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Abstract. The state-of-the-art query performance prediction methods
rely on the fine-tuning of contextual language models to estimate re-
trieval effectiveness on a per-query basis. Our work in this paper builds on
this strong foundation and proposes to learn rich query representations
by learning the interactions between the query and two important con-
textual information, namely (1) the set of documents retrieved by that
query, and (2) the set of similar historical queries with known retrieval ef-
fectiveness. We propose that such contextualized query representations
can be more accurate estimators of query performance as they embed
the performance of past similar queries and the semantics of the docu-
ments retrieved by the query. We perform extensive experiments on the
MSMARCO collection and its accompanying query sets including MS-
MARCO Dev set and TREC Deep Learning tracks of 2019, 2020, 2021,
and DL-Hard. Our experiments reveal that our proposed method shows
robust and effective performance compared to state-of-the-art baselines.

1 Introduction

Information Retrieval (IR) researchers have been concerned with both the effec-
tiveness and robustness of retrieval methods [14,6,33]. A successful IR method
would be one that simultaneously shows both effective and robust performance,
i.e., shows strong and consistent performance over a large range of queries. While
not ideal, but in practice, IR methods are often only effective on a subset of
queries and less effective on others. By identifying challenging queries for an
IR method, it would be possible to adopt alternative strategies to satisfy these
queries such as query routing [39], query reformulation [36], and asking users
to clarify their intents [7,1]. The task of Query Performance Prediction (QPP)
speaks directly to this need and focuses on estimating the effectiveness of re-
trieval methods on input queries.

Broadly speaking, QPP methods have been classified into the categories of
pre-retrieval and post-retrieval methods [11]. The former is concerned with pre-
dicting the performance of a query prior to retrieval, whereas the latter counter-
parts consider additional information accessible after an initial retrieval stage,
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such as retrieval scores of retrieved documents [41,44,9,38,8,10,2,3], among oth-
ers. Given access to a wider range of information, post-retrieval methods of-
ten exhibit stronger performance and can themselves be seen as unsupervised
[46,41,44,17,4,30] and supervised [45,20,5,18,25] variations. Most recently and
thanks to large-scale relevance judgment collections such as MS MARCO [32], re-
searchers have more extensively explored supervised post-retrieval QPP methods
[45,20,5,18]. For example, NeuralQPP [45] was among the first neural frameworks
that used unsupervised QPP methods as weak signals to learn a more effective
supervised method. There has also been interest in employing contextualized
Large Language Models (LLM) [12] in the QPP task where the performance of
a query is estimated through the finetuning of an LLM [5,18,26]. Most existing
supervised post-retrieval QPP methods focus on estimating the performance of
a query by finetuning an LLM for this purpose [5,18]. The underlying assump-
tion of these methods is that the semantic finetuned representation of the query
obtained from an LLM may be correlated with the performance of the query.

Our work in this paper aligns closely with earlier works [5,18] and provides
a more generalizable framework to learn rich and contextualized query repre-
sentations that can more effectively estimate the performance of the query. We
propose that a rich query representation suitable for query performance predic-
tion would be one that is informed by the interaction between the query and
(1) the documents retrieved by that query, and (2) the set of similar historical
queries with known effectiveness. The underlying premise of our work is that
contextual language models capture meaningful geometric relations [23,31,19];
therefore, contents that are placed closer to each other in the embedding space
carry similar semantics and hence would exhibit similar characteristics, such as
comparable retrieval effectiveness, when used in applications like retrieval. On
this basis, learning rich contextualized representations for queries that are influ-
enced by relevant content from the document space as well as relevant content
from the query space can provide insight into the potential effectiveness of the
query. Our work is guided by the hypothesis that queries that are embedded
in close proximity to effective historical queries and semantically relevant docu-
ments are more likely to be effective queries themselves. In contrast, queries that
are embedded in close proximity to ineffective queries and whose set of retrieved
documents do not have a semantic resemblance to the query are more likely to
be ineffective.

For this reason, we propose to learn rich contextualized query representations
based on the interaction between the query, its retrieved documents, and past
similar historical queries in order to predict the query’s potential effectiveness.
In order to learn such rich representations, we propose to finetune a contextual
language model to capture these interactions through a cross-encoder architec-
ture. To show the effectiveness of our approach, we have performed extensive
experiments on five widely used MS MARCO datasets, namely the Dev, TREC
DL 2019, 2020, 2021 and DL-Hard sets [32,15,28,13]. Our experiments show that
our method enjoys significantly higher effectiveness on the QPP task compared
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to other state-of-the-art approaches. For reproducibility purposes, we made our
code and model publicly available at GitHub 1.

2 Proposed Approach

Problem Definition. Let C, q,R,Dq, be the collection of documents, input
query, a retrieval method, and a ranked list of documents retrieved by R in re-
sponse to query q, respectively. The task of QPP is concerned with developing
a predictor µ to estimate the performance of R on q based on a given retrieval
metric M , e.g., average precision or reciprocal rank, without accessing the rel-
evance judgments. This can be expressed as: M̂q = µ(q,Dq, C) where M̂q is an
estimated value of M for query q.
Hypothesis. The underlying premise of our work is that a rich contextualized
representation for a query, which can effectively predict the performance of the
query should not only consider the representation of the query itself but also
capture (1) The association between the retrieved documents by the query and
the query : Earlier research has shown that the qualities of the list of documents
retrieved for a query, such as coherence [16], can be indicators of the possible
effectiveness of that query. As such, a rich query representation that can encode
and embody the characteristics of the retrieved set of documents for that query
is more likely to effectively estimate query performance; and (2) The relation
with past similar queries with known effectiveness: A rich query representation
that can effectively identify past similar queries with comparable retrieval effec-
tiveness will have a higher likelihood of estimating the effectiveness of the query
based on its association with queries with analogous performance.
Proposed Formulation. To encode the above three characteristics in our rich
query representation, we contextualize the query as follows: (1) We capture the
individual characteristics of the query through its contextualized representation
using a pre-trained language model. This ensures that queries that are both
semantically and syntactically similar to each other receive comparable repre-
sentations; (2) The properties of the retrieved documents are also considered
by representing them through their contextualized representations, and (3) The
association between each query and its most similar historical queries is also
computed through their geometric distance in the embedding space. Two queries
would be considered to be more similar if they have smaller distances from each
other. Similar queries can be identified through a nearest neighbor scheme. We
systematically incorporate this contextual information into our query represen-
tation through a cross-encoder architecture that finetunes a language model to
estimate query performance. In particular, for query q, we let the cross-encoder
architecture estimate the performance of q, through regression, based on the con-
textualized representation of q, Dq, and a set of most similar queries to q with

known effectiveness Q̂q. We encode q,Dq, and Q̂q and their retrieval effectiveness

1 https://github.com/sadjadeb/nearest-neighbour-qpp
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Table 1. The performance of our proposed approach and baselines on Dev set with
MRR@10 and DL-Hard with NDCG@10. The correlations are statistically significant
with 95% confidence interval.

MS MARCO Dev DL-Hard
p− ρ k − τ s− ρ p− ρ k − τ s− ρ

Clarity 0.149 0.258 0.345 0.149 0.099 0.126
WIG 0.154 0.170 0.227 0.331 0.260 0.348
QF 0.170 0.210 0.264 0.210 0.164 0.217
NeuralQPP 0.193 0.171 0.227 0.173 0.111 0.134
n(σ%) 0.221 0.217 0.284 0.195 0.120 0.147
RSD 0.310 0.337 0.447 0.362 0.322 0.469
SMV 0.311 0.271 0.357 0.375 0.269 0.408
NQC 0.315 0.272 0.358 0.384 0.288 0.417
UEFNQC 0.316 0.303 0.398 0.359 0.319 0.463
NQA-QPP 0.451 0.364 0.475 0.386 0.297 0.418
BERT-QPP 0.517 0.400 0.520 0.404 0.345 0.472
qpp-BERT-PL 0.520 0.413 0.522 0.330 0.266 0.390
qpp-PRP 0.302 0.311 0.412 0.090 0.061 0.063

Ours 0.555 0.421 0.544 0.434 0.412 0.508

by concatenating them using a special separator token and then apply a linear
layer on the first vector produced to estimate a scalar value of M̂ as the difficulty
of the query. We leverage a sigmoid layer and a one-class Binary cross-entropy
loss function. Given M(q,Dq) as the desired ranking metric, such as average
precision, we adopt the following loss function to train for query performance:

ℓ(M̂q,M(q,Dq)) = −w[M(q,Dq).log(σ(M̂q)) + (1−M(q,Dq).log(1− σ(M̂q)))] (1)

Nearest Neighbor Queries. In addition to the query itself, and the set of re-
trieved documents retrieved by R for q, our approach also requires access to Qq.
In order to identify the set of most similar queries to q, we first collect a set of his-
torical queries with known effectiveness, namely χ = {(q1,M1), (q2,M2), ..., (qn,Mn)}.
Given a representation function f that maps each qi to a vector in the embed-
ding space, we define a query store QS consisting of a set of key-value pairs
where each key is the embedding representation of a previously seen query and
a corresponding value that denotes the performance of that query. The query
store QS can be formulated as:

QS
def
= {(κ, υ)} = {(f(qi),M(qi))}∀i ∈ {1, ..., n} (2)

The query store QS can be indexed using an approximate nearest neighborhood
indexing mechanism [24], allowing for the efficient retrieval of Q̂q for query q.
Given a distance function Ψ(., .), we first generate a contextualized representa-
tion of query f(q) and then find the nearest neighbors of the query from QS.
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Table 2. The performance of our proposed approach and baselines on Trec Deep
Learning Track 2019, 2020, and 2021. The correlations are statistically significant on
NDCG@10 with 95% confidence interval.

2019 2020 2021

p− ρ k − τ s− ρ p− ρ k − τ s− ρ p− ρ k − τ s− ρ
Clarity 0.271 0.229 0.332 0.360 0.215 0.296 0.111 0.070 0.094
WIG 0.310 0.158 0.226 0.204 0.117 0.166 0.197 0.195 0.270
QF 0.295 0.240 0.340 0.358 0.266 0.366 0.132 0.101 0.142
NeuralQPP 0.289 0.159 0.224 0.248 0.129 0.179 0.134 0.221 0.188
n(σ%) 0.371 0.256 0.377 0.480 0.329 0.478 0.269 0.169 0.256
RSD 0.460 0.262 0.394 0.426 0.364 0.508 0.256 0.224 0.340
SMV 0.495 0.289 0.440 0.450 0.391 0.539 0.252 0.192 0.278
NQC 0.466 0.267 0.399 0.464 0.294 0.423 0.271 0.201 0.292
UEFNQC 0.507 0.293 0.432 0.511 0.347 0.476 0.272 0.223 0.327
NQA-QPP 0.348 0.164 0.255 0.507 0.347 0.496 0.258 0.185 0.265
BERT-QPP 0.491 0.289 0.412 0.467 0.364 0.448 0.262 0.237 0.34
qpp-BERT-PL 0.432 0.258 0.361 0.427 0.280 0.392 0.247 0.172 0.292
qpp-PRP 0.321 0.181 0.229 0.189 0.157 0.229 0.027 0.004 0.015

Ours 0.519 0.318 0.459 0.462 0.318 0.448 0.322 0.266 0.359

3 Experiments

Training Set. For our experiments, we adopt the well-known MS MARCO
passage retrieval dataset [32], which consists of 8.8M passages. The training set
includes over 500k search queries that correspond with at least one relevance-
judged passage. We utilize this set of queries to build the query store QS and
also to train our model. For each query q in this dataset, we obtain the retrieved
documents Dq, as well as nearest neighbor queries Qq, which are then used for
training the cross-encoder architecture and estimating Mq.
Test Set. We evaluate our model on five query sets: (1) The MS MARCO
Development set, also referred to as the Dev set, which consists of 6,980 queries.
(2) The TREC Deep Learning Track 2019, [15], (3) The TREC Deep Learning
Track 2020 [12], (4) The TREC Deep Learning Track 2021 [43], and (5) The
TREC Deep Learning Hard set (DL-Hard) [29]. These query sets consist of 43,
54, 47, and 50 queries, respectively, and differ from the MS MARCO Dev set in
that they provide multiple relevant judged passages for each query whereas the
Dev set consists of, on average, one judged passage per query.
Evaluation Metrics. For evaluation purposes, we follow the well-known strat-
egy of computing the correlation between the set of queries that are ranked based
on their predicted performance against their actual performance based on the
standard performance metric for each dataset, i.e., MRR@10 on the Dev set and
NDCG@10 on the others. To this end, we compute Pearson ρ for linear correla-
tion, Kendall τ , and Spearman ρ for rank correlation. A higher correlation value
shows more accurate query performance prediction. For the retrieval method,
we estimate BM25 implemented by Pyserini [27].
Experimental Setup. We use the pre-trained language model, DeBERTa [22],
which has shown huge success in different downstream IR and Natural Lan-
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guage processing tasks [21], to create vector representations and conduct nearest-
neighbor sampling using Faiss [24]. In order to implement Ψ(., .), we adapt the
widely-used cosine similarity distance. In order to train our model, we adopt the
implementation offered for the cross-encoder architecture in the SentenceTrans-
formers package [35]. Without loss of generality and as suggested in [5], we set
|Dq| = 1 as well as |Q̂q| = 1 and we used Map@20 as for retrieval effectiveness

labels of our model as well as the effectiveness of Q̂q. The model was trained on
a 24GB NVIDIA GeForce RTX 3090 GPU with a batch size of 16 for one epoch,
and the training process took an hour and a half.

Baselines. We compare our model against the state-of-the-art post-retrieval
QPP baselines. These include the following methods: Clarity which works based
on the KL divergence between language models induced from retrieved docu-
ments and the corpus. WIG [46], NQC[41], n(σ%)[17], RSD [37] and SMV[44] which
are all score-based methods that predict query performance by computing dif-
ferent statistics of the retrieval scores of the top-ranked documents. Unlike the
above predictors that are unsupervised, NeuralQPP [45] is the first supervised
QPP method that uses existing unsupervised QPP methods as signals to perform
weakly-supervised learning. The Utility Estimation Framework (UEF)[40] is de-
signed to function alongside highly effective QPP baseline methods such as NQC.
NQA-QPP [20], is another supervised method that uses a BERT model to learn
the representations of queries and documents. BERT-QPP [5] also which fine-
tunes BERT to directly predict the retrieval score of the query. QppBERT-PL
[18] is one of the most recent BERT-based methods that uses point-wise train-
ing on individual queries, and list-wise training over top-ranked pseudo-relevant
documents. Additionally, we consider QPP-PRP [42], which was designed to
evaluate the performance of neural rankers by assessing the level of agreement
between a pairwise neural reranker, exemplified by DuoT5 [34], and the ranked
list generated by the neural ranker for a given query.

Findings. The results of our experiments compared to the state-of-the-art base-
lines are shown in Tables 1 and 2. We can highlight the following findings based
on the results in these two tables:

(1) Our proposed method has shown better performance compared to all
baseline models on four of the five test sets. This includes the MS MARCO Dev
set, which consists of the largest number of queries, and also the DL-Hard set,
which includes challenging queries.

(2) On the DL 2020 dataset where our proposed approach does not show the
best performance, we find that there is no single baseline that shows the best
performance on all three metrics. In fact NQA-QPP shows the best performance on
Pearson correlation while SMV shows better performance on Kendall and Spear-
man correlations. Therefore, there are no robust baselines for this dataset in the
state of the art.

(3) We note that on the DL 2020 dataset where we do not outperform
the baselines, our proposed approach has a similar performance to supervised
baseline methods that fine-tune a contextual embedding model, i.e., BERT-QPP,
qpp-BERT-PL, and qpp-PRP. In fact on this dataset, unsupervised baselines that
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Fig. 1. The impact of the query store size on the performance of our approach.

do not use contextual embeddings such as SMV and RSD show better performance
on rank correlation metrics, i.e., Spearman and Kendall correlations.

(4) In terms of robustness, our proposed approach shows the most consis-
tent performance compared to all the baselines. For instance, SMV that shows a
high rank correlation on DL 2020, does not show competitive performance on
DL 2021 or MS MARCO Dev. Similarly, qpp-BERT-PL, which offers the best
performance among the baselines on MS MARCO Dev, is not competitive on
DL-Hard. However, our approach shows a consistent behavior across all datasets
and metrics.

Finally, we explore the impact of the query store size on the performance
of our proposed approach. Given we integrate most similar queries from the
query store with known retrieval effectiveness, the size of the query store can
have an impact on the performance of our model. We empirically study to what
extent having a smaller query store size could have a negative impact on the
performance of our method. To assess this, we randomly down-sampled the query
store by only including 100k, 200k, 300k, 400k, and 500k from the MS MARCO
training set. We report the impact of this down-sampling on all five query sets
and using three correlation measures in Figure 1. As seen in the figure, while
larger query stores lead to improved overall performance, smaller query stores
still show competitive performance. In fact, we find that the differences between
the smallest query store size and the largest are not statistically significant.

4 Concluding Remarks

In this paper, we have shown that a rich contextualized query representation that
encodes the semantics of the query itself, as well as the interactions of the query
with its set of retrieved documents, along with its most similar historical queries,
can be quite effective for predicting the performance of the query. It means the
model can perform better when it knows the performance of similar data to the
given input. Our experiments performed on five widely used datasets show that
our proposed approach offers strong and robust performance on a range of QPP
metrics.

7



References

1. Aliannejadi, M., Kiseleva, J., Chuklin, A., Dalton, J., Burtsev, M.: Building and
evaluating open-domain dialogue corpora with clarifying questions. In: EMNLP
(2021)

2. Arabzadeh, N., Bigdeli, A., Zihayat, M., Bagheri, E.: Query performance prediction
through retrieval coherency. In: Advances in Information Retrieval: 43rd European
Conference on IR Research, ECIR 2021, Virtual Event, March 28–April 1, 2021,
Proceedings, Part II 43. pp. 193–200. Springer (2021)

3. Arabzadeh, N., Bigdeli, A., Zihayat, M., Bagheri, E.: Query performance pre-
diction through retrieval coherency. In: Hiemstra, D., Moens, M., Mothe, J.,
Perego, R., Potthast, M., Sebastiani, F. (eds.) Advances in Information Retrieval -
43rd European Conference on IR Research, ECIR 2021, Virtual Event, March
28 - April 1, 2021, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12657, pp. 193–200. Springer (2021). https://doi.org/10.1007/978-3-030-72240-
1 15, https://doi.org/10.1007/978-3-030-72240-1 15

4. Arabzadeh, N., Hamidi Rad, R., Khodabakhsh, M., Bagheri, E.: Noisy perturba-
tions for estimating query difficulty in dense retrievers. In: Proceedings of the 32nd
ACM International Conference on Information and Knowledge Management. pp.
3722–3727 (2023)

5. Arabzadeh, N., Khodabakhsh, M., Bagheri, E.: Bert-qpp: contextualized pre-
trained transformers for query performance prediction. In: Proceedings of the 30th
ACM International Conference on Information & Knowledge Management. pp.
2857–2861 (2021)

6. Arabzadeh, N., Mitra, B., Bagheri, E.: Ms marco chameleons: challenging the ms
marco leaderboard with extremely obstinate queries. In: Proceedings of the 30th
ACM International Conference on Information & Knowledge Management. pp.
4426–4435 (2021)

7. Arabzadeh, N., Seifikar, M., Clarke, C.L.: Unsupervised question clarity prediction
through retrieved item coherency. In: Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. pp. 3811–3816 (2022)

8. Arabzadeh, N., Zarrinkalam, F., Jovanovic, J., Al-Obeidat, F., Bagheri, E.: Neural
embedding-based specificity metrics for pre-retrieval query performance prediction.
Information Processing & Management 57(4), 102248 (2020)

9. Arabzadeh, N., Zarrinkalam, F., Jovanovic, J., Bagheri, E.: Neural embedding-
based metrics for pre-retrieval query performance prediction. In: Advances in Infor-
mation Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon,
Portugal, April 14–17, 2020, Proceedings, Part II 42. pp. 78–85. Springer (2020)

10. Arabzadeh, N., Zarrinkalam, F., Jovanovic, J., Bagheri, E.: Geometric estimation of
specificity within embedding spaces. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. pp. 2109–2112 (2019)

11. Carmel, D., Yom-Tov, E.: Estimating the query difficulty for information retrieval.
Synthesis Lectures on Information Concepts, Retrieval, and Services 2(1), 1–89
(2010)

12. Craswell, N., Mitra, B., Yilmaz, E., Campos, D.: Overview of the TREC 2020 deep
learning track. CoRR abs/2102.07662 (2021), https://arxiv.org/abs/2102.07662

13. Craswell, N., Mitra, B., Yilmaz, E., Campos, D.: Overview of the TREC 2020 deep
learning track. CoRR abs/2102.07662 (2021), https://arxiv.org/abs/2102.07662

14. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Lin, J.: Ms marco: Benchmarking
ranking models in the large-data regime. In: Proceedings of the 44th International

8

https://doi.org/10.1007/978-3-030-72240-1_15
https://doi.org/10.1007/978-3-030-72240-1_15
https://doi.org/10.1007/978-3-030-72240-1_15
https://arxiv.org/abs/2102.07662
https://arxiv.org/abs/2102.07662


ACM SIGIR Conference on Research and Development in Information Retrieval.
pp. 1566–1576 (2021)

15. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M.: Overview of the
trec 2019 deep learning track. In: Text REtrieval Conference (TREC) (2020)

16. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In:
Proceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval. pp. 299–306 (2002)

17. Cummins, R., Jose, J., O’Riordan, C.: Improved query performance prediction
using standard deviation. In: Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. pp. 1089–1090
(2011)

18. Datta, S., MacAvaney, S., Ganguly, D., Greene, D.: A ‘pointwise-query, listwise-
document’ based qpp approach. In: Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval (2022).
https://doi.org/10.1145/3477495.3531821

19. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers). pp. 4171–4186. Associa-
tion for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423,
https://doi.org/10.18653/v1/n19-1423

20. Hashemi, H., Zamani, H., Croft, W.B.: Performance prediction for non-factoid
question answering. In: Proceedings of the 2019 ACM SIGIR International Con-
ference on Theory of Information Retrieval. pp. 55–58 (2019)

21. He, P., Gao, J., Chen, W.: Debertav3: Improving deberta using electra-
style pre-training with gradient-disentangled embedding sharing. arXiv preprint
arXiv:2111.09543 (2021)

22. He, P., Liu, X., Gao, J., Chen, W.: Deberta: Decoding-enhanced bert with disentan-
gled attention. In: International Conference on Learning Representations (2021),
https://openreview.net/forum?id=XPZIaotutsD

23. Hofmann, V., Pierrehumbert, J.B., Schütze, H.: Dynamic contextualized word em-
beddings. arXiv preprint arXiv:2010.12684 (2020)

24. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data 7(3), 535–547 (2019)

25. Khodabakhsh, M., Bagheri, E.: Semantics-enabled query performance predic-
tion for ad hoc table retrieval. Inf. Process. Manag. 58(1), 102399 (2021).
https://doi.org/10.1016/J.IPM.2020.102399, https://doi.org/10.1016/j.ipm.2020.
102399

26. Khodabakhsh, M., Bagheri, E.: Learning to rank and predict: Multi-task learning
for ad hoc retrieval and query performance prediction. Information Sciences 639,
119015 (2023)

27. Lin, J., Ma, X., Lin, S.C., Yang, J.H., Pradeep, R., Nogueira, R.: Pyserini: A
python toolkit for reproducible information retrieval research with sparse and dense
representations. In: Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval. pp. 2356–2362 (2021)

28. Mackie, I., Dalton, J., Yates, A.: How deep is your learning: the dl-hard anno-
tated deep learning dataset. In: Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (2021)

9

https://doi.org/10.1145/3477495.3531821
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.1016/J.IPM.2020.102399
https://doi.org/10.1016/j.ipm.2020.102399
https://doi.org/10.1016/j.ipm.2020.102399


29. Mackie, I., Dalton, J., Yates, A.: How deep is your learning: the dl-hard anno-
tated deep learning dataset. In: Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. pp. 2335–2341
(2021)

30. Meng, C., Arabzadeh, N., Aliannejadi, M., de Rijke, M.: Query performance pre-
diction: From ad-hoc to conversational search. arXiv preprint arXiv:2305.10923
(2023)

31. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

32. Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng,
L.: Ms marco: A human generated machine reading comprehension dataset. In:
CoCo@ NIPs (2016)
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