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Abstract

We propose a novel approach, referred to as Contrastive Disentangled Repre-
sentation for Query Performance Prediction (CoDiR-QPP), to estimate search
query performance by disentangling query content semantics from query diffi-
culty. Our proposed approach leverages neural disentanglement to isolate the
information need expressed in search queries from the complexities that affect
retrieval performance. Motivated by empirical observations that varying query
formulations for the same information need can significantly impact retrieval
outcomes, we hypothesize that separating content semantics from query diffi-
culty can enhance query performance prediction. Utilizing contrastive learning,
CoDiR-QPP distinguishes between well-performing and poorly performing query
variants, facilitating the estimation of a given query’s performance. Our extensive
experiments on four standard benchmark datasets demonstrate that CoDiR-QPP
outperforms state-of-the-art baselines in predicting query performance, offering
improved semantic similarity computation and higher correlation metrics such as
Kendall τ , Spearman ρ, and scaled Mean Absolute Ranking Error (sMARE).

Keywords: Query Performance Prediction, Information Retrieval, Neural
Disentanglement
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1 Introduction

Recent advancements in Information Retrieval (IR) have been significantly driven
by the adoption of neural retrieval methods [1]. These methods excel primarily due
to their capacity to learn latent data distributions through dense representations.
For example, in ad hoc retrieval, dense neural rankers leverage these representations
to effectively bridge the query space with the document space, thus enhancing the
retrieval of relevant documents for a given query [2] . However, despite these improve-
ments, the benefits are not uniformly distributed across all ranges of queries [2].
More specifically, information retrieval methods seem to be quite effective on a sub-
set of the query space and not so effective on others, leading to disparities in retrieval
effectiveness. This uneven performance across different query spaces underscores the
importance of Query Performance Prediction (QPP) which focuses on estimating how
well an information retrieval method is able to satisfy an input query.

Effective query performance prediction plays a crucial role in enhancing the
effectiveness and efficiency of information retrieval systems in several real-world appli-
cations [3–8]. One prominent application is in adaptive retrieval strategies, where
QPP can assess the difficulty of a query and adjust the retrieval process accordingly
per query [9, 10]. By predicting query difficulty, it would be possible to deploy cost-
effective rankers for easier queries and more robust ones for more difficult queries in
order to optimize resource use and minimize latency. Furthermore, QPP can enhance
user engagement by identifying challenging queries, prompting users to clarify their
intent [11, 12], thus improving overall user experience and quality of interactions
[13]. Another example of the application of QPP methods is ranked list truncation
for multi-stage ranking pipelines. QPP can balance effectiveness against efficiency by
dynamically adjusting the document pool size based on query complexity [4, 14]. In
addition, QPP is widely used in federated search and metasearch engines, where it
can guide the integration of results from multiple data sources by weighting them
based on their estimated quality. Additionally, QPP is valuable for content enhance-
ment through missing content analysis, enabling system administrators to identify and
address gaps in the document collection to meet emerging user needs more effectively.
These applications illustrate how QPP contributes to making retrieval systems more
responsive, efficient, and user-focused.

Given the significance of the QPP task in information retrieval, existing research
have focused on analyzing information such as corpus statistics [15], association
between the query and document spaces [16], distribution of neural embeddings [17],
among others to estimate query performance at runtime. In this paper, we propose
a novel approach, namely CoDiR-QPP (Contrastive Disentangled Representation for
Query Performance Prediction), to estimate query performance by proposing to per-
form neural disentanglement on query and document representations such that the
information need expressed through the query is isolated from the actual expression of
the query that would impact how difficult or easy the query would be for the retrieval
method. Our work is primarily motivated by the following empirical observations in
the literature:
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Table 1 Examples of query variants representing the same information need with relatively lower
(left column) and higher (right column) effectiveness.

Query AP Query AP
kwh solar system cost 0.0031 how much for 20kw of solar panels 1.0
average salary for nurses in dallas texas 0.0345 average salary for registered nurse in

dallas
0.3333

adrenaclick price 0.3333 adrenaclick pens cost 1.0
how much does an accounts assistant
earn

0.0 what is the average wage for account-
ing assistants

0.1667

cost of gutter stuff 0.0039 average cost to install gutter guards 1.0

1. Variability in expression of information needs: Previous work has shown
that identical information need can be articulated through varying query formula-
tion which significantly affect retrieval performance [18–21]. For instance, a clearly
phrased query can lead to a high-quality search results, whereas an ambiguous query
might result in poor outcomes. This suggests that query content—representing the
core information need— can and should be distinguished from the query’s complex-
ity. As such, we hypothesize that disentangling content semantics from the difficulty
of the query might offer a means for estimating query performance.

2. Effectiveness of contrastive learning: Contrastive learning has been shown to
be highly effective in various downstream IR and NLP tasks, including but not
limited to ranking and question answering systems [22–25]. By comparing different
variants of the same query with different degrees of effectiveness, one can potentially
expose the model to both poorly performing and well-performing queries that are
representing the same information need. This approach could allow for identifying
aspects of a query that make the query to be difficult (or easy) regardless of the
information need that the query is seeking to fulfil.

The aforementioned points motivate our proposed approach, which focuses on dis-
entangling content semantics and difficulty of the query through a contrastive learning
approach. Table 1 shows examples where the same information need is expressed
through two different queries: The left column displays poorly performing queries
while queries on in the right column enjoy higher performance. We note that queries
on the left and the right are expressed to fulfill the same information need. For exam-
ple, consider a user seeking up-to-date pricing information for Adrenaclick, a brand of
epinephrine auto-injector pens used for emergency treatment of severe allergic reac-
tions. The user can represent this information need via different queries. For instance,
while the query ‘adrenaclick price’ has an Average Precision of 0.33, the alternative
query ‘adrenaclick pens cost’, which expresses the same information need obtains a
perfect average precision of 1.0. Such observations allow us to hypothesize that it may
be possible to separate query content semantics from the difficulty of the query.

Disentanglement approaches are designed to separate distinct factors of variation
within data, enabling improved understanding, interpretation, and manipulation of
complex datasets. As illustrated in Figure 1, the disentanglement process is applied
to a latent space vector. Typically, the outputs of neural models are a mixture of
intertwined attributes that are difficult to separate. Disentanglement methods guide
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Fig. 1 Visualization of the disentanglement process: The initial latent representation vector (top)
undergoes a disentanglement process, resulting in a disentangled latent representation vector where
an individual attribute can be independently identified and extracted (bottom).

these models to produce latent vectors where one or more desired attributes can be
independently identified and extracted.

On this basis, we propose to disentangle a query’s representation into two indepen-
dent components: one representing query content semantics and the other representing
query difficulty. With such decoupling, we anticipate that similar queries will have
similar semantics representations, while the difficulty component would capture how
challenging the query would be for the retrieval method to satisfy. The contributions
of this paper are summarized as follows:

• We introduce CoDiR-QPP, a novel framework that utilizes neural disentanglement
to separate query semantics from query difficulty to enhance the accuracy of the
query performance prediction task;

• We propose to jointly adopt contrastive representation learning and point-wise pre-
diction in order to differentiate between query difficulty and query semantics such
that query performance is accurately estimated both when comparing queries with
each other and also in isolation;

• Through extensive experiments on multiple benchmark datasets, such as MS
MARCO Development Set, TREC DL 2019 and 2020, and TREC DL-Hard [26], we
find that our proposed disentanglement approach offers a superior means for query
performance prediction, outperforming strong state of the art baseline methods on
metrics such as Kendall τ and Spearman ρ Correlations, and the scaled Mean Abso-
lute Ranking Error (sMARE) [27, 28]. In addition, we empirically show that our
disentangled content semantics representations allow for a more refined computation
of semantic similarity across different queries.

2 Related Work

Query Performance Prediction. QPP methods are broadly categorized into (1)
Pre-retrieval and (2) Post-retrieval classes. The former predictors estimate query per-
formance based solely on the query and the collection statistics before any documents
are retrieved [15, 16, 29]. These methods are particularly valuable because they are
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generally fast and do not depend on the results of the query, making them ideal for
real-time applications. Unlike pre-retrieval methods, post-retrieval predictors utilize
information from the retrieved documents to predict query performance. These meth-
ods tend to be more accurate as they incorporate feedback from the retrieval process
itself [30–33]. While post-retrieval QPP has shown to be more effective, they have more
limited applications since the system has already lost on query latency time given it
needs to perform one round of retrieval on the given query before being able to esti-
mate the query performance. In this work, we focus on the more challenging task of
pre-retrieval QPP, which is crucial for applications requiring low-latency responses.

Historically, QPP research has focused on the statistical relationships between
query terms and the document corpus [29, 31, 34–38]. A common approach involves
using signals derived from comparing the language model of the query with that of the
collection, treating this comparison as an indicator of query difficulty. The more similar
the query is to the corpus, the higher the likelihood that relevant documents exist in
the collection, making the query easier to satisfy [15, 39]. [39, 40]. Another common
approach for traditional QPP methods postulates that queries with highly coherent
terms tend to retrieve more relevant documents, leading to better performance [37].

With the advent of neural-based models, query performance prediction has greatly
improved. Recent advances have focused on leveraging neural embeddings to enhance
pre-retrieval predictions. For example, Zhou and Croft [41] used word embeddings to
analyze semantic coherence among query terms, demonstrating that semantic relation-
ships are strong indicators of query performance. Arabzadeh et al. [42] proposed using
neural embedding representations of queries to assess query specificity, which serves
as an indicator of performance. Similarly, Roy et al. [43] used contextual embeddings
to evaluate query ambiguity by estimating the number of senses associated with each
query term. These neural-based methods have generally outperformed traditional term
frequency-based pre-retrieval methods across various benchmarks [44]. More recent
studies have utilized deep learning-based models to tackle the QPP task and they
demonstrate that supervised methods for QPP are more effective than unsupervised
approaches. However, these supervised methods necessitate a substantial amount of
data and training instances to perform QPP effectively [45–48]. While supervised
neural-based approaches have been extensively explored in post-retrieval QPP, to the
best of our knowledge, they have not yet been explored in pre-retrieval QPP due to the
limited information available from the query alone, which is insufficient for training.

Neural Disentanglement. In this paper, we not only leverage contextualized
neural representations of queries to preserve their semantic integrity of queries but also
propose a neural disentanglement-based method to distinguish between query content
semantics and difficulty. While previous studies have explored the concept of query dif-
ficulty, none have explicitly disentangled a query’s semantics from its difficulty. Neural
disentanglement, primarily used in NLP tasks, involves separating different attributes
embedded in neural representations, such as content, style, and tone [49–51]. This
technique has proven to be effective in tasks such as controlled text generation, style
transfer, and sentiment classification [52, 53]. Our work proposes a disentanglement
approach inspired by these recent developments, specifically for the disentanglement
of query semantics from query difficulty. This is in line with the work by Xie et al.
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[54] and Li et al. [55] who proposed to disentangle visual content and style in an
unsupervised and interpretable way for image retrieval.

The first attempts to apply concepts of disentanglement in text were inspired
heavily by the advances made in the image domain. For instance, the work by Hu et
al. [52] extended Variational Autoencoders (VAEs) [56] to handle discrete data such
as text, introducing controlled text generation where a user can control the attributes
(such as sentiment) of the generated text. Further, disentanglement was used for text
style transfer tasks, allowing changes in properties like sentiment, tense, and author
style while keeping the main content of the text unchanged [49–51]. Newer approaches
of disentanglement have explored the separation of content and attribute by text
generation from disentangled representations and re-disentanglement [57]. The use
of statistical regularizers to assist disentanglement of textual data [58], and mixup
approaches for class-specific features and class-agnostic features disentanglement [59]
are among recent approaches for disentangled representation learning. Inspired by the
success of neural disentanglement methods in addressing various downstream tasks,
in this work, we propose CoDiR-QPP to advance previous disentanglement approaches
and enhance the state-of-the-art performance in QPP tasks.

3 Proposed Approach

3.1 Problem Formulation

In an information-seeking system, a query q is submitted to a retrieval system π. The
system processes a collection of documents C to produce a ranked list of documents
Dq that aims to satisfy the information need Iq behind query q. Iq represents the
underlying intent or the specific information that a user seeks when formulating a
query to begin a search process. Iq is inherently abstract and can be influenced by
various factors such as the user’s background knowledge, the context of the search,
and the specific requirements or constraints of the information sought. The process is
denoted as Dq ← π(q, C). The retrieval effectiveness of system π is usually quantified
by the quality of retrieved documents using an evaluation metric µ(Dq, q | Rq) where
Rq is the set of relevant judged documents for query q from the corpus C. In general,
µ assesses Dq based on the proportion of retrieved documents that are considered to
be relevant for query q.

QPP estimates the effectiveness of retriever π, denoted as M̂(q | π,C), to assess
the quality of Dq without having access to the actual effectiveness of the system µ or

the relevant documents Rq. The accuracy of QPP is judged by how closely M̂(q | π,C)

approximates µ(Dq, q | Rq). In pre-retrieval QPP, predictions M̂pre(q | π,C) are made
without having access to Dq, leveraging only the query conditioned on the type of
retriever π and the document collection C. Pre-retrieval QPP acts prior to retrieval
π(q, C) and it offers benefits such as reduced query latency. This early prediction,
denoted as M̂pre(q | π,C), facilitates more real-time applications by allowing the
retriever to respond quickly, thereby expanding the potential actions it can perform.
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Fig. 2 Overview of the Proposed CoDiR-QPP Framework.

3.2 Model Framework

In order to disentangle content semantics from query difficulty, we undertake three
tasks in tandem: (i) Semantic-Difficulty disentanglement in query represen-
tation: In this first task, given two queries that have similar content semantics but
have varying degrees of difficulty, we focus on disentangling the representation of
such queries in a way that their content semantics representation is comparable yet
their difficulty representation is different in a way that solely based on the difficulty
representations of this pair of query, it would be possible to train a classifier that
could accurately predict the more difficult query. This will ensure that the informa-
tion encoded into the difficulty representation of queries focuses solely on aspects of
query representation that impact retrieval effectiveness for cases when the informa-
tion need from the queries is identical. (ii) Semantic validation across queries:
In the second task, we focus on learning query content semantics regardless of their
difficulty. To this end, given two pairs of queries and regardless of their difficulty, we
train the model to be able to predict whether two queries are addressing the same
information need or not, solely using their content semantics representation. This will
ensure that the network is separating out information related to query information
need and capturing them in the content semantics representation component of the
query representation. (iii) Performance prediction of queries: Finally, and in the
third task, we focus on predicting the actual performance of a single query regardless
of its comparison with other queries. In this task, our objective is to learn a regressor
over the query difficulty representation such that the predicted value is an accurate
depiction of the query performance at runtime. This task will ensure that we not only
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are able to rank queries based on their difficulty when comparing two queries, but also
are able to assess each query’s performance in isolation.

We propose CoDiR-QPP, an end-to-end framework for disentangling content and
difficulty of queries in their representation through constrastive learning. CoDiR-QPP
includes three components that accomplish the three tasks, as shown in Figure 2:

1. Disentangled Query Transformer (DQT): This component converts query rep-
resentations into a vector space where specific segments of the representation are
designated for query difficulty and query semantics (content). This process breaks
down the query vector representation into two distinct vectors: one capturing the
difficulty level and another encapsulating the content semantics of the query.

2. Contrastive Representation Learning (CRL): This component employs con-
trastive learning to have a more accurate representation of content and difficulty of
the query representation. Given a pair of queries associated with the same informa-
tion need, this component brings the content representations of query pairs closer
to each other. Simultaneously, it allows the difficulty aspect of the representations
to diverge based on the actual performance of the queries. In other words, this com-
ponent is responsible for enhancing the semantic representation of the queries by
bringing queries with similar content semantics closer together in the embedding
space, while distinguishing between these queries based on their performance.

3. Point-wise Prediction Networks (PPN): The Contrastive Representation Learn-
ing component is focused on distinguishing between queries that cater the same
information need by have varying degrees of query difficulty. This requires the
model to always compare two queries and make a determination as to which is
more difficult. However, it is also important to provide a point-wise component that
determines query difficulty on its own merit and not through pairwise comparison,
which is acheived through the textttPPN component in our proposed approach.

3.2.1 Disentangled Query Transformer (DQT)

For each query q, we obtain the vector representation of the query E(q) in a t-
dimensional space. This representation is crucial as it captures the semantic and
syntactic aspects of the query, providing a robust basis for subsequent processing steps.

Given a pair of queries, q and q′, the Disentangled Query Transformer’s (DQT)
responsibility is to obtain the vector representations E(q) and E(q′) such that both
representations belong to the same embedding space. Additionally, DQT should be able
to deterministically disentangle between vsemq and vdiffq , where the former represents
the semantic aspect of the query and the latter indicates the difficulty of the query. The
relationship between these vectors is fundamental to the model’s ability to differentiate
between query semantics and query difficulty. Given a pair of queries qi and q′i, DQT
will first embed the representation of each query through a transformer model Θ and
then disentangle them individually as follows:

DQT(qi, q
′
i|Θ) =

(
(vsemq ⊕ vdiffq ), (vsemq′ ⊕ vdiffq′ )

)
(1)
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where | vq |= t, the semantic and difficulty vectors of each query will have a size of ts
and td such that t = tdiff + tsem.

3.2.2 Contrastive Representation Learning (CRL):

The goal of this component is to produce representations for both segments of vsemq

and vdiffq through contrastive learning. This is pivotal in refining the model’s ability
to distinctly recognize the semantic relationship between query pairs. The essence of
this component lies in adjusting the proximity of semantically similar and dissimilar
query pairs in the embedding space. For pairs that are identified as semantically
similar, the loss function strives to minimize the cosine distance between their vector
representations, thereby bringing them closer within the space. Conversely, for those
pairs identified as semantically dissimilar, the function tends to maximize their spatial
separation, hence ensuring clear differentiation.

Let us assume a query pair Q which comprises queries [qi, q
′
i] where one of them

shows higher effectiveness based on their retrieved documents Dqi or Dq′i
compared

to the other one in terms of evaluation metric µ based on the relevance judged set Rq:

Q = {[qi, q′i] | µ(qi, Dqi | Rq) > µ(q′i, Dq′i
| Rq)} (2)

We define function ϕdiff to determine the relative difficulty of a query pair [qi, q
′
i]

as follows:

ϕdiff [qi, q
′
i] =

{
1 µ(qi, Dqi | Rq) > µ(q′i, Dq′i

| Rq)

0 Otherwise
(3)

Queries can carry the same semantics but be expressed in different forms which
affects their difficulty. As such, we define ϕsem for determining whether the pair of
queries are referring to same information need (Iq == Iq′) or not.

ϕsem [qi, q
′
i] =

{
1 Iqi == Iq′i
−1 Otherwise

(4)

For simplicity, we refer to ϕdiff [qi, q
′
i] and ϕsem [qi, q

′
i] as ϕdiffi and ϕsemi

, respec-
tively. The semantic component of the query representation is processed using a
contrastive similarity-based loss function, which refines the model’s ability to dis-
tinguish between semantic similarities and differences among query pairs. Without
loss of generality, we measure the similarity between the semantic component of the
representation of two queries vsemqi and vsemq′i

with cosine similarity between their dis-

entangled semantic vector representation of those queries. The following loss function
minimizes the cosine distance between vectors representing semantically similar query
pairs, drawing them closer in the vector space.
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Lsem =
1

N

N∑
i=1

(
1 + ϕsemi

2

(
1− sim(vsemqi , vsemq′i

)
)

+
1− ϕsemi

2
max

(
0, sim(vsemqi , vsemq′i

)
)) (5)

where N is the total number of query pairs. This loss function effectively enables the
model to optimize vector representations such that they accurately reflect the semantic
intent of each query pair.

We propose to leverage contrastive learning not only for semantic representation,
but also for difficulty representation of the query. To do so, we incorporate a fully
connected neural network F designed to further refine the disentanglement process by
focusing on the difficulty of the queries. Since the idea behind this learning is based
on the difference between the queries that have the same information need, the input
to network F is the subtraction of the difficulty of the two queries, i.e., vdiffqi − vdiffq′i

,

representing the disparity in difficulty aspects between the query vectors qi and q′i.

The purpose of this network is to predict the function ϕdiffi
by ϕ̂diffi , which serves

as an indicator of relative difficulty between the two queries as follows:

ϕ̂diffi
= F(vdiffqi − vdiffq′i

) (6)

Here, network F will be optimized through minimizing the cross entropy loss for
difficulty prediction, denoted as LDiff, formulated as follows:

Ldiff =
−1
N

N∑
i=1

(
ϕdiffi

log(ϕ̂diffi
) + (1− ϕdiffi

) log(1− ϕ̂diffi
)
)

(7)

These combined mechanisms within CRL not only enhance the model’s capacity
to separate query semantics from query difficulty effectively but also optimize the
alignment of these components for more effective query performance prediction.

3.2.3 Point-wise Prediction Networks (PPN):

The Disentangled Query Transformer followed by Contrastive Representation Learning
enables us to obtain a semantic representation of a pair of queries, vsemqi and vsemq′i , as

well as their difficulty, vdiffqi and vdiffq′i . Based on these difficulty representations, we

are able to obtain ϕ̂diffi , which, as explained in Equation 3, predicts a binary value
indicating whether the performance of qi is better than that of q′i. However, for more
accurate predictions about the performance of the queries, we need to move beyond the
binary predictions derived from pairwise contrastive comparisons to a more regression-
based comparison that can predict the actual performance of each query. To enhance
the quality of the disentanglement process, we have incorporated auxiliary functions by
defining two separate networks, both mirroring the architecture of F . These networks
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are specifically trained to predict the individual performance µ(q,Dq | Rq) for each
query based solely on their difficulty vectors, i.e., vdiffq .

The introduction of P to predict a point-wise scalar value serves a dual purpose.
First, they provide direct feedback to the model about the accuracy of the difficulty
representations it generates. Second, by focusing on predicting the actual fine-grained
scalar value of the evaluation metric of interest (e.g., average precision), we reinforce
the training process to go beyond learning difficulty as a comparative task.

Therefore, we predict the scalar value of difficulty of the given queries ˆM(q) based
on their difficulty representation vdiffq through network P as M̂(q) = P(vdiffq ) and
the following loss function for point-wise prediction of the performance Lp:

Lp =

N∑
i=1

(
M̂(q)−M(q)

)2

(8)

Now, we need to establish a connection between the PPN and the CRL components
to deepen the model’s understanding of the relationships among the networks F and
P. We want the model to not only predict the difference label accurately but also to
align the difference between the individual predicted performances with the difference
label ϕdiff . To this end, we introduce La, which aligns the two networks and acts as a
bridge, connecting the outputs of the two networks that predict individual performance
from difficulty vectors. La is designed to ensure that τi, which serves as a predictive
counterpart to the predetermined difference label ϕ[qi, q

′
i], is properly aligned.

τi = P(vdiffqi )− P(vdiffq′i
) = M̂(qi)− M̂(q′i) (9)

La =
−1
N

N∑
i=1

[ϕdiffi log(τi) + (1− ϕdiffi) log(1− τi)] (10)

This integrated approach not only enhances the model’s predictive capabilities but
also fosters a more cohesive learning environment. It allows the model to develop a
more holistic understanding of the interconnected aspects of query difficulty, thereby
improving the overall effectiveness of the disentanglement process. The total loss
function of the model is the linear interpolation of the defined loss functions as follows:

Lt = αLsem + βLDiff + γ(Lpq
+ Lpq′ ) + λLa (11)

Once the forward pass computes the outputs based on current weights, Lt is calcu-
lated. The gradients of Lt with respect to the output neurons are first calculated, and
these gradients are successively propagated backwards through the network’s layers.
Each layer’s weights are updated by moving in the direction that reduces Lt, using an
optimization algorithm. This iterative adjustment continues across multiple epochs,
progressively refining the model’s weights to enhance predictive accuracy and align
with the training data’s underlying patterns.

11



3.3 Inference

During the inference stage, the objective is to predict the performance of each query
based on their disentangled representations. This process involves the following steps:
Query Embedding and Disentanglement: Each input query q is first processed
by the Disentangled Query Transformer (DQT), which encodes the query into a vector
representation that is then split into semantic and difficulty components:

E(q) = DQT(q|Θ) = (vsemq ⊕ vdiffq )

Here, vsemq denotes semantic content of the query, and vdiffq represents its difficulty.

Difficulty-Based Performance Prediction: The difficulty vector vdiffq is utilized
by the Point-wise Prediction Networks (PPN) to predict the query’s performance.
This is done by feeding vdiffq into a neural network P, which outputs a scalar value
indicating the predicted effectiveness of the query:

M̂(q) = P(vdiffq )

This predicted value M̂(q) represents the effectiveness of the query, serving as a direct
measure of the query’s potential performance in the retrieval system.

4 Experiments

4.1 Experimental Setup

Training Data and Setup. As detailed in Section 3.2, CoDir-QPP requires the use
of query pairs [q, q′]. To address this need, we construct a dataset that includes these
query pairs along with their corresponding actual performance (µ) in terms of Mean
Average Precision at a cut-off of the top-1000 retrieved documents. These query pairs
were sources from the Matched Made in Heaven (MMH) dataset [19].

The MMH dataset features queries that, despite having similar information needs
ϕsem[qi, q

′
i] = 1, are represented with different linguistic formulations, resulting in

queries of similar content but varying difficulty. This dataset includes over 400,000 such
pairs, each demonstrating varied performance levels. The MMH dataset has been built
on top of the MS MARCO V1 collection. Microsoft Machine Reading Comprehension
(MS MARCO) is a widely used, large-scale, well-known dataset in information retrieval
and NLP downstream tasks. MS MARCO contains over 8.8 million passages and more
than 500K queries, each linked to at least one relevant passage. MS MARCO provides
a rich source of queries and associated passages, making it an ideal foundation for
creating query pairs with varying performance metrics.

To select contrastive samples for the training, we also randomly assigned queries
from the MS MARCO V1 train queries to ensure we incorporated queries with non-
similar content and different complexity levels along with their performance metrics.
Consequently, our final training dataset expanded to include over 400,000 query pairs.
These pairs are categorized into two groups: those with similar content are labeled as 1
(ϕsem[qi, q

′
i] = 1), and those with differing content are labeled as -1 (ϕsem[qi, q

′
i] = −1),
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as defined in Equation 4. This approach allows our model to train on a balanced dataset
representing a broad spectrum of query difficulties and content similarities, which is
crucial for enhancing the robustness and accuracy of the CoDir-QPP framework. Our
dataset is available to download on our GitHub repository1.

For the training setup, 80% of the dataset was allocated for training purposes, while
the remaining 20% served as the validation set. We optimized our model using the
Stochastic Gradient Descent (SGD) algorithm, with a learning rate set at 10−4. This
low learning rate was chosen to allow for gradual adjustments to the model weights,
thereby enhancing the training process’s stability. Training spanned 10 epochs, during
which we continuously evaluated the model’s performance against the validation set
at the end of each epoch to ensure accuracy and robustness.
Evaluation Data and Strategies. We conducted experiments on the MS MARCO
V1 passage collection and four associated query sets, including the MS MARCO devel-
opment (dev) set, which contains 6,980 queries. Additionally, we examined TREC
DL 2019 (43 queries), TREC DL 2020 (53 queries), and DL-Hard (50 queries), all of
which feature comprehensive judgments on a non-binary graded scale. The key differ-
ence between these query sets lies in their evaluation and labeling. The MS MARCO
dev set is evaluated mainly with one annotated relevant passage per query, making
its labeling quite sparse. In contrast, the other three query sets have relatively more
comprehensive labeling, with an average of about 200 documents per query anno-
tated. Moreover, DL-Hard contains the most challenging queries of the group, with
even more judgments and queries that are difficult to satisfy.

To evaluate the effectiveness of CoDir-QPP, we utilized two common evaluation
strategies. First, we calculated rank-based and linear-based correlations to assess the
correlation between the predicted performance of our method and the actual per-
formance of queries retrieved by BM25, as implemented by Anserini. For actual
performance metrics, we used MRR@10 for the MS MARCO dev set and nDCG@10
for the other three query sets. Higher correlation values are indicative of more accurate
predictions of query performance.

Furthermore, as the second strategy, we utilized the Symmetric Mean Absolute
Error (sMARE) metric [28]. The sMARE metric quantifies the accuracy of a ranking
model by measuring the discrepancy between the predicted and the ground truth
scores or rankings of a set of items or documents. A lower sMARE value denotes
superior performance, indicating a smaller mean discrepancy between the predicted
and actual rankings.
Baselines. We compare against state-of-the-art pre-retrieval QPP baseline groups:

– Term Importance-Based. Two commonly used statistics in this category are
inverse document frequency (IDF)[60] and inverse collection term frequency (ICTF)
[60], which are recognized as measures of the relative importance of query terms.
While being simple, these methods show relatively high performance, Also, they are
inexpensive to run, therefore enjoying numerous applications in real-world scenarios.

– Specificity-Based. This group of pre-retrieval QPP metrics operates based on the
idea of divergence between the query language model and the collection language
model. The idea is that more specific queries are relatively easier to address than

1https://anonymous.4open.science/r/DisentangledQPP-4487
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Table 2 Performance comparison on TREC DL-2019 and DL-2020. Italic values indicate not
statistically significant correlation with p-value of 0.05. Highest values are shown in bold.

TREC DL 2019 TREC DL 2020
Kendall ↑ Spearman ↑ sMARE ↓ Kendall ↑ Spearman ↑ sMARE ↓

SCS 0.194 0.287 0.316 0.272 0.397 0.333
CC 0.099 0.055 0.319 0.106 0.026 0.290
DC 0.095 0.053 0.293 0.091 0.035 0.327
IEF 0.187 0.166 0.387 0.064 0.081 0.334
SCQ 0.116 0.162 0.387 0.076 0.132 0.365
VAR 0.107 0.152 0.290 0.059 0.077 0.318
PMI 0.009 0.017 0.341 0.040 0.056 0.344
IDF 0.158 0.245 0.321 0.245 0.353 0.374
ICTF 0.153 0.240 0.360 0.345 0.330 0.330
DQT+CRL 0.2 0.3 0.273 0.274 0.385 0.248
DQT+PPN 0.023 0.041 0.318 0.167 0.239 0.372
DQT+CRL+(PPN-La) 0.081 0.138 0.308 0.192 0.276 0.392
CoDiR-QPP 0.227 0.311 0.269 0.265 0.384 0.248

more general ones, which are sometimes also found to be ambiguous. Simplified
Clarity Score (SCS) is the leader of this group [15].

– Similarity-Based. The underlying idea behind this approach is that queries
exhibiting high similarity to the collection are likely to be easier to answer. Sim-
ilarity of Collection and Query (SCQ) belongs to this group and has shown high
performance on different IR benchmarks [16].

– Term-Relatedness Based. These methods examine the co-occurrence statistics
of terms, i.e., when query terms co-occur frequently with each other this can be a
sign that they are related to the same topic and hence indication of less difficult
queries. Pointwise Mutual Information (PMI) belongs to this group [61].

– Coherence-Based. These approaches work on the principle that query coherence
refers to the inter-similarity of documents containing the query terms. The idea is
that the variance (VAR) of the term weights across the documents containing that
term in the collection is an indicator of query difficulty [16].

– Neural-Based. This group of methods operates based on the geometric relation-
ships of query terms and their surrounding terms in the embedding space. The idea
is that when a query term is surrounded by numerous similar terms in the embed-
ding space, it is more specific. More specific queries can be considered to be less
difficult. These baselines leverage various centrality measures such as Closeness Cen-
trality (CC), Degree Centrality (DC), and Inverse Edge Frequency (IEF) to assess
query term specificity and hence difficulty.

4.2 QPP Results

Tables 2 and 3 demonstrate the results of our approach and the baselines on four
datasets in terms of Kendall-τ and Spearman-ρ as well as the sMARE metric. It is
worth noting that for rank-based correlation metrics, higher values indicate better
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Table 3 Performance comparison on MS MARCO Dev set and TREC DL-Hard. Italic values
indicate not statistically significant correlation with p-value of 0.05. Highest values are shown in bold.

MS MARCO Dev Set TREC DL hard
Kendall ↑ Spearman ↑ sMARE ↓ Kendall ↑ Spearman ↑ sMARE ↓

SCS 0.037 0.049 0.333 0.106 0.140 0.326
CC 0.065 0.085 0.333 0.103 0.141 0.310
DC 0.107 0.144 0.333 0.123 0.165 0.335
IEF 0.094 0.104 0.330 0.140 0.191 0.377
SCQ 0.011 0.014 0.334 0.127 0.179 0.369
VAR 0.062 0.083 0.333 0.016 0.035 0.349
PMI 0.017 0.023 0.323 0.022 0.031 0.349
IDF 0.116 0.154 0.330 0.111 0.125 0.255
ICTF 0.114 0.152 0.330 0.107 0.115 0.314
DQT+CRL 0.24 0.359 0.259 0.171 0.257 0.271
DQT+PPN 0.003 0.060 0.360 0.171 0.266 0.283
DQT+CRL+(PPN-La) 0.021 0.029 0.326 0.099 0.135 0.36
CoDiR-QPP 0.260 0.385 0.252 0.221 0.335 0.275

performance. Conversely, for the sMARE metric, a lower value is preferable as it
reflects a smaller discrepancy between the predicted and actual rankings of queries.

4.2.1 Ablation Study on CoDiR-QPP

Our proposed approach encompasses multiple components, each contributing to the
overall prediction performance. To assess the individual impact of these components,
we conduct a detailed ablation study to investigate the roles of the CRL and PPN

components by training the model, removing one of these components at a time. As
such, we report the result for DQT+CRL and DQT+PPN separately in Tables 2 and 3. In
addition, since the PPN component is further divided into three parts, each designed to
enhance the model’s understanding of query difficulty, we also explore the impact of
La within the PPN network. Accordingly, the last four rows report DQT+CRL+ (PPN)-La

alongside our complete approach CoDiR-QPP, which integrates all components.
The results show that while combinations of some components, such as DQT+PPN

and DQT+CRL+(PPN-La), do not show statistically significant correlation on some
query sets (e.g., TREC DL-2019), combining all three components in CoDir-QPP

affects the overall performance, with each component contributing to the final result.
The DQT+CRL model performs comparably to the complete CoDir-QPP model, further
emphasizing the importance of the CRL component in our approach. The abla-
tion study results (DQT+CRL, DQT+PPN, and DQT+CRL+(PPN-La)) indicate that the
complete CoDiR-QPP model achieves the best overall performance. Removing every
individual component tends to decrease the overall performance, particularly when
parts of the PPN network are excluded. Specifically, the combination DQT+CRL shows
improved performance over DQT+PPN, suggesting that CRL plays a more significant
role than the individual predictors within PPN in this context. The ablation involving
DQT+CRL+(PPN-La) demonstrates a notable drop, particularly in Kendall τ and Spear-
man ρ coefficients on the TREC DL Hard dataset, suggesting that La contributes
significantly to handling difficult queries. In summary, the consistent performance drop
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across different datasets when components are removed validates the contribution of
each component of the CoDiR-QPP model to its overall performance.

4.2.2 Comparison with QPP Baselines

Based on the comparative analysis of our proposed CoDiR-QPP approach against
state-of-the-art baselines presented in Tables 2 and 3, we observe the following: (1)
Term-statistical baselines, including SCQ, VAR, PMI, and IDF exhibit inconsistent per-
formance across various datasets. These baselines demonstrated differing effectiveness
on the TREC DL 2019 and 2020 datasets, where metrics such as Spearman and
Kendall correlations fluctuated notably between different tests; (2) Among the term-
statistical baselines, ICTF (Inverse Collection Term Frequency) and SCS (Statistical
Corpus Similarity) exhibit more robust performance compared to others. Notably,
ICTF shows a significant increase in performance in 2020, particularly in the Kendall-
τ and Spearman-ρ metrics as shown in Table 2. Despite this uptick, ICTF does not
maintain stable performance across other datasets. For example, on the MS MARCO
Dev set and TREC DL-Hard queries, our proposed approach, CoDiR-QPP, signifi-
cantly outperforms ICTF, exhibiting more than double the performance in terms of
both Kendall-τ and Spearman-ρ. Meanwhile, SCS registers the highest performance
in terms of Spearman-ρ on TREC DL-2020, yet the performance margin between SCS

and CoDiR-QPP is not statistically significant, as evidenced by a paired t-test with a p-
value of 0.05. On the MS MARCO development set, CoDiR-QPP continues to outshine
all baselines, achieving the highest Kendall-τ and Spearman-ρ correlation coefficients.
These results illustrate the strengths of certain statistical baselines while underscor-
ing the superior consistency and effectiveness of CoDiR-QPP; (3) The results on the
TREC DL-Hard queries shows that CoDiR-QPP offers consistently high performance.
Given that TREC DL-Hard is comprised of some of the most challenging queries, our
proposed method shows a distinct advantage over the baselines in this demanding
dataset. Specifically, CoDiR-QPP achieves a Spearman-ρ of 0.335, markedly higher than
the next best baseline, IEF, which attains a correlation of only 0.191. This significant
improvement highlights the robustness of CoDiR-QPP in accurately predicting query
performance across varying levels of query difficulty; (5) The CC, DC, and IEFmethods,
which are neural-based baselines do not demonstrate significant performance in our
experiments. We hypothesize that this is because these methods do not use contex-
tualized representations of query terms; rather, they mostly rely on individual query
terms. While the independence of query terms might work for short and keyword-
based queries, this assumption is less effective for cases where the queries are in natural
question formats (similar to our test cases). As such, we observe that our proposed
approach outperforms all the neural-based models reported in the both tables.

Our analysis across multiple datasets and in comparison to baseline methods high-
lights the robustness and efficacy of our proposed CoDiR-QPP approach for the query
performance prediction task. In particular, the ablation study illustrated the signifi-
cant contributions of the CRL component and the La loss function, which are essential
in enhancing the model’s overall performance. Our results demonstrate the potential
of our approach in adapting to varying query characteristics in different query sets.
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Fig. 3 The quality of the content semantics representations offered by our disentanglement approach.

4.3 Quality of Content Semantics Representations

In the previous section, we demonstrated that the difficulty component of disentan-
gled representations of queries can effectively predict the queries’ performance. In this
section, we shift our focus to the content semantics component of the disentangled rep-
resentations. We aim to investigate whether this component retains meaningful and
informative content compared to the original query representation about the informa-
tion need of the query. We investigate if the process of disentanglement successfully
isolates query difficulty without compromising the content semantics of the query.

To evaluate the effectiveness of our disentanglement process in preserving query
semantics, we analyze query representations before and after disentanglement using
two different large language models, including RoBERTa [62], and BERT [63]. Addi-
tionally, we utilize the dataset proposed by Nogueira et al. [64], which features queries
generated from the MS MARCO passage collection. These queries are designed to
reflect possible questions a single passage might address. As suggested by Nogueira et
al., we hypothesize that the queries generated from the same passage should exhibit
high semantic similarity, a concept that has been used in different tasks such as query
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generation, query refinement, and query reformulation [65]. This dataset includes 80
generated queries for each of the 8.8 million passages in the MS MARCO collection.

An effective representation should group semantically similar queries closer
together in the embedding space while distancing queries with differing content. To
evaluate this, we randomly selected 5,000 query pairs generated from the same doc-
uments. This selection is premised on the assumption that such pairs, being derived
from identical sources, should exhibit high semantic similarity.

To visualize how well each representation performs, we plotted the distribution of
similarities for 5,000 randomly selected query pairs. The resulting histogram, shown
in Figure 3 (a), illustrates the distribution of similarity scores. A histogram skewed
towards higher similarity values indicates a representation that has effectively captured
semantic information since such a model has been able to exhibit closer proximity
between semantically similar query pairs. As illustrated in the figure, the disentangle-
ment process has led to increased skewness towards higher similarity scores across both
large language models. This result confirms the effectiveness of our disentanglement
approach in enhancing the models’ capacity to represent query semantics accurately.
To further evaluate the effectiveness of the semantic vectors, we selected random pairs
of dissimilar queries from the MS MARCO development set. These queries were pro-
cessed to generate content vectors for each query using both our disentangled models
and their respective base pre-trained models. We then calculated the cosine similarity
between each pair of queries. Given that the selected queries are semantically dissimi-
lar, the cosine similarity scores should ideally be low. A favorable outcome is indicated
by a distribution with a lower mean and a skew towards the left, suggesting that
our model more effectively captures the distinctions between dissimilar queries. The
distribution of cosine similarity scores are depicted in Figure 3 (b). The histograms
show that the distribution of similarity scores for dissimilar queries using the disentan-
gled model is skewed towrds lower scores which again confirms that our disentangled
approach has effectively learned the content representations.

As a second experiment to test the quality of the disentangled content semantics
component, we evaluated the extent to which these representations capture the seman-
tic representation of queries in general. We leveraged the English versions of the widely
used machine-translated multilingual STS benchmark dataset2. This dataset includes
pairs of sentences accompanied by a similarity score between 0 and 5, from low to
high similarity. We ran experiments on 1,500 pairs of sentences from its development
set and defined the task as comparing the similarity between the representations of
sentences based once on the original large language model and once based on the disen-
tangled content semantics representation obtained from our proposed disentanglement
approach. Without loss of generality, we used cosine similarity and employed the two
large language models employed in the previous experiment. We measured the simi-
larity of the embedded representations of each pair and then compared that with the
original score labeled in the STS benchmark. The idea is that the more the two lists
between 1,500 pairs of sentences are correlated, the better the representations are. As
seen in Figure 3 (c), the representations from our proposed disentanglment approach
is able to show higher values on both Kendall and Pearson correlations on both large

2https://huggingface.co/datasets/PhilipMay/stsb multi mt
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language model. For instance, the Pearson and Kendall correlations improved by 20%
and 33%, respectively on the BERT language model. A similar observation can be
made on the RoBERTa language model as well. This reinforces our finding in the pre-
vious experiment that our disentanglement approach is able to not only capture query
difficulty effectively but also capture query content semantics successfully.

5 Concluding Remarks

In this paper, we proposed a neural disentanglement approach to isolate query content
semantics from other aspects of the query that may impact its retrieval effectiveness.
Our approach employs contrastive representation learning and point-wise prediction
to perform neural disentanglement and to accurately estimate query performance.
Extensive experiments on four benchmark query sets demonstrate that our approach
outperforms state-of-the-art QPP baselines. In addition, we empirically show that
the disentangled content semantics representations provide a more accurate account
of the information expressed by the query when compared to representations offered
by widely used language models, such as, BERT and RoBERTa. While our proposed
approach makes significant contributions, it has certain limitations that we plan to
address in future works, which we outline as follows:

• A key area for improvement is enhancing the interpretability of our model during
training and testing. Our efforts to identify metrics that assess the impact of com-
ponents on disentanglement have proven to be challenging, as most existing metrics
are highly case-specific and cannot be used in every disentangled representation
learning model [66, 67]. We plan to further investigate this area and develop metrics
that provide clearer insights into how different components affect disentanglement
levels and, in turn, how these levels influence QPP accuracy.

• Another research direction we aim to explore is extending beyond separating content
and difficulty to use the difficulty vectors for controlled text generation. With our
successful disentangled representation for queries, we will investigate methods to
modify the difficulty representation, enabling the generation of easier queries that
are optimized for an IR system.
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