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(J. Jovanović), bagheri@ryerson.ca (E. Bagheri), dgasevic@acm.org (D. Gašević).
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Considering the ever-increasing speed at which new textual content is generated, an efficient and effec-
tive use of large text corpora requires automated natural language processing and text analysis tools. A
subset of such tools, namely automated semantic annotation tools, are capable of interlinking syntactical
forms of text with their underlying semantic concepts. The optimal performance of automated semantic
annotation tools often depends on tuning the values of the tools’ adjustable parameters to the specifici-
ties of the annotation task, and particularly to the characteristics of the text to be annotated. Such char-
acteristics include the text domain, terseness or verbosity level, text length, structure and style. Since the
default configuration of annotation tools is not suitable for the large variety of input texts that different
combinations of these attributes can produce, users often need to adjust the annotators’ tunable param-
eters in order to get the best results. However, the configuration of semantic annotators is presently a
tedious and time consuming task as it is primarily based on a manual trial-and-error process. In this
paper, we propose a Parameter Tuning Architecture (PTA) for automating the task of configuring param-
eter values of semantic annotation tools. We describe the core fitness functions of PTA that operate on the
quality of the annotations produced, and offer a solution, based on a genetic algorithm, for searching the
space of possible parameter values. Our experiments demonstrate that PTA enables effective configura-
tion of parameter values of many semantic annotation tools.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The quantity and variety of unstructured textual content has
rapidly increased over the last few years, leading large and small
organizations towards seeking solutions that enable effective and
efficient use of both the internally produced textual content, and
the content originating from the Web.4 Considering the amount of
textual content and the speed at which it has to be processed, it is
gradually becoming evident that automated machine comprehen-
sion of text is a necessity, if the objectives of efficiency and effective-
ness were to be reached. This has led to an increased research focus,
both in academia and industry, on text mining, natural language pro-
cessing and other related Artificial Intelligence fields (Hovy, Navigli,
& Ponzetto, 2013), and resulted in numerous proposals and specific
software solutions for addressing some aspects of text comprehen-
sion through, for example, named entity extraction (Ratinov &
Roth, 2009; S. Atdağ & Labatut, 2013), relation extraction (Weston,
Bordes, Yakhnenko, & Usunier, 2013; Yan, Okazaki, Matsuo, Yang,
& Ishizuka, 2009), and sentiment analysis (Liu, 2012).

Automated semantic annotation of textual content addresses an
important aspect of text comprehension, namely, the extraction
and disambiguation of entities and topics mentioned in or related
to a given piece of text (Uren et al., 2005). Each identified entity is
disambiguated, i.e., unambiguously defined, by establishing a link
to an appropriate entry (concept or instance) in a knowledge base
that uniquely identifies the entity and provides further information
about it. This task, also known as entity linking (Hachey, Radford,
Nothman, Honnibal, & Curran, 2013), typically relies on large,
general-purpose, Web-based knowledge bases, such as Wikipedia
and other more structured knowledge bases such as DBpedia
(http://dbpedia.org), YAGO (http://www.mpi-inf.mpg.de/yago-
naga/yago/), and Wikidata (http://wikidata.org).

Tools and services for automated semantic annotation of text
are offered by a constantly increasing number of companies and
research groups (Jovanovic et al., 2014). Major Internet players
are also very active in this area. For instance, to fulfill its well
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known mission of ‘‘organizing the world’s information’’, Google is
continuously evolving its proprietary knowledge base – the
Knowledge Graph – and according to one Google executive, ‘‘every
piece of information that we [Google] crawl, index, or search is
analyzed in the context of Knowledge Graph’’.5 In addition,
Google has been working on a probabilistic knowledge base, named
Knowledge Vault, that combines automated extraction of facts from
the Web and prior knowledge derived from existing knowledge
bases (Dong et al., 2012). Similarly, Microsoft is developing its own
knowledge repository called Satori and using it to semantically index
content and thus improve both its search engine Bing and the appli-
cations running on Windows.6

In (Jovanovic et al., 2014), we have provided a comprehensive
descriptive comparison of the state-of-the-art semantic annotation
tools by considering numerous features, especially those that could
be relevant for selecting the right tool(s) to use in a specific appli-
cation case. One common characteristic of all the reviewed tools is
that they need to be optimally configured in order to give their best
results when working with different kinds of texts – such as texts
of diverse level of formality, length, domain-specificity, and use of
jargon. While the examined annotators provide default configura-
tion of their parameters suitable for some annotation tasks, to our
knowledge, no single annotator can reach its best performance on
all kinds of text with one single configuration. Furthermore, the
quality of an annotator’s output is not a category that could be
assessed in absolute terms; instead, it depends on the application
case, i.e., on the specificities of the requirements that stem from
a particular context of use (Maynard, 2008). For instance, in some
cases a very detailed annotation would be required and highly val-
ued, whereas in other cases a terse annotation of only the most rel-
evant entities would be considered the best output. This indicates
that in order to get the best from a semantic annotation tool, one
should configure it according to the specificities of the intended
context of use, including both the characteristics of the text to be
annotated and the requirements of the annotation task (e.g., preci-
sion/recall trade-off).

Configuration of semantic annotators is not an easy task, for at
least two reasons. First, since an annotator’s configuration param-
eters are closely tied to the tool’s internal functioning, it is difficult
to expose them in a manner that would enable users to effectively
and efficiently use the tool without having to know the details of
the tool’s inner logic. In other words, the first challenge is in
enabling users to tune the annotator with respect to the key issues
such as specificity and comprehensiveness of annotations, without
them being concerned with the details of the tool’s parameters.
The second challenge stems from the fact that those configuration
parameters are not mutually independent but interact with one
another, so that one has to find an optimal combination of param-
eter values for a specific application case. Moreover, annotators
may have many parameters, and some of those parameters are
continuous variables, thus making the tuning task very time con-
suming. As the state-of-the-art annotators do not provide support
for finding an optimal parameter combination for a specific anno-
tation task, it is often done manually, through a trial-and-error pro-
cess. For example, consider the commercial semantic annotator
TextRazor whose best practices state the following:

‘‘Experiment with different confidence score thresholds...If you
prefer to avoid false-positives in your application you may want
to ignore results below a certain threshold. The best way to find
an appropriate threshold is to run a sample set of your documents
through the system and then manually inspect the results.’’ 7.
5 http://goo.gl/mZ7a9H.
6 http://goo.gl/iDwP2x.
7 https://www.textrazor.com/docs/rest#optimization.
To our knowledge, no solution to the above stated problem of
parameter configuration has been reported in the literature.
Therefore, in this paper, we make the following contributions:

� Parameter Tuning Architecture (PTA) to automate the task of
parameter value selection for a user-supplied testing set; thus
resulting in performance that is better or at least equal to the
tool’s performance with its default parameter values.
� Five variations of the fitness function that emphasize different

aspects of annotation quality (namely most annotations pro-
duced, most known correct annotations, least unknown annota-
tions, best recall/precision), and a means to identify which
variation performed the best for a particular testing set.
� A method to efficiently search the solution space of possible

parameter values using a Genetic algorithm.

The proposed Parameter Tuning Architecture (PTA) is applicable
to a variety of automated semantic annotators, since its core com-
ponent of the fitness function is not concerned with any textual or
annotator-specific features but rather metrics based on known cor-
rect, known incorrect, or unknown annotations produced. To
search the space of possible solutions, i.e., possible configurations
of parameter values, we rely on a Genetic algorithm (for the rea-
sons given in Section 4), although PTA can also be applied with
other methods for searching a large solution space (e.g., evolution-
ary algorithms or probabilistic methods). Our experiments with
PTA have demonstrated that PTA can be used as an effective config-
urator for automated semantic annotators.

After more precisely defining and illustrating the problem of
parameter tuning in the context of semantic annotation tools
(Section 2), and the associated challenges (Section 3), in
Section 4, we present PTA in detail. Section 5 reports on the exper-
iments that we performed in order to evaluate the PTA’s ability to
find a set of parameter values that provides an adequate level of
the annotator’s output while minimizing annotation errors. The
experimental results and the overall proposal are further critically
discussed and summarized in Section 6, while Section 7 positions
the contributions of our work with respect to related research
work. Lastly, we acknowledge the limitations of our solution and
propose future experiments before we conclude our paper
(Sections 8 and 9).

2. Problem definition

As indicated in the Introduction, today’s automated semantic
annotators offer a variety of tunable parameters in order to pro-
duce results accordant with the desired level of granularity, preci-
sion, and recall. There is no single ‘‘best’’ configuration as this is a
function of various factors: is the text we are annotating restricted
to a specific topic or domain such as history, food, or politics? Is the
input text descriptive with verbose and meaningful wording or is it
terse with numerous empty (stop) words? What is the length,
style, and structure of the input text: paragraph, single sentence,
or tweet? Therefore, we must decide on a gold-standard, a manu-
ally labelled training or testing set, that contains such
factor-specific target questions that the annotator will be exposed
to. Observe, as in the TextRazor introduction example, that an
annotator would already be trained with default parameter values;
thus, PTA uses the gold standard as an evaluation/testing set to tai-
lor the annotator’s parameters to the kind of input text represented
by the gold standard.

Further difficulties arise when a parameter configuration com-
prises many individual or continuous floating point parameters
resulting in an exponential number of possible combinations that
make a complete search of this space unrealistic. To illustrate this,
consider Table 1 showing how the TagME semantic annotator

http://goo.gl/mZ7a9H
http://goo.gl/iDwP2x
https://www.textrazor.com/docs/rest#optimization


Table 1
Disambiguation of the spot ‘‘field’’ in the sentence ‘‘Gesture or salute? A soccer star who
made the sign on the field says otherwise.’’ for different values of TagMe’s tunable
parameters epsilon and long_text.

Configuration Disambiguation of the spot ‘‘field’’ by TagMe

Epsilon = 0.39 Wikipedia Reference: Field (agriculture)
Long_text = 0 Abstract: In agriculture, the word field refers generally to an

area of land enclosed or otherwise and used for agricultural
purposes.

Epsilon = 0.30 Wikipedia Reference: Field (mathematics)
Long_text = 1 Abstract: In abstract algebra, a field is a ring whose nonzero

elements form a commutative group under multiplication.
Epsilon = 0.52 Wikipedia Reference: Academic discipline
Long_text = 4 Abstract: An academic discipline, or field of study, is a branch

of knowledge that is taught and researched at the college or
university level.

Epsilon = 0.55 Wikipedia Reference: Field (physics)
Long_text = 6 Abstract: In physics, a field is a physical quantity associated

with each point of spacetime.

Table 2
The four kinds of testing sets based on the presence/absence of correct (C) and
incorrect (E) labels.

Combination
(1,2,3,4)

Correct
annotations
(positive labels)

Incorrect
annotations
(negative labels)

Testing model

#1 C E Two-class
supervised

#2 C :E One-class
supervised positive
labels only

#3 :C E One-class
supervised negative
labels only

#4 :C :E Unsupervised

8 http://acube.di.unipi.it/tagme-dataset.
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(Ferragina & Scaiella, 2012) choses to disambiguate the same spot
(‘‘field’’), when different values of the tool’s two tunable parame-
ters (epsilon and long_text) are used. As the table indicates, even
slight changes to the values of epsilon and long_text can have sig-
nificant impact on the disambiguation process and lead to absurd
results.

It is this difficulty of choosing appropriate parameter values
that provides the motivation for the work presented in this paper.
To our knowledge, the problem of selecting appropriate values for
configuration parameters of semantic text annotators has not yet
been reported in the literature. In the following sections, we first
further explain the challenges associated with tuning parameters
of semantic annotators, and then proceed to introduce our
Parameter Tuning Architecture (PTA) and a method to find suitable
parameter values in reasonable time.

3. Challenges in tuning parameters of semantic annotators

Our proposed method involves a fitness function to evaluate the
output of an annotator given an arbitrary configuration. PTA’s fit-
ness function scores the annotator’s output against a testing set
containing oracle-identified correct (C) and/or incorrect (E) anno-
tations. Table 2 gives the four possible combinations of labelled
annotations within the testing set. NOT(:) indicates that any cor-
rect or incorrect annotations are absent from the testing set.

Combination #4 assumes a testing set with no labels, and thus
is an unsupervised model that PTA cannot take advantage of;
hence, it will not be further considered. In contrast, combinations
#1, #2, and #3 are supervised models that variants of the PTA fit-
ness function can utilize. However, supervised configuration of
semantic annotators have caveats when relying on testing sets.
Namely:

caveat (i): A testing set that depends on negative labels (#1, #3)
cannot feasibly cover all possible mistakes that an annotator
could output for an input text.
caveat (ii): Due to (i), publicly available testing sets with
labelled errors are difficult to find, particularly one-class
(error-only) testing sets (#3).
caveat (iii): Testing sets with correct labels (#1, #2) often spec-
ify only a few correct annotations that the annotator should
identify from the input text. However, the output could contain
many more correct annotations not mentioned in the testing
set.
caveat (iv): An oracle may specify correct but not necessarily
ideal annotations. The annotation tool may find an annotation
that is better than or of equal semantic quality to that of the
oracle-recommended annotation.
caveat (v): Regardless of the form of the testing set used (#1, #2,
#3), an annotator will often produce annotations that are not
explicitly identified in the testing set, thus forcing any method
of evaluation to make assumptions for the unidentified annota-
tions (assume correct, assume incorrect, or ignore).
Consequently, the quality of the annotator’s output in relation
to the testing set provided is questionable.

To illustrate the above given statements, we obtained the
wiki-annot30 dataset of A3 labs from the University of Pisa
Computer Science Department available under a Creative
Commons License.8 This set contains 186,000 short text fragments
from Wikipedia with correct-only identified annotations (combina-
tion #2) and was constructed using the procedure described in
Ferragina and Scaiella (2012). Table 3 summarizes the output on
one of these text fragments produced by the TagME semantic anno-
tator with default configuration. The output is given alongside the A3

dataset gold standard. The table gives the Wikipedia pages that are
linked to the identified spot. The TagME column also shows whether
the linked Wikipedia page for the spot is true correct (C) or a true
error (E).

From the output we can see that TagME correctly linked more
spots than what was listed in the A3 dataset (caveat iii).
Specifically, the ‘home’ spot is a correct entity mention absent from
A3. Further, absent from the A3 dataset is the correct spot for ‘team’
that was linked incorrectly by TagME along with incorrect links for
‘howard’, and ‘bender’. Consequently, to assess the accuracy of the
output, one must first consider how these unknown spots should
be treated (caveat v). Lastly, consider the spot ‘the american uni-
versity (eagles)’. A3 recommends the Wikipedia link of ‘American
University’ while TagME prefers the link ‘American Eagles’. Both
suggestions are correct since the official sports team of American
University is in fact the American Eagles. However, in the context
of the text fragment, it is clear that the link to American Eagles is
a better (i.e., more precise) choice than the gold standard (caveat
iv). A similar situation occurs with the ‘arena’ spot in which
TagME agrees with the wiki-annot30 dataset although the
Wikipedia entity for ‘Bender Arena’ would clearly be superior.

In Section 4 we detail our five variations of the Parameter
Tuning Architecture (PTA) and how they match to the testing set
combinations given in Table 2. We also explain how each variation
of PTA addresses the caveats.
4. The Parameter Tuning Architecture (PTA)

In this section, we derive our Parameter Tuning Architecture as
a mathematical model. Let pi be a tuneable parameter for a seman-

http://acube.di.unipi.it/tagme-dataset


Table 3
Wikipedia entities produced by TagME and compared with the A3 gold standard for
the text fragment ‘‘It is home to the American University Eagles basketball and volleyball
teams. The arena, named for Washington DC philanthropists, Howard and Sondra
Bender’’. TagME links are identified as (C)orrect or (E)rror.

Spot A3 dataset TagME

Volleyball wikipedia:Volleyball wikipedia:Volleyball (C)
Washington dc wikipedia:Washington,D.C. wikipedia:Washington,D.C.

(C)
Basketball wikipedia:Basketball wikipedia:Basketball (C)
The american

university
(eagles)

wikipedia:American
University

wikipedia:American Eagles
(C)

Arena wikipedia:Arena wikipedia:Arena (C)
Home Not available wikipedia:Home(sports) (C)
Teams Not available wikipedia:NHL (E)
Howard Not available wikipedia:Howard

University (E)
Bender Not available wikipedia:Gary Bender (E)
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tic annotator. Let vn be a vector of n tuneable parameters
vn ¼ ½p1; p2; . . . ; pn� for a semantic annotator configuration, and let
V be the space of all possible configurations. Let T be a testing or
validation set of any of the supervised combinations of Table 2
(#1, #2, or #3). We wish to find a vector v that maximizes the fol-
lowing fitness function:

FITðTÞ ¼ arg maxv2V ½f cðTÞ�
2 � ½f eðTÞ�

2

where FITðTÞ in ½�1;1� and f cðTÞ; f eðTÞ in ½0;1�:
ð1Þ

FIT(T) is a real-valued ranking function in the interval [�1,1]
consisting of a reward component f cðTÞ and a penalty f eðTÞ. The
reward is a real-valued scaled measure in the interval [0,1] repre-
senting the correct annotations discovered by an annotator.
Conversely, f eðTÞ is a measure of the incorrect annotations within
the same interval [0,1]. Consequently, FIT(T) is a trade-off between
the correct annotations found by the annotator and the errors the
annotator produces. We square f cðTÞ and f eðTÞ to place more
importance on many correct and incorrect annotations over a
few correct answers and infrequent mistakes. The exact formula
for computation of f c and f e is specific to the variant of FIT(T) pro-
posed and is given in Sections 4.1–4.5.

However, Eq. (1) faces a key obstacle. Namely, the space of all
possible solution vectors V is very large making an exhaustive
search of this space intractable. Furthermore, this space may be
infinite if any of the tunable parameters are real-valued.
Consequently, we need to decide on how to efficiently search a
potentially enormous solution space. Our approach is to use a
genetic algorithm (GA) for this task. Genetic algorithms are a class
of evolutionary algorithms inspired by nature (Chiong & Beng,
2007). They are an easy to implement technique that works well
in optimization problems where potential solutions to the given
problem can be abstracted to the ‘‘chromosomes’’ model of GA.
In our case, the vector of configuration parameters v can be seen
as the required chromosome.

Fig. 1 outlines our PTA method with GA which begins with a set
of randomly created configurations (a). In the next step (b), we ran-
domly select a subset of samples of size n from the validation set,
then annotate the n-samples (c) using each of the configurations
initially created in the step (a). The configurations are evaluated
against the samples by our fitness function (d). The highest ranking
configurations generate offspring through crossover (g) and gene
mutation (h). The initial n-samples from the validation set is
updated by removing the oldest x-samples and replacing them
with another random set of x-samples (i). We partially re-sample
the validation set at each generation as a form of bootstrap
aggregation to minimize overfitting and improve generalization.
The process repeats with the next generation of configurations
until some stopping condition, such as convergence, is satisfied (f).

Although GA does not guarantee an optimal solution, it often
converges to near optimal answers in a relatively short period of
time (Szczerbicka, Becker, & Syrjakow, 1998). It also has the capa-
bility to search multiple regions of the solution space simultane-
ously since each member of a population occupies a different
area than its peers (Grefenstette, 1992). This is particularly useful
when there are many global optimal solutions that could satisfy
the problem. Finally, GA is an incremental method that allows
for starting/stopping the search from its currently best known
solutions without beginning from scratch. This trait is useful in
reinforcement learning or re-tuning the annotator as more
examples become available (Moriarty, Schultz, & Grefenstette,
1999).

It is worth noting that our emphasis is on the fitness functions
of PTA and less on the choice of evolutionary algorithm for the
traversal of the search space. Our future work will investigate the
comparative effectiveness of other evolutionary algorithms such
as swarm optimization. In order to provide the basis for a compar-
ative analysis and provide GA implementation details, we have
made the source code and data available for use under an open
source license at: http://ls3.rnet.ryerson.ca/annotator/PTA.

Algorithm 1 outlines the PTA process joining our fitness func-
tion (Eq. (1)) with the GA of Fig. 1.

Algorithm 1: PTA algorithm for automated evolutionary
fine-tuning of semantic annotators.

Input: (i) A one-class positive-labeled validation set from the
gold standard. (ii) A one-class positively-labeled testing set
from the gold standard. (iii) A semantic annotator.

Output: A recommended configuration for input annotator
(iii).

Algorithm:
1. For each of these PTA variants: pessimistic (Eq. (5)),

apathetic (Eq. (6)), delta (Eq. (7)), optimistic (Eq. (8))
and stochastic (Eq. (9))

1.1. Find recommended configuration on the validation
set using GA of Fig. 1.

2. For each recommended configuration from 1.1:
2.1. Annotate the testing set using the recommended

configuration.
2.2. Calculate F1 area under the curve (F1-AUC) (Figs. 2–5).

3. Best recommended solution is the configuration with
highest F1-AUC.

We now derive various forms of our PTA fitness function, for use
within step 1 of Algorithm 1, We focus on the one-class positive
labels testing set (Table 2, combination #2) since this is the most
prevalent type among the available gold-standard datasets for the
entity linking task.

To begin, we define A(X) as the output of a semantic annotator
using text fragments from set X as input. Let function C(X) return
the set of correct annotations from the set of input text X.
Similarly, let E(X) return incorrect annotations from the input text
set X. We use the generic term ‘annotation’ broadly to refer to any
kind of output produced by a semantic annotation system (an
entity link, a related topic, a keyword) as per the examples pro-
vided within the validation or testing set. We define function
f cðXÞ as a numerical score for the correct annotations of set X,
while f eðXÞ does the same for the errors of X. With these definitions
in place, we can identify subsets such as: (i) annotations that
match the gold standard A(T)\C(T), (ii) gold standard annotations

http://ls3.rnet.ryerson.ca/annotator/PTA


Fig. 1. The Genetic algorithm applied in the Parameter Tuning Architecture (PTA).

Fig. 2. Graphs of recall (top left), precision (bottom left), and F1-score (right) for each variant of PTA including default configuration used by TagME on 1000 text fragments.
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the annotator failed to identify C(T)nA(T), and (iii) additional anno-
tations with unknown label A(T)nC(T). In the following subsec-
tions, we present five adaptations of PTA (pessimistic, apathetic,
delta, optimistic, stochastic) that pair different combinations of
these subsets to meet the challenge of constructing a suitable fit-
ness function in the presence of uncertainty A(T)nC(T). In
Section 5, we examine the effectiveness of these five PTA forms
in tuning a variety of annotators.



Fig. 3. Graphs of recall (top left), precision (bottom left), and F1-score (right) for each variant of PTA including default configuration used by WikipediaMiner on 1000 text
fragments.

Fig. 4. Graphs of recall (top left), precision (bottom left), and F1-score (right) for each variant of PTA including default configuration used by DBpedia Spotlight on 1000 text
fragments.

J. Cuzzola et al. / Expert Systems with Applications 42 (2015) 6864–6877 6869



Fig. 5. Graphs of recall (top left), precision (bottom left), and F1-score (right) for each variant of PTA including default configuration used by YCA on 1000 text fragments.
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4.1. Pessimistic PTA

The basic form of our fitness function is:

FITðTÞ ¼ f cðCðAðTÞÞÞ
2 � f eðEðAðTÞÞÞ

2 ð2Þ

This basic form is suitable for a two-class supervised testing set
(Table 2 #1) because it assumes that we are provided with known
correct and incorrect annotations that can be exploited:

FITðTÞ ¼ f cðCðAðTÞÞÞ
2 � f eðEðAðTÞÞÞ

2

¼ f cðAðTÞ \ CðTÞÞ2 � f eðAðTÞ \ EðTÞÞ2 ð3Þ

Specifically, we find the correct annotations C(A(T)) by consid-
ering only those annotations that are explicitly known to us as cor-
rect within the testing set AðTÞ \ CðTÞ. We do the same for the error
component of Eq. (2) with AðTÞ \ EðTÞ. In this variant of PTA the
annotations that are not part of the testing set (unrecognized)
are ignored (Section 2 caveat v). Although this form operates for
a two-class labeled testing set, it cannot be used for the commonly
encountered one-class positive labels testing set (Table 2 #2) due
to the absence of any defined errors. To compensate, we modify
f e to assume that unrecognized annotations are most likely errors
by default:

FITPðTÞ ¼ f cðAðTÞ \ CðTÞÞ2 � f eðAðTÞ n CðTÞÞ2 ð4Þ

We call Eq. (4) pessimistic because of the assumption that annota-
tions not explicitly labeled as correct should be considered erro-
neous. The final step in the formulation is to define f c and f e as:

f cðAðTÞ \ CðTÞÞ ¼ jAðTÞ \ CðTÞj
jAðTÞ \ CðTÞjmax

and f eðAðTÞ n CðTÞÞ

¼ jAðTÞ n CðTÞj
jAðTÞ n CðTÞjmax

ð5Þ
where the denominator |Y|max of f c;e
jYj
jY jmax

� �
is the maximum

observed count from all of the previously encountered sets of Y; it
is used to normalize the numerator into a value between 0 and 1
inclusive.

A shortcoming of pessimistic PTA is the possibility that the test-
ing set identifies a smaller number of correct annotations than the
annotator might generate (Section 3 caveat iii), as demonstrated in
Table 3. Consequently, those unidentified correct annotations
would be missed by f c thus undermining the true quality of the
output produced, and would be unfairly counted against the
annotator in the error calculation of f e (Eq. (5)) or ignored entirely
(Eq. (3)).
4.2. Apathetic PTA

In this section, we introduce a version of PTA that allows for
ignoring unknown annotations when only a one-class positive test-
ing set is available. Simply, we change the penalty component of
PTA f e to look at the number of missed known gold standard anno-
tations rather than the total number of unrecognized annotations
generated. Specifically:

FITAðTÞ ¼ f cðAðTÞ \ CðTÞÞ2 � f eðCðTÞ n AðTÞÞ2 ð6Þ

where f e is defined as the normalized number of missed gold stan-
dard annotations jCðTÞnAðTÞj

jCðTÞnAðTÞjmax
and f c is the normalized number of

matching answers as before jAðTÞ\CðTÞj
jAðTÞ\CðTÞjmax

. We call this variant apathetic

because its concern is only with the number of known correct and
recognized versus correct but missed annotations, regardless of
the number of uncertain annotations.
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4.3. Delta PTA

With apathetic PTA, the reward component of matching anno-
tations from the gold standard is paired with the penalty of miss-
ing annotations from the same. In this adaption, we compute D as
the absolute difference between the total number of annotations
and the number of gold-standard annotations desired.

D ¼ kAðTÞj � jCðTÞk

We want D to be as close as possible to zero to minimize the num-
ber of unrecognized annotations. Consequently, we define the
reward component to encourage this result f c ¼ 1� D

Dmax
.

Furthermore, we want A(T) to have many matching C(T) answers
thus we penalize missing gold standard annotations using the same
f e as in apathetic PTA.

FITD ¼ 1� D
Dmax

� �2

� jCðTÞ n AðTÞj
jCðTÞ n AðTÞjmax

� �2

ð7Þ
4.4. Optimistic PTA

The former pessimistic, apathetic, and delta versions of PTA
reward known correct annotations (Eqs. (3), (4) and (6)) while
penalizing known errors (Eq. (3)), missed answers (Eqs. (6) and
(7)) and uncertainty (Eq. (4)). With optimistic PTA we assume
(optimistically) that unknown annotations are more often right
than wrong. Consequently, we reward configurations that produce
more annotations than those configurations that output less. To
this end we redefine the reward component of the function f c as
the normalized ratio of the number of annotations produced,
specifically f c ¼ jAðTÞj

jAðTÞjmax
:

FITOðTÞ ¼
jAðTÞj
jAðTÞjmax

� �2

� f eðEðAðTÞÞÞ
2 ð8Þ

Eq. (8) is available for a two-class testing set and one-class negative
label testing set (Table 2 #1, #3). However, for the one-class posi-
tive labeled testing set, the f e term needs to be calculated without
assistance from negative testing samples. The f e term of Eq. (5)
could be used in this circumstance but works against the optimistic
assumption that unknown annotations are most likely correct. In
Section 4.5, we compensate for this rigidness.

4.5. Stochastic Optimistic PTA

Optimistic PTA in its current form (Eq. (8)) cannot use a
one-class positive label testing set without ‘borrowing’ f e from
its pessimistic counterpart (Eq. (5)). While Eq. (4) assumes 100%
of the unknown (unlabeled) annotations are errors, stochastic opti-
mistic PTA tries to estimate the expected number of errors within
this unknown set.

Stochastic Optimistic PTA assumes if oracle-specific annota-
tions are missing from the annotator’s output, then this is an indi-
cator of poor performance of the annotation tool. However, it
might also happen that a tool produces more correct annotations
than what the testing set mentions, with perhaps better semantic
quality (Section 3 caveats iv, v and Table 3). On the other hand, one
might assume that although the gold standard might not list all the
possible annotations (caveat iii), those annotations that are listed
are likely to be the most important in the context of the given text
fragment. In other words, the annotations that form the gold stan-
dard are the results the annotator should produce. Consequently,
Stochastic Optimistic PTA introduces an adjustment factor ðuÞ to
Eq. (5) to soften the 100% error assumption while still emphasizing
the importance of the gold standard. First, precision (P) and recall
(R) are computed:

PðTÞ ¼ jAðTÞ \ CðTÞj
jAðTÞj and RðTÞ ¼ jAðTÞ \ CðTÞj

jCðTÞj ð9Þ

Then, a likelihood of error is calculated using:

LuðTÞ ¼
1� ð1þ b2Þ � PðTÞ�RðTÞ

b2PðTÞþRðTÞ

h i
; if PðTÞ–0

1; if PðTÞ ¼ 0

(
ð10Þ

The ratio in brackets [] is the familiar Fb-score metric often used to
balance precision and recall. When b < 1, unknown annotations are
more likely considered errors, whereas b > 1 puts the emphasis on
matching answers to the gold standard. We use b = 1 to equally
weight precision and recall. To avoid a division by zero error, we
consider the case when precision is zero. In such a circumstance
the likelihood of error is 1. Next, the expected number of errors is
determined for an estimate of the actual number of errors of A(T).

uðTÞ ¼ LuðTÞ � jAðTÞ n CðTÞj ð11Þ

To illustrate, consider the example of Table 3. TagME produced nine
annotations (|A(T)|) of which four matched the testing set
ðjAðTÞ \ CðTÞjÞ out of a possible five known correct (|C(T)|). What
remained was five annotations of unknown classification {washing-
ton dc, home, teams, howard, bender} ðjAðTÞ n CðTÞjÞ. Substituting
these values for Eqs. (9)–(11) gives a likelihood of error of
LuðTÞ ¼ 0:429 with an expected error count of ðTÞ ¼ 2:15. The true
error count of the unknown set is 3 {teams, howard, bender}.

The last step is to compute f e by normalizing uðTÞ then substi-
tuting into Eq. (8).

FITsðTÞ ¼
jAðTÞj
jAðTÞjmax

� �2

� uðTÞ
uðTÞmax

� �2

ð12Þ
5. Experimentation

In this section, we evaluate the different forms of PTA against
our one-class positive labeled gold standard under varying
assumptions. Specifically, we examine how each form of PTA per-
forms when the unrecognized annotations are believed to be
mostly wrong (pessimistic), mostly right (optimistic), partially cor-
rect (stochastic/delta), or unimportant (apathetic).

We used a genetic algorithm (GA) to search the solution space
as outlined in Fig. 1 of Section 4. The GA parameters were defined
as follows: an initial population of 10 random configurations, with
a maximum surviving population of 30 configurations per genera-
tion and a mutation rate of 0.05. We began with a testing set of 15
randomly selected text fragments from our gold standard set of
wiki-annot30 (Section 3), with a sample replacement rate of 5 text
fragments per generation. The GA would terminate once the con-
figurations within the surviving population stabilize. The
top-ranked configurations for each PTA variant were then evalu-
ated against a random set of 1000 text fragments from the gold
standard and compared to the default out-of-the-box configuration
of four popular semantic annotators: TagME, Wikipedia Miner,
DBpedia Spotlight, and Yahoo Content Analysis. We also considered
numerous other semantic annotators that were ultimately not
evaluated due to unavailability of a Web service or restrictive
end-user license agreement. Lastly, we focused our tests around
Wikipedia-centric annotation tools leaving other knowledge based
annotation tools for future work. Table 4 lists all semantic annota-
tors we considered for PTA evaluation.



Table 4
List of tested and considered semantic annotators for PTA evaluation.

Annotator Tested URL and notes for considered but not tested
annotators

TagME YES http://tagme.di.unipi.it/tagme_help.
html#tagging

DBPedia Spotlight YES https://github.com/dbpedia-spotlight/dbpedia-
spotlight/wiki/Web-service#Candidates

Wikipedia Miner YES http://wikipedia-miner.cms.waikato.ac.nz/
services/?wikify

Yahoo Content
Analysis

YES https://developer.yahoo.com/contentanalysis/

AIDA NO Authors Web service is for demonstration
purpose only. They explicitly request not to use
their service for research purposes. http://
www.mpi-inf.mpg.de/departments/databases-
and-information-systems/research/yago-naga/
aida/webservice/

Denote NO Denote RESTful Web service is in beta and not
available for use at the time of writing this
paper. http://inextweb.com/denote_demo

AlchemyAPI NO Restrictive Terms of Use. Alchemy can not be
used for the purpose of benchmarking and/or
comparing with other annotators, especially for
those having a competing annotation service.
http://www.alchemyapi.com/api/register.html

Aylien NO Restrictive Terms of Service. Terms prohibits
publication of any results obtained using their
annotator without permission. No response
from Aylien when contacted to obtain consent.
http://aylien.com/text-api-tos

TextRazor NO Trial account allows for only 500 annotations
per day which is insufficient for training and
testing, https://www.textrazor.com/plans

OntoText NO Formerly known as KIM - The Semantic
Annotation Platform. No accessible Web service
without first consultation with the commercial
company. http://www.ontotext.com/products/
ontotext-semantic-platform/
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5.1. PTA with TagME

The TagME annotation service offers fast execution and high
accuracy particularly with short text fragments (Chiong & Beng,
2007; Cornolti, Ferragina, & Ciaramita, 2013). Table 5 provides
summary statistics and the recommended configuration for
TagME using each of the five variants of PTA including TagME’s
default configuration for side-by-side comparison. Summary
statistics include the average of the following measures on the
1000 gold standard text fragments: number of annotations A(T),
number of annotations matching to the gold standard A(T) \ C(T),
number of unmatched gold standard annotations C(T)nA(T), and
count of unrecognized annotations A(T)nC(T). Derived from these
measures are precision, recall, and F1-score, also included in
Table 5. These measures provide competing dimensions that
impact each variant of PTA differently. For instance, TagME’s
default configuration produces the highest number of annotations
with an average of 9.56, but also produces the highest number of
unrecognized annotations, 6.22 on average. Comparatively, the
pessimistic PTA solution produces the least number of unrecog-
nized annotations (0.228 on average), but does so by allowing only
a few annotations (1.63 on average). Table 5 also includes an
EMPTY% metric defined as the percentage of text fragments that
returned no annotations and/or no gold standard annotations
A(T) \ C(T) = £. Pessimistic appears to do well in the precision
dimension, but its scarce annotator output produces a large num-
ber of empty annotations at 33.8%.

Fig. 2 provides graphs of the recall, precision, and F1 scores on
all individual 1000 text fragments, sorted from lowest to highest
score, instead of the average-only values shown in Table 5. Mean
values of recall, precision, and F1 equate to the scaled [0,1]
area-under-the-curve (AUC) for Fig. 2. Precision and recall (Eq.
(9)) were calculated as the ratio of matched gold standard annota-
tions to the total number of annotations produced (precision), and
to the total number of gold standard annotations (recall).

The recall graph shows that TagME’s default configuration and
apathetic PTA performed identically as the best configuration for
matching the most number of gold standard annotations followed
closely by stochastic, delta, and optimistic PTA. Pessimistic PTA
performed the worst with respect to matching gold standard anno-
tations due to its conservative nature of only providing 1.63 anno-
tations on average. In regards to precision, the solutions offered by
optimistic, delta, and stochastic PTA outperform the default and
apathetic configurations. Finally, when both precision and recall
are considered together through F1 measure we see that stochastic,
delta, and optimistic configurations perform the best with average
F1-scores of 0.683, 0.677, and 0.672, respectively, compared with
apathetic and default scores of 0.521 and 0.493, respectively.

The results indicate that if the objective is to match as many as
possible gold standard annotations, without concern for unrecog-
nized annotations, TagME’s default or PTA’s apathetic solution
would be the best option, as they most closely achieve
C(T) # A(T). However, if the goal is to avoid uncertainty, i.e.,
A(T) # C(T), then either optimistic, delta, or stochastic PTA would
be the best candidates. Finally, for the behavior that closely resem-
bles the gold standard output, i.e., C(T) = A(T), stochastic PTA
would be a good choice.

5.2. PTA with WikipediaMiner

WikipediaMiner is a toolkit that provides semantic services,
including semantic annotation through a downloadable software
library or Web service. The default configuration along with the
solutions recommended by the five variants of PTA are given in
Table 6. Pessimistic PTA discovered a solution very similar to
WikipediaMiner’s default configuration. Apathetic PTA produced
the highest number of annotations per text fragment A(T) with
an average of 14.23 annotations, but at the expense of the highest
number of unknowns A(T)nC(T) (11.2 on average). This resulted in
a high recall of 0.75, but low precision of 0.35.

The recall graph of Fig. 3 demonstrates that apathetic and
stochastic PTA perform the best in this metric, followed by opti-
mistic, delta, default, and pessimistic performing relatively the
same. The results were opposite for the precision, with pessimistic,
default, delta, and optimistic performing well followed closely by
stochastic then lastly apathetic due to its high unknown count.
Stochastic PTA gave the best overall solution with comparable pre-
cision to the default configuration, but with significantly better
recall. In addition, stochastic PTA generated the second-least num-
ber of empty annotations with 5.1% compared to the second-worst
score of 15.3% from the default configuration.

5.3. PTA with DBpedia Spotlight

We tested PTA on the DBPedia Spotlight candidates Web service.
The candidates service is an annotation service that returns a
ranked list of annotations per mention. This ranking includes out-
put statistics entitled contextual score, percentage of second rank,
and final score with the intent that the application using the anno-
tator service will prune the ranked list based on the chosen thresh-
olds for these statistics. Consequently, the goal of PTA is to discover
what threshold values to use. Therefore, it was not surprising that
the default configuration gave the best results for recall (0.52,
Table 7) but poor precision (0.19), and the highest number of anno-
tations per text fragment (14.8). Pessimistic PTA had the most

http://tagme.di.unipi.it/tagme_help.html#tagging
http://tagme.di.unipi.it/tagme_help.html#tagging
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Web-service#Candidates
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Web-service#Candidates
http://wikipedia-miner.cms.waikato.ac.nz/services/?wikify
http://wikipedia-miner.cms.waikato.ac.nz/services/?wikify
https://developer.yahoo.com/contentanalysis/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/aida/webservice/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/aida/webservice/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/aida/webservice/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/aida/webservice/
http://inextweb.com/denote_demo
http://www.alchemyapi.com/api/register.html
http://aylien.com/text-api-tos
https://www.textrazor.com/plans
http://www.ontotext.com/products/ontotext-semantic-platform/
http://www.ontotext.com/products/ontotext-semantic-platform/


Table 5
Default and recommended values for TagMe’s tunable parameters (first 3 asterisk⁄ rows), followed by summary statistics (mean values) for comparison metrics computed on
1000 text fragments gold-standard using tunable parameters’ default values (1st column) and values recommended by different forms of PTA. Values in bold indicate best scores
for C(T), A(T)..,EMPTY%.

Default Pessimistic
f c: " A(T)\C(T)
f e: ; A(T)nC(T)

Apathetic
f c: "A(T)\C(T)
f e: ;C(T)nA(T)

Optimistic
f c: " A(T)
f e: ;A(T)nC(T)

Stochastic
f c: " A(T)
f e: ; E[A(T)nC(T)]

Delta
f c: " ± A(T)-C(T)
f e: ;C(T)nA(T)

⁄epsilon 0.30 0.494 0.282 0.156 0.427 0.357
⁄long_text 0 6 0 10 10 7
⁄rho 0.0 0.551 0.0221 0.2662 0.1613 0.2429
C(T) 4.031 4.031 4.031 4.031 4.031 4.031
A(T) 9.567 1.631 8.778 3.721 4.915 4.029
A(T)\C(T) 3.347 1.403 3.346 2.757 3.128 2.861
C(T)nA(T) 0.684 2.628 0.685 1.274 0.903 1.17
A(T)nC(T) 6.22 0.228 5.432 0.964 1.787 1.168
PRECISION 0.375 0.607 0.407 0.728 0.659 0.710
RECALL 0.827 0.324 0.827 0.673 0.768 0.699
F-SCORE 0.493 0.401 0.521 0.672 0.683 0.677
EMPTY% 1.6% 33.8% 1.6% 6.9% 2.8% 5.6%

Table 6
Default and recommended values for WikipediaMiner’s tunable parameters (first 3 asterisk⁄ rows), followed by summary statistics (mean values) for comparison metrics
computed on 1000 text fragments gold-standard using tunable parameters’ default values (1st column) and values recommended by different forms of PTA. Values in bold
indicate best scores for C(T), A(T)..,EMPTY%.

Default Pessimistic
f c: " A(T)\C(T)
f e: ; A(T)nC(T)

Apathetic
f c: "A(T)\C(T)
f e: ;C(T)nA(T)

Optimistic
f c: " A(T)
f e: ;A(T)nC(T)

Stochastic
f c: " A(T)
f e: ; E[A(T)nC(T)]

Delta
f c: " ± A(T)-C(T)
f e: ;C(T)nA(T)

⁄minProbability 0.50 0.53 0.023 0.33 0.23 0.46
⁄disambiguation Policy strict strict loose strict loose strict
⁄weight 0.0 0.205 0.0427 0.427 0.663 0.199
C(T) 4.031 4.031 4.031 4.031 4.031 4.031
A(T) 3.862 3.862 14.229 4.435 6.027 4.185
A(T)\C(T) 2.099 2.099 3.029 2.303 2.718 2.217
C(T)nA(T) 1.932 1.932 1.002 1.728 1.313 1.814
A(T)nC(T) 1.763 1.763 11.2 2.132 3.309 1.968
PRECISION 0.525 0.525 0.245 0.519 0.468 0.519
RECALL 0.511 0.511 0.755 0.566 0.674 0.543
F-SCORE 0.485 0.485 0.350 0.508 0.525 0.498
EMPTY% 15.3% 16.8% 2.9% 11.6% 5.1% 13.4%

Table 7
Default and recommended values for Spotlight’s tunable parameters (first 5 asterisk⁄ rows), followed by summary statistics (mean values) for comparison metrics computed on
1000 text fragments gold-standard using tunable parameters’ default values (1st column) and values recommended by different forms of PTA. Values in bold indicate best scores
for C(T), A(T)..,EMPTY%.

Default Pessimistic f c: " A(T)\C(T)
f e: ; A(T)nC(T)

Apathetic f c: "A(T)\C(T)
f e: ;C(T)nA(T)

Optimistic f c: " A(T)
f e: ;A(T)nC(T)

Stochastic f c: " A(T) f e: ;
E[A(T)nC(T)]

Delta f c: " ± A(T)-C(T)
f e: ;C(T)nA(T)

⁄confidence 0.20 0.14 0.029 0.29 0.62 0.020
⁄support 20 48 5 1 1 355
⁄contextualScore 0.0 0.132 0.0508 0.0 0.0 0.115
⁄percentageOf

SecondRank
0.0 0.0290 0.596 0.0 0.0 0.459

⁄finalScore 0.0 0.491 0.128 0.0 0.228 0.004
C(T) 4.031 4.031 4.031 4.031 4.031 4.031
A(T) 14.89 0.072 4.227 5.042 1.496 3.153
A(T)\C(T) 2.085 0.055 1.477 1.8 0.878 1.022
C(T)nA(T) 1.946 3.976 2.554 2.231 3.153 3.009
A(T)nC(T) 12.8 0.017 2.75 3.242 0.618 2.131
PRECISION 0.190 0.0373 0.403 0.406 0.403 0.334
RECALL 0.522 0.0157 0.372 0.451 0.218 0.263
F-SCORE 0.251 0.0211 0.345 0.384 0.259 0.262
EMPTY% 12.4% 96% 22.6% 17.6% 48.5% 36%
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difficulty with the lowest F1-score (0.02) caused by a high number
of unrecognized annotations and low number of matching gold
standard answers. Stochastic PTA would have provided the best
precision if not for the many empty solutions it gave (Fig. 4 and
Table 7). Overall, optimistic PTA gave the second best recall with
the best precision and thus is the recommended solution with
the top F1-score of 0.38.
5.4. PTA with Yahoo Content Analysis (YCA)

The Yahoo Content Analysis API provides named entity linking
to Wikipedia entities through its Web service. PTA mean statistics
show apathetic PTA leads in seven of the eight metrics (Table 8).
However, the difference is statistically inconsequential and did
not translate to a significant improvement over the default



Table 8
Default and recommended values for YCA’s tunable parameters (first 2 asterisk⁄ rows), followed by summary statistics (mean values) for comparison metrics computed on 1000
text fragments gold-standard using tunable parameters’ default values (1st column) and values recommended by different forms of PTA. Values in bold indicate best scores for
C(T), A(T)..,EMPTY%.

Default Pessimistic
f c: " A(T)\C(T)
f e: ; A(T)nC(T)

Apathetic
f c: "A(T)\C(T)
f e: ;C(T)nA(T)

Optimistic
f c: " A(T)
f e: ;A(T)nC(T)

Stochastic
f c: " A(T)
f e: ; E[A(T)nC(T)]

Delta
f c: " ± A(T)-C(T)
f e: ;C(T)nA(T)

⁄max 100 9 18 6 99 98
⁄score 0.0 0.917 0.455 0.594 0.192 0.007
C(T) 4.031 4.031 4.031 4.031 4.031 4.031
A(T) 1.439 0.243 1.457 1.233 1.444 1.443
A(T)\C(T) 1.071 0.199 1.082 0.938 1.075 1.070
C(T)nA(T) 2.960 3.832 2.949 3.093 2.956 2.961
A(T)nC(T) 0.368 0.044 0.375 0.295 0.369 0.373
PRECISION 0.520 0.160 0.529 0.511 0.525 0.521
RECALL 0.268 0.0491 0.271 0.238 0.268 0.266
F-SCORE 0.331 0.0719 0.335 0.306 0.332 0.329
EMPTY% 39.9% 83.6% 38.7% 42.4% 39.2% 39.6%

Table 9
Summary table indicating the best(+) and the worst(�) solutions for individual measures by averages plus overall recommended solution based on AUC graphs.

Most annotations
A(T)

Most matched
A(T)\C(T)

Least unknown
A(T)nC(T)

Least empty answers
EMPTY%

Best recall Best
precision

Overall best
AUC-F1

TagME +default
-pessimistic

+default
+apathetic
-pessimistic

+pessimistic
-default

+default
+apathetic
-pessimistic

+default
+apathetic
-
pessimistic

+optimistic
-default

+stochastic
-pessimistic

WikipediaMiner +apathetic
-default-
pessimistic

+apathetic
-default
-pessimistic

+default
+pessimistic
-apathetic

+apathetic
-pessimistic

+apathetic
-default
-
pessimistic

+default
+pessimistic
-apathetic

+stochastic
-apathetic

DBpedia
Spotlight

+default
-pessimistic

+default
-pessimistic

+pessimistic
-default

+default
-pessimistic

+default
-
pessimistic

+optimistic
-pessimistic

+optimistic
-pessimistic

Yahoo (YCA) +apathetic
-pessimistic

+apathetic
-pessimistic

+pessimistic
-apathetic

+apathetic
-pessimistic

+apathetic
-
pessimistic

+apathetic
-pessimistic

+default
+apathetic
+stochastic+delta
-pessimistic
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configuration. The AUC graphs of Fig. 5 reveal stochastic, apathetic,
and delta forms of PTA perform equally well as YCA’s default con-
figuration using different local maxima solutions. Optimistic PTA
was a close second while pessimistic struggled.
6. Result summary

Table 9 provides a summary of the experimental results. For
each examined annotator, the table presents the forms of PTA that
evaluated as the best(+) and the worst(�) performing for mean
measures of: most annotations, most annotations matching the
gold standard, least unrecognized annotations, least empty
answers and best precision/recall. Also included is the overall (rec-
ommended) PTA variant based on AUC graphs. Noteworthy is that
the best PTA variant per individual dimensions does not necessar-
ily indicate best performing overall solution. As an example, con-
sider WikipediaMiner. Apathetic PTA scored highest for most
annotations, most matched, least empty, and best recall; however,
the recommended solution is stochastic which was not the top (nor
bottom) of any single measure. The table also shows that no single
variant of PTA is best as this is a function of annotator behavior,
testing set, and user assumptions (unknown annotations are
mostly right, mostly wrong, or partially correct). Nonetheless, it
would appear pessimistic PTA is excessively conservative and is
often surpassed by its probabilistic counterpart: stochastic.
Consequently, the pessimistic PTA variant should be avoided.
From Table 9, the following summary observations can be made:
� Apathetic PTA emerged as a good choice for most annotations,
most matched and best recall.
� Optimistic PTA performed well when precision is the primary

concern.
� Stochastic PTA was the prevailing general-purpose strategy

with an overall best solution for three of the four annotators
tested.

Our experimental results demonstrate that PTA is effective. In
all annotators tested, PTA either: (1) suggested an improved con-
figuration, or (2) validated the default configuration as a local max-
imum solution. PTA successfully found alternative configurations
that better fitted the testing set than the default parameters of
TagME, WikipediaMiner, and DBpedia Spotlight.
7. Related literature

Semantic annotation tools offer the possibility of deeper analy-
sis of textual content by disambiguating terms and phrases present
in the text and linking them to appropriate concepts from a knowl-
edge base, hence enabling more efficient and accurate classifica-
tion, organization, search and retrieval of textual content. The
research community has already developed a critical mass of both
research prototypes and usable software products in this area.
Automated semantic annotation tools examined in this paper:
TagMe (Ferragina & Scaiella, 2012), Denote (Cuzzola et al., 2013),
DBPedia Spotlight (Mendes, Jakob, García-Silva, & Bizer, 2011),
Wikipedia Miner (Milne & Witten, 2013), among others, provide
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means to automatically semantically process textual content and
identify relevant semantic concepts.

Recently, these tools have been increasingly referred to as
entity linking tools since they link entity mentions in the text with
the corresponding entry/entries in a knowledge base. Shen, Wang,
and Han (2015) have provided a very comprehensive and detailed
survey of the state-of-the-art automated entity linking (i.e., seman-
tic annotation) tools. They have identified three modules that such
tools consist of, namely candidate entity generation, candidate
entity ranking and unlinkable menton prediction modules, and
for each module presented and analyzed different methods and
techniques that were proposed in the literature and applied in
existing annotation tools. They also reported that the examined
tools ‘‘differ along multiple dimensions and are evaluated over dif-
ferent data sets’’.

Large majority of today’s semantic annotators rely on a general
purpose knowledge base (KB) such as Wikipedia or more struc-
tured and semantically rich KBs like DBpedia, YAGO, and
Wikidata. However, there are also domain-specific semantic anno-
tators, many of them in the biomedical domain, e.g., MetaMap
(Aronson & Lang, 2010) and NCBO annotator (Whetzel et al.,
2013), that rely on domain-specific KBs such as Unified Medical
Language System (UMLS) (Bodenreider, 2004), DrugBank (Law
et al., 2014) or medical ontologies available at NCBO BioPortal
(Whetzel et al., 2011). In order to assure good domain coverage,
both in terms of breadth and depth of the entities covered, some
annotation tools rely on more than one KB. For instance, the
semantic annotation method proposed by Berlanga, Nebot, and
Pérez (2015) relies on the use of several KBs of arbitrary size and
domain specificity, and is also independent of any specific charac-
teristic of a KB (e.g., disambiguation pages, internal links and other
Wikipedia specific features). Some semantic annotators, such as
TagMe and the one developed by WalmartLabs (A. A. Gattani, N.
Garera, & X. Chai, 2013), are specifically designed and developed
for semantic annotation of social media content that is typically
short, fragmented, poorly spelled and grammatically incorrect.
Since such an annotator requires a global and almost real-time
KB, Gattani et al. (2013) expanded Wikipedia with data from vari-
ous structured sources (e.g., Adam (health), MusicBrainz (albums),
City DB, and Yahoo Stocks), as well as new interesting events
extracted from Twitter data stream.

The algorithms developed as a part of semantic annotation sys-
tems, e.g. spot identification and disambiguation, often rely on
user-dependent fine-tuning of input parameters. These parameters
allow the user to customize the algorithms for the specific topic or
textual content type (Jovanovic et al., 2014). While annotation
tools do provide a suggested default value on these parameters,
they are not by any means optimal for all scenarios. To our knowl-
edge, no existing related work or implemented software has
attempted to address the problem of automated parameter
fine-tuning for semantic annotation tools; therefore, our proposed
PTA framework serves as a first foundational step in this direction.

Having said that, it is important to point out that while
researchers have not addressed the problem of parameter
fine-tuning for semantic annotators, there have been a few fruitful
work on the systematic evaluation of semantic annotation systems.
For instance, Cornolti et al. (2013) have developed a framework
consisting of metrics and standard datasets for measuring the effi-
ciency and effectiveness of existing semantic annotation tools. The
major contribution of their work is its novel approach to the sys-
tematic classification of different tasks of a semantic annotator
and the development of suitable metrics for each of these specific
tasks. The work by Steinmetz, Knuth, and Sack (2013) is also
focused on the evaluation of semantic annotation tools; however,
their attention is centered more on the statistical analysis of differ-
ent benchmark and dictionary datasets that can be used in the
evaluation process. Heuss, Humm, Henninger, and Rippl (2014)
compared the performance of several state-of-the-art semantic
annotation tools on domain specific texts (namely texts about
museum collections). The study found that, on average, each tool
achieved roughly just a third of its F1 score on texts covering gen-
eral/common topics. The results also showed very high standard
deviations for all performance measures (recall, precision and
F1), indicating not only lower performance than in a common case,
but wider distribution of the results. This is consistent with the
findings of Shen et al. (2015) who reported that the tools examined
in their survey tend to perform very differently for different data
sets and domains. It is worth pointing out that existing compara-
tive studies of semantic annotation tools have all relied on the sug-
gested default parameter settings for the compared systems;
therefore, they do not necessarily reflect the best case performance
of the annotator tool on the objects of the experiment. It could very
well be the case that if the optimal parameter values were chosen
(as opposed to the default values) that the obtained results could
be significantly different.

It should be mentioned that besides automated semantic anno-
tation tools, there are also semi-automated semantic annotators
that allow for user’s intervention during the annotation process.
This intervention often takes the form of choosing the best option
from a list of candidate annotations, or removing some of the pro-
posed annotations that the user considers incorrect or irrelevant.
While considerable research and development efforts were put
into the design and development of semi-automated annotation
tools (Uren et al., 2005), (Oliveira & Rocha, 2013), their reliance
on human active participation impacts their efficiency, and thus
they have been largely superseded by fully automated tools. Still,
there are some usage scenarios, e.g., scholarly reading, where,
due to their mixed-initiative annotation approach,
semi-automated annotators are preferred. For instance, based on
a study of scholarly annotation practices, Müller-Birn, Klüwer,
Breitenfeld, Schlegel, and Benedix (2015) have designed and devel-
oped Neonion, a lightweight annotation tool for creating, sharing
and reusing annotation data. Neonion users can accept, reject or
modify annotations recommended by the tool; annotations take
the form of references to appropriate Wikidata (Vrandečić &
Krötzsch, 2014) entities. This feedback that users provide is lever-
aged for improving subsequent recommendations. Annotation of
medical texts is another domain where human involvement is
often needed to assure the accuracy of automatically produced
annotations. For example, RapTAT is a semi-automated semantic
annotation tool based on an interactive and iterative machine
learning approach, and aimed at assisting end users with annota-
tion of various kinds of medical texts (Gobbel et al., 2014). In each
iteration, the tool annotates potentially relevant phrases within a
document, presents the annotations to a reviewer for correction,
and then uses the obtained feedback (i.e., corrected annotations)
to re-train its machine learning model before annotating subse-
quent document.

Although work on finding optimal parameter values for seman-
tic annotation tools is novel, it is important to point out that the
use of evolutionary algorithms as Genetic Algorithms for optimal
parameter estimation in control systems has been a commonplace
(Chang, 2006). For instance, Seng, Bin Khalid, and Yusof (1999)
used Genetic Algorithms to simultaneously tune the parameters
of a self-tuning fuzzy logic control system. Similarly, Yao and
Sethares (1994) used Genetic Algorithms for optimizing the struc-
ture and parameters of feedforward and recurrent neural networks
and shown to be able to reduce estimation error in probability to
zero. Genetic Algorithms have also been widely used for parameter
tuning in Proportional-Integral-Derivative (PID) controllers (Panda,
2011), power system optimization (Kothari, 2012) and HVAC sys-
tems (Kusiak, Tang, & Xu, 2011). They were also used to deal with
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challenges of image annotation (Bahrami & Abadeh, 2014). In the
Semantic Web domain, Genetic Algorithm-based approaches can
be observed in a variety of applications (Chen, Wu, &
Cudré-Mauroux, 2012) such as finding optimal ontology align-
ments between multiple ontologies (J. J. Martinez-Gil & J.F.
Aldana-Montes, 2008); identification and alignment of datasets
of the Linked Open Data cloud (Gunaratna, Lalithsena, & Sheth,
2014); RDF query answering (Oren, Guéret, & Schlobach, 2008);
and semantic Web service discovery (Sangers, Frasincar,
Hogenboom, & Chepegin, 2013) and composition (Fanjiang & Syu,
2014), among others, and have shown to be effective for such opti-
mization problems.

8. Limitations and future work

We have proposed a method, called Parameter Tuning
Architecture (PTA), for finding suitable values for tunable parame-
ters of semantic annotators (Section 4) and demonstrated this
method on four semantic annotators (Section 5). Note that the
annotators themselves were not trained by PTA; instead, alterna-
tive parameter values were proposed that better suited the tar-
geted evaluation/testing set (wiki-annot30). PTA could be
extended for semantic annotator training, namely, as a tool to
decide on the fallback parameter defaults when no alternative val-
ues are supplied. This would simply require the use of a training
set rather than a testing set with PTA. However, since we were
unable to acquire the exact training set used for each of the four
annotators in our experiments, we were not able to compare
how general purpose default values suggested by PTA would per-
form relative to the defaults currently chosen by the annotators’
designers. Even if the training sets were available, there may be
internal tunable parameters that are only accessible to the design-
ers, and not exposed through the annotator’s public interface.
Moreover, since each of the tested annotators were trained with
different gold standards on (most-likely) different versions of
Wikipedia, subsequent work should include experimentation with
other datasets such as Microsoft’s ‘‘Entity Recognition and
Disambiguation Challenge’’9 and/or ClueWeb10 for further validation
of our PTA framework.

Future work may also include validation with other knowledge
based annotation systems (non-Wikipedia) that rely on life
sciences, biomedical, or other ontologies. Additionally, we propose
an extension to our fitness function (Eq. (1)) with the introduction
of weights ðdc; deÞ:

FITðTÞ ¼ arg maxv2Vdc½f cðTÞ�
2 � de½f eðTÞ�

2 wheredc þ de ¼ 1

This would allow for an emphasis toward either finding more cor-
rect annotations f c or less annotations in error f e. The weights
themselves ðdc; deÞ could be part of the tunable parameter vector
v in which PTA would be tasked to not only find suitable parameter
values for the annotator in question but also suggesting parameter
values for itself. Finally, our future work will investigate other evo-
lutionary algorithms such as swarm optimization and compare its
performance with the currently used genetic algorithm (Fig. 1).

9. Conclusion

In this paper we present Parameter Tuning Architecture (PTA), a
general method to determine ‘‘best-fit’’ values of configuration
parameters for semantic annotators. We explain the caveats of
supervised testing specific to semantic annotators and devised
PTA variants to tackle the uncertainty of unlabeled annotations.
9 http://web-ngram.research.microsoft.com/ERD2014/.
10 http://lemurproject.org/clueweb09/FACC1/.
We tested these variants on four well-known semantic annotators
and provided a method for selecting the best solution using a
genetic algorithm and area-under-the-curve metric. Experimental
results indicate that PTA is capable of suggesting configurable
parameters that improve upon specific individual areas of most
annotations, most matched gold standard answers, and least
uncertainty. Finally, our tests demonstrate that PTA can consis-
tently find a configuration that provides an overall best solution,
i.e., solution with the best precision versus recall trade-off for
many semantic annotators. We balance our findings by acknowl-
edging the limitations of our work and propose five future research
directions for further study (Section 8).

Since the PTA fitness function, the core component of the pro-
posed method, does not rely on any annotator-specific feature,
our PTA method is applicable to any semantic annotator, and can
be used to enhance the annotator’s performance on any specific
annotation task. Besides being directly beneficial for semantic
annotation tools, the proposed method might also be indirectly
useful to any intelligent system that relies on semantic-rich anno-
tation of textual content, such as text search and retrieval systems,
various content-based recommender systems, systems that rely on
semantics of textual content to support personal or business deci-
sion making and the like.
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