrates two
key points: (1) A significant number of target queries are present
within our query variant set, highlighting the efficacy of our query
generation process. (2) Despite the presence of these target queries,
identifying and classifying them remains challenging due to the
relatively low number of target queries across the query variants,
emphasizing the complexity of the task.

Moreover, in Table 5, we report the performance of the original
retrievers as well as the oracle performance in terms of MRR@10
on the MS MARCO Dev set. When �̂�𝑞 = ∅, the performance of the
original query is reported as the oracle. The oracle column essen-
tially demonstrates the ‘potential’ of our proposed methodology
under ideal conditions with 𝜙 (𝑞, 𝑞). The oracle column indicates
substantial potential for improvement across different retrievers
if the target query variant 𝜙 is accurately selected. For instance,
the original BM25 performance of 0.184 could potentially rise to
0.409. Similarly, for dual encoders like ColBERT, performance could
improve from 0.327 to 0.634. This confirms the significant enhance-
ment opportunities available with a reliable and effective target
query variant identifier 𝜙 .

4 Concluding Remarks
This study introduced a robust two-step query reformulation frame-
work that utilizes a fine-tuned transformer model and a cross-
encoder classifier to effectively generate queries that align with the
original query’s intent while enhancing retrieval performance. Our
extensive evaluations, conducted on the MS MARCO dataset and
TRECDeep Learning tracks, confirm that our approach significantly
outperforms existing baselines.
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