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Abstract

Dense retrieval models provide representations in the form of embeddings in
latent space and output a single deterministic score for a document based on
the estimation of its relevance to the input query. While remarkable progress
has been achieved in dense retrieval methods, they are limited by the fact that
they consider queries and documents as deterministic points in latent space that
encode the most likely features of the given query or document, and hence do not
explicitly encode any degrees of noise, ambiguity or uncertainty. In this paper,
we build on existing strong transformer-based dense retrievers by enabling them
to capture uncertainty in latent space. In our proposed approach, embeddings
in latent space are no longer a deterministic point, but rather a probabilis-
tic distribution. With such probabilistic embeddings, the dense retrievers can
be trained to achieve competitive performance on in-distribution queries and
higher generalizability on out-of-distribution queries. Based on extensive experi-
ments, we demonstrate that our proposed model consistently improves retrieval
effectiveness in comparison to the state-of-the-art dense retrieval methods.
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1 Introduction

Within the context of Information Retrieval, the ad hoc retrieval task is aimed at find-
ing relevant documents or passages that can fulfill users’ information needs expressed



as queries. Researchers have studied this task with the aim of devising methods that
can efficiently and effectively map the query and document spaces onto each other in
order to be able to seamlessly identify and retrieve relevant information. Most tradi-
tional methods have adopted a vector space model [1, 2], which represents queries and
documents as sparse term vectors [3, 4]. These approaches are quite effective when
retrieving documents that have close lexical resemblance to user queries. As such, they
otherwise show less effective performance when so called vocabulary mismatch exists
[5].

More recent neural-based retrieval models have moved beyond sparse vector space
models into dense embedding representations for queries and documents that are effi-
cient to use in terms of their memory usage and also effective as they can capture
deeper semantic information beyond lexical similarities [6]. The idea behind such mod-
els is that dense embedding representations are learnt for queries and documents such
that queries and documents that are relevant to each other are placed in close prox-
imity to each other in the representation space, while those that are not relevant to
each other are placed further apart. Furthermore, neural retrieval models experienced
an increased effectiveness with the introduction of Transformer-based Pre-trained
Language Models (PLM) that can be finetuned for the ad hoc retrieval task [7-11].

Modern neural information retrieval systems have shown remarkable performance
improvements, particularly with the advent of pre-trained transformer-based models.
Among them, Cross Encoder architectures [12, 13] have become the dominant choice
for learning accurate matching functions between query-document pairs by jointly
encoding the concatenated input into a single contextual representation as a deter-
manistic point embedding in the latent space. Unlike existing sparse and dense-based
retrieval models that compute independent embeddings for queries and documents,
Cross Encoders allow rich token-level interactions, enabling finer-grained relevance
estimation. This deterministic perspective is effective if the user’s query is expressed
clearly or if there are no ambiguities in the document corpus. However, in practice, it
is difficult to estimate an accurate point embedding for ambiguous [14], hard [15-17],
or out-of-distribution (out-of-domain) [18] queries, which can impose some degree of
noise or uncertainty in the embedding space [19, 20]. Most Cross Encoders compute
a deterministic score based on a fixed embedding (typically from the [CLS] token) of
the joint input. This approach assumes a confident, point-estimate representation of
relevance, which can lead to unreliable results under uncertainty, for example, with
ambiguous queries, vague documents, or domain shifts. Ideally, a well-designed rank-
ing system should be capable of capturing its own uncertainty when interpreting
ambiguous or out-of-domain content and gracefully indicating when it is no longer
effective or confident in its rankings. In order for the ranking system to be able to
capture such uncertainty, it will require explicit mechanisms that are able to encode
uncertainty when learning representations for queries and documents. Current stan-
dard approaches for learning representations for queries and documents that adopt a
deterministic point embedding are not capable to capturing such uncertainty.

To address this issue, we propose a Variational Cross-Encoder Model, referred to
as VarCrossEncoder, that adopts a distributional estimation instead of a determin-
istic point embedding in the latent space for each input query-document pair. The
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Fig. 1 Comparison of deterministic and probabilistic embeddings. In deterministic approaches, each
query—document pair is mapped to a single point in the latent space, ignoring uncertainty. In con-
trast, probabilistic embeddings model each pair as a distribution, capturing variance across latent
dimensions (illustrated here in a 2D space).

distributional estimation allows for capturing degrees of noise or uncertainty in the
representation adopted for each point in latent space (see Figure 1). We encode the
interaction between the query and document as a Multivariate Gaussian distribution,
which assigns a probability to each point in latent space. The representations learnt
by VarCrossEncoder follow Gaussian distributions with a diagonal covariance matrix.
We demonstrate that such multivariate Gaussian representations for each query-
document pair has the ability to effectively capture uncertainty in query and document
representations, and hence exhibit retrieval effectiveness on in-distribution queries
and increased generalizability and more effective performance on out-of-distribution
queries.

While uncertainty has been studied in information retrieval, existing approaches
leave several important gaps. Risk-aware retrieval methods [21] focus on variance at
the score level, Bayesian sampling techniques primarily [22] address model-level uncer-
tainty, and multivariate representation learning [23] treats queries and documents as
independent probabilistic entities. These approaches do not explicitly capture data-
level uncertainty in the joint query—document representation, where ambiguity in
queries or noise in documents directly affects ranking effectiveness. This gap limits the
robustness and generalizability of current neural rankers, particularly for ambiguous,
noisy, or out-of-distribution queries.VarCrossEncoder addresses this gap by learning
joint probabilistic embeddings of query—document pairs within a cross-encoder frame-
work, thus modeling both the most likely semantic interactions and their inherent
uncertainty.

The main contributions of this work can be categorized into three parts, conceptual,
methodological, and empirical, as outlined below:

® Conceptual contribution: We propose the concept of uncertainty-aware prob-
abilistic ranking, which encodes each query-document pair as a probabilistic



embedding rather than adopting an existing deterministic point embeddings. This
allows our model to capture not only the most likely semantic representation of the
query-document interaction but also the inherent uncertainty or ambiguity present
in the data. By modeling the joint representation as a multivariate Gaussian distri-
bution, our approach can express confidence over different dimensions of the latent
space, facilitating more robust and adaptive ranking decisions, especially in the
presence of noisy, ambiguous, or out-of-distribution queries.

® Methodological contribution: We propose a neural ranking architecture,
VarCrossEncoder, that integrates probabilistic embeddings within a cross-encoder
framework to effectively model the interaction between query and document rep-
resentations. To optimize this architecture, we employ the Information Bottleneck
principle, which encourages the model to preserve only the most relevant features of
the joint representation while penalizing uncertainty through variational inference.

e Empirical contribution: We perform extensive experiments to show the impact
of probabilistic embeddings on the ad hoc retrieval task. Our experimental results
show the effectiveness of VarCrossEncoder compared to the state-of-the-art dense
retrievers, which operate based on deterministic embeddings.

The rest of this paper is structured as follows: In Section 2, we cover relevant lit-
erature that has addressed uncertainty or noise in the area of information retrieval.
Subsequently, in Section 3, we offer a clear problem statement and the desirable char-
acteristics for a robust neural ranking model that intends to capture uncertainty.
We discuss that such a model would need to show effective in-distribution retrieval,
strong generalizability for out-of-distribution retrieval, and improved effectiveness on
query subspaces that are difficult for neural rankers that operate based on determin-
istic embeddings. Based on this problem statement, we then introduce our proposed
VarCrossEncoder approach. Section 4 then introduces our research questions, exper-
imental setup, and the datasets used for evaluation purposes. This is followed by a
detailed analysis of the findings from our experiments. In Sections 5, 6, and 7, we
explore how the proposed model impacts hard queries, analyze its sensitivity to hyper-
parameters, and examine how alternative loss functions exhibit different performance.
The paper is then concluded in Section 8.

2 Related Work

There has been a long interest in capturing various degrees of uncertainty in obser-
vations, data points, and decision boundaries in areas beyond information retrieval
such as computer vision [24-26]. For instance, Ji et al. [25] leverage uncertainty-aware
pre-training to improve robustness in multimodal tasks, enabling better handling of
ambiguous or noisy inputs in vision-language understanding. Similarly, Upadhyay et
al. [26] introduce ProbVLM, which integrates probabilistic adapters into frozen vision-
language models, enhancing adaptability and reliability in downstream applications
such as image captioning and visual question answering. Considering the popularity
of cross-modal retrieval within the IR research community [27-29], Chun et al. [30]
propose Probabilistic Embeddings for Cross-Modal Retrieval, introducing a frame-
work where image-text pairs are represented as probability distributions instead of



fixed vectors. This approach captures uncertainty in feature representations, improv-
ing retrieval robustness, especially for ambiguous or noisy data. The model leverages
probabilistic similarity metrics to enhance retrieval accuracy across different modali-
ties. Their work demonstrates state-of-the-art performance in vision-language tasks by
effectively modeling inherent uncertainty in multimodal embeddings. More recently,
there has been increasing focus on the issue of deep uncertainty learning to improve the
robustness and interpretability of discriminant Deep Neural Networks (DNNs) [31, 32].
Uncertainty can often be due to noise in the parameters of the deep neural networks
(model uncertainty, also known as epistemic uncertainty) or the noise inherent in the
training data (data uncertainty, also known as aleatoric uncertainty). Model uncer-
tainty can be reduced by using ensemble models or additional training data [33-36]. In
contrast, however, data uncertainty cannot be addressed with more training data and
will require the explicit capturing of noise (uncertainty) in the model and its training
process [37]. The uncertainty studied in our work in this paper can be categorized as
data uncertainty.

In the context of information retrieval, Zhu et al. [21] may have been among the
first researchers to discuss the concept of uncertainty, as an intrinsic part of docu-
ment ranking, which has not generally been considered in other IR models. These
researchers believed that variance or uncertainty could introduce a level of volatility in
the retrieved results and proposed a risk-aware information retrieval model that allows
for controlling such volatility. In their research, they approach the variance of a proba-
bilistic language model [38] as a risk factor aimed at optimizing retrieval effectiveness.
Generative models due to their probabilistic nature can also be regarded as a method
for estimating data uncertainty in which relevance estimation is viewed as the proba-
bility of generating a query given document. As an example, dos Santos et al. [39] have
employed large-scale sequence-to-sequence Transformer-based models to rank answers
based on their generation probability, which implicitly captures uncertainty.

Recently, as neural ranking models have gained increased popularity in IR systems,
it has become necessary to incorporate uncertainty estimation techniques into neural
IR. For this reason, Penha et al. [40] captured uncertainty in conversational retrieval
by first integrating dropout into a transformer architecture during inference and then
modifying the ranking score through an uncertainty measure to improve the final
re-ranking. The objective of this method was to reduce uncertainty in ranking as docu-
ment scores from neural retrieval models often exhibit significant uncertainty, a factor
often overlooked due to the widespread use of deterministic ranking models. Cohen et
al. [22] also focused on this issue by modifying BERT-based rankers with a Bayesian
approximation method of stochastic dropout sampling. This method captures pre-
dictive relevance distributions to measure uncertainty and subsequently incorporate
uncertainty in the ranking process. Yang et al. [41] also adopted an uncertainty esti-
mation approach to improve exploration in an online learning-to-rank model. Instead
of using uncertainty-aware re-ranking, they used uncertainty estimates to identify can-
didate relevant documents. This helps reduce the exploitation bias commonly found
in an online learning-to-rank setting.

Another important focus area in information retrieval is the Query Performance
Prediction (QPP) task [15-17], which focuses on determining if the retrieved document



list meets the user’s needs. In other words, it determines how difficult a query is and
estimates its performance. One of the reasons for the poor performance of a query is
query ambiguity [42] which means that the users may struggle to articulate their needs
through the correct terminology, or there are no documents in the corpus that satisfy
the users’ needs. Query ambiguity could be seen as noise in the query or uncertainty
in the document collection. On this basis, researchers have proposed effective QPP
methods such as Normalized Query Commitment (NQC) [43] and Score Magnitude
and Variance (SMV) [44] to estimate query performance by using the variance of the
scores of the retrieved documents, capturing potential uncertainty. Another approach
to address uncertainty is to intentionally generate uncertainty through query pertur-
bations [15]. These approaches add noise to the initially ranked documents, hence
generating perturbations, in order to assess the robustness of the ranked list in light
of the injected noise and the introduced uncertainty.

There are also other methods for accounting for uncertainty. For instance, Chun
et al. [45] approximate uncertainty using probabilistic distance for image-text match-
ing. Wei et al. [46] introduced DVSSE, which captures uncertainty in visual retrieval
through fine-grained sub-embedding tuning. Additionally, Li et al. [47] proposed a
framework for cross-modal retrieval that first constructs a set of learnable prototypes
for each modality to represent the entire semantic subspace. Then, Dempster-Shafer
Theory and Subjective Logic Theory are utilized to develop an evidential theoretical
framework by associating evidence with Dirichlet Distribution parameters.

In contrast to capturing uncertainty at the method level, some researchers have
incorporated uncertainty at the representation level [23, 48, 49]. For instance, the
Probabilistic Face Embedding (PFE) method [48] proposed to capture data uncer-
tainty for each data sample in such a way that a Gaussian distribution is estimated,
instead of a fixed point, in the latent space. In the context of IR, Zamani et al. [23]
model uncertainty at the level of query and document representations and demonstrate
how such representations can be efficiently and effectively used for retrieval using any
of the existing approximate nearest neighbor methods. They proposed a new repre-
sentation learning framework, namely Multivariate Representation Learning (MRL),
for dense retrieval where instead of learning a vector for each query and document,
MRL learns a multivariate distribution and uses negative multivariate KL divergence
to compute the similarity between distributions. Unlike MRL, EASE-DR, [50] used
VAE for correcting sentence representations with anisotropy by sampling them from
the latent distribution of VAE. Other prior work [51-53] have also aimed to achieve
semantically richer representations by modeling queries and documents using a com-
bination of multiple vectors. While such representations were shown to lead to better
retrieval effectiveness, they do come at significant computational and memory costs.

Our work differentiates itself from prior probabilistic ranking models in the
following key ways:

e Data-Level Uncertainty: Unlike prior approaches such as [22, 40], which focus on
capturing uncertainty at the model level, our method accounts for uncertainty at
the data level to perform the ranking task. For example, [22] adopts a Bayesian
perspective to estimate a model’s uncertainty regarding its own document scoring,
leveraging dropout as a form of variational inference.



® Text-Only Retrieval Focus: Among methods that model uncertainty at the repre-
sentation level [30, 50, 54], our work is distinct in that it does not target cross-modal
retrieval. Instead, we focus on matching text documents to text queries.

® Joint Probabilistic Embeddings for Query-Document Pairs: Unlike Multivariate
Representation Learning (MRL) [23], which models uncertainty for text queries and
documents separately at the representation level, our approach learns a joint prob-
abilistic embedding for query-document pairs in a shared latent space. This design
has been shown to be more efficient while achieving comparable or superior ranking
performance across diverse retrieval benchmarks. We further incorporate an Infor-
mation Bottleneck loss, which is absent in MRL. This framework enables us to
balance informativeness and compression, guiding the model to retain only the most
relevant aspects of the joint representation while penalizing uncertainty through
variational inference. This leads to improved robustness on out-of-distribution
queries and better handling of ambiguous cases, as shown in our experiments.

To clarify the degree of innovation in our work, it is important to situate it within
existing research on uncertainty in information retrieval. Prior studies have addressed
uncertainty through risk-aware retrieval [21], Bayesian dropout sampling applied to
BERT-based rankers [22], and multivariate representation learning of queries and
documents [23]. While these methods highlight the importance of uncertainty, they
primarily capture model-level uncertainty or represent queries and documents as
independent probabilistic entities. In contrast, our approach focuses on data uncer-
tainty by introducing joint probabilistic embeddings of query—document pairs within
a cross-encoder framework. This design enables us to capture both the most likely
semantic interactions (means) and the inherent ambiguity (variances), thereby enhanc-
ing robustness in out-of-distribution settings and improving performance on difficult
queries.

3 Proposed Approach

The objective of our work is to incorporate data uncertainty into query-document rep-
resentations in order to maximize ranking performance in out-of-distribution scenarios.
To this end, we propose a neural ranking model that relies on learning the proba-
bilistic embeddings for each query-document pair to give a distributional estimation
instead of a point estimate in the latent space.

In this section, we first offer a clear problem statement and then propose a neural
ranking architecture and its associated loss function used for learning and optimizing
the model with probabilistic embeddings.

3.1 Problem Statement

Given a user information need expressed as a query @, the ranking task aims to
retrieve a ranked list of documents from a corpus in order to maximize an evaluation
metric of interest, e.g., nDCG or MAP. As a result of the ranking, every document D
in the corpus will receive a score that can be used to measure the relevance of that



document to the query, s(Q, D). Neural ranking models estimate query-document rel-
evance scores by learning degrees of query-document association in the latent space
based on lexical matching or learning embedding representations for semantic match-
ing [55]. The main objective of our work is to establish a robust neural ranking model
with the following Characteristics (C):

C1. Neural ranking models often rely on a significant number of training samples that
consist of query-document pairs that help the model learn the association between
queries and their relevant documents. However, the training data often comes from
historical queries submitted to a search engine and relevant documents are assessed
based on documents available in the corpus. In reality, users’ information needs can
shift and the distribution of content in the corpus can also change over time. As such,
while neural models will be effective on query and document collections that have
a similar distribution to the training data (referred to as in-distribution), they may
suffer when adopted for out-of-distribution settings. The objective of our work is to
allow the model to generalize effectively to out-of-distribution settings by effectively
capturing uncertainty in query-document representations;

C2. While generalizing to out-of-distribution queries is important for robustness,
it is also important for the ranking model to show strong stable performance on
in-distribution queries. In other words, capturing uncertainty in query-document
representations should not lead to a decreased performance on in-distribution queries;
(8. While most neural ranking models focus on improving the average effectiveness of
retrieval results, recent research has shown that improving mean retrieval effectiveness
does not necessarily lead to an improved stable performance across different query
subsets [56, 57]. Accordingly, a robust neural ranking model is expected to achieve
competitive average effectiveness by improving the performance of difficulty queries
rather than only further improving the performance of queries that are already quite
easy for other existing ranking methods.

Simply put, the above characteristics intend to ensure that our proposed model is
generalizable to out-of-distributions settings (C1), shows stable and competitive per-
formance on in-domain scenarios (C2), and shows improved performance on query
subsets that are difficult for other neural ranking methods to satisfy (C3). In order to
propose a neural ranking model that satisfies these three characteristics, we propose
to explicitly capture the degree of uncertainty when learning and estimating the
relevance score of a document for a given query. To this end, instead of treating the
embeddings as a deterministic point in latent space, we propose probabilistic embed-
dings, which give a distributional estimation in the latent space for each input data.
we hypothesize that the distribution of each embedding, after considering potential
uncertainties, follows a multivariate Gaussian distribution where the mean of the dis-
tribution can be interpreted as the most likely latent feature values while the span of
the distribution represents the uncertainty of these estimations. Our proposed proba-
bilistic embeddings penalize uncertain features (dimensions) and pay more attention
to more confident features.

Given the popularity of neural rankers that exploit pre-trained language mod-
els [68-61], and most specifically the superior performance of Cross Encoders [62]
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for document ranking, we propose VarCrossEncoder, which is based on the Cross
Encoder ranking model and captures data uncertainty in the form of probability dis-
tributions (e.g., Gaussian) while learning query-document representations. Figure 2
depicts an overview of the proposed VarCrossEncoder approach. A typical Cross
Encoder encodes the concatenation of the query and candidate document into a single
deterministic representation, which is fed into a fully connected network (classifier)
that gives a matching score. However, in contrast, our proposed VarCrossEncoder
adopts a probabilistic embedding for the input data (the concatenation of query and
document). In our approach, the input data is mapped onto a Gaussian distribution
N (z; 1, X) using a variational encoder that consists of a backbone feature extractor,
f2, followed by two separate branches f and f3, each of which predicts p and .
Embeddings sampled from this Gaussian are then consumed by a decoder (i.e., clas-
sifier or regressor in the context of learning to rank), ff“”k to predict the relevance
score.

3.2 Model Architecture

Given our objective is to integrate uncertainty information into the ranking task,
VarCrossEncoder needs to have an extra component along with the ranking module
that would be responsible for modeling uncertainty. To this end, the component of
the variational encoder has been incorporated in the model to capture uncertainty. As
shown in Figure 2, VarCrossEncoder consists of two components:

1. The Variational Encoder: To capture uncertainty, the variational encoder mod-
els the interaction between the queries and documents as a point in the latent
probabilistic space and provides the probabilistic embeddings for a given input.
A well-known practice is to model latent space as a Gaussian distribution where
the mean can be regarded as the most likely embedding value while the diagonal
covariance can be interpreted as the data uncertainty. Naturally, a larger variance
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Fig. 3 The Architecture of our Proposed VarCrossEncoder approach.

means higher uncertainty. The motivation behind the probabilistic embeddings is
that the learned variance acts like a predictor indicating how well an embedding
represents the input samples as a place in the latent space based on their identity;

2. Ranker: As a common component in neural ranking models, the ranker decodes the
probabilistic embeddings with the aim of estimating the relevance scores between
a given query and the documents in the corpus.

In the following, we describe each component in detail.

3.2.1 The Variational Encoder

The variational encoder component in VarCrossEncoder aims to leverage uncertainty
in the ranking task by encoding the input (both the query and the document) into a
latent variable that models the distribution of diverse documents for a given query. The
variational encoder models the distribution p(z|t) with the parameters of distribution
0 that are the weights of encoder layers in VarCrossEncoder. The input and output
of the variational encoder are t € R? and z € R, respectively. The dimensionality d
represents the size of the input embedding, typically matching the hidden size of the
transformer model. In contrast, K denotes the dimension of the latent space where
the compressed representation z is defined. As depicted in Figure 2, the variational
encoder is formed as a backbone encoder followed by a probabilistic module.

The Backbone Encoder. The main objective of the backbone encoder is to
provide a deterministic point representation for the input query and document in
latent space. Given language models such as BERT are trained for tasks such as
Next Sentence Prediction (NSP), they include additional meta-tokens that often cap-
ture the semantics of a sequence of terms including the [SEP] and [CLS] meta-tokens
[63]. Earlier work has shown that the meta-tokens could be fine-tuned for perform-
ing downstream tasks such as document ranking [12, 13], among others. For instance,
MacAvaney et al. [13] and Nogueira et al. [12] introduced BERT-based ranking where
the query-document pairs are considered as two text sentences, which are separated

10



by the [SEP] meta-token and whose relevance relation can be captured through a lead-
ing [CLS] meta-token. Given Cross Encoders allow full token-level cross-interaction
between query and document pairs and thus provide more accurate performance, we
adopt a similar strategy to capture the interaction between query and document pairs.

We let @ be a query consisting of tokens {q1, ¢z, ...,qo|} and further let D be a
document consisting of tokens {di,dy, ...,d|p }. Adopted from [12, 13], we first con-
catenate the query and document pair using two meta-tokens, namely [SEP] and
[CLS], and then feed them through transformer-based language models. The contex-
tual representation of the leading [CLS| meta-token is used as the deterministic point
embedding.

[CLS| = fP(concat(Q, D)) (1)
t = concat(Q, D) = [CLS] q1,q2,.-,qq [SEP] di,ds,...,dp) [SEP] (2)

where [CLS] is the embeddings for the [CLS] token that is a deterministic point in
the embedding space. f£ is a transformer-based language model that encodes the
query-document pair (@, D) to the contextualized representation vector of [C'LS]. The
transformer-based language models not only extract the semantic information for the
input but also model the attention between the query tokens and the document tokens.

The Probabilistic Module. Since it is difficult to give an accurate point embed-
ding for noisy data, the probabilistic module models the input uncertainty in the
embedding space by representing each embedding as a random variable: z ~ p(z|t). As
depicted in Figure 3, the output neurons of the probabilistic encoding are supposed to
determine the parameters of the conditional distribution p(z|t). Since the distribution
p(z|t) is a multivariate Gaussian distribution, we have two outputs for the variational
encoder: one for the mean of this distribution u(t) and the other for the covariance
matrix of this distribution ¥(¢) which is usually diagonal. Any distribution with any
number of parameters can be chosen for p(z|t) but the multivariate Gaussian with
diagonal covariance has already been widely used in the literature:

p(alt) = N (z|u(t), 2(t) = N (2| £ (t), f5 (1)) 3)

where the mean p(t) and the diagonal covariance X.(¢) are estimated through a shared
backbone transformer-based encoder and probabilistic branch with separate output
layers. Depending on whether the shared backbone encoder is followed by which of
the mean or covariance prediction layers, or both of them, we propose three types of
probabilistic modules: (1) VAR-based Module, (2) MEANVAR-based Module, and (3)
MEAN-based Module.

1. VAR-based Module (VARM ). The VAR-based Module uses a feature (mean of the
Gaussian) from an existing deterministic representation model and the input uncer-
tainty is modeled by learning only the variance. The hypothesis behind the VAR-based
module is that the deterministic embedding [CLS], if properly optimized, represents
the most likely features of the given input @ and D in the latent space. As such, given
a pre-trained language model, we take p(t) = [CLS] and optimize the uncertainty
module, f3°, to estimate diag(X(t)). We consider a network with fully connected layers
with linear activating functions as the corresponding probabilistic module to encode
the model’s confidence along each feature dimension. The mean p can be seen as the
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most probable embedding value while the diagonal covariance ¥ can be interpreted
as the data uncertainty. The larger the variance is, the higher the uncertainty would
be. This module is well-suited for applications where query-document pairs contain
inherent noise or ambiguity, such as user-generated content, social media retrieval, or
medical document search. By learning the variance while keeping the mean fixed, it
helps mitigate the effects of uncertain or unreliable textual inputs in ranking models.

2) MEANVAR-based Module (MEANVARM ). The VAR-based module is limited in
that it adopts the deterministic representation as the embedded feature (mean) and
learns only the uncertainty. As a result, it is unclear how uncertainty affects feature
learning. In the MEANVAR-based Module, as shown in figure 3, the deterministic
representation is followed by two separate fully connected networks to predict both
the parameters of the Gaussian distribution, u(t) as well as diag(X(t)). Here we recall
that p(t) can be the identity feature of the query-document pair and diag(%(t)) would
refer to the uncertainty of the predicted u(t).

3) MEAN-based Module (MEANM ). In the MEAN-based variation, for each query-
document pair, the variance of the Gaussian is the embedding produced by the
pre-trained language model, diag(X(t)) = [CLS]. An extra branch is appended to the
pre-trained language model and trained to estimate the mean of pu(t). In MEANM,
the [CLS] token is treated as variance rather than mean. The motivation is that while
[CLS] may not always capture the central semantic content of a query—document pair,
its variability across training samples can still serve as a signal of uncertainty. This
allows the model to use [CLS] as an indicator of dispersion or noisiness in the represen-
tation rather than as the identity feature. This module is most effective in structured
information retrieval scenarios where query ambiguity is minimal. By focusing only
on the mean representation, it prioritizes efficient ranking and high retrieval precision
in cases where uncertainty is less of a concern.

Sampling the Latent Variable. When the data point [CLS] is fed as input to
the probabilistic module, the parameters of the conditional distribution are obtained;
hence, the distribution of latent space is determined corresponding to the data point
t. Now, in the latent space, we sample the corresponding latent variable from the
distribution of latent space:

z; ~ p(zilt) (4)

We adopt the re-parameterization trick [64] during training for easy backpropaga-

tion:
7 = u(t) + diag(y/S() - ¥ (5)
e ~ N(0,1) (6)

Therefore, we first sample noise from A (0, 1) and then obtain z following Equation
5 instead of directly sampling from A (1(t), X(¢)). The latent variable z; is fed as input
to the classifier which is explained in the following.

While z is a probabilistic variable, the sampling during inference is performed
from a well-defined distribution learned during training for each query-document pair.
Although sampling introduces some stochasticity, the distribution is centered around
the most likely embedding (the mean), and the variance typically reflects controlled
uncertainty. In practice, we use the mean of the distribution (i.e., the expected value
of z) to obtain stable and consistent ranking scores.
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3.2.2 The Ranker

The last component of the VarCrossEncoder plays the role of a decoder in such a way
that it consumes the probabilistic embeddings of the previous component to produce
the final output of the model and is therefore highly dependent on the downstream
task. A simple and straightforward formulation of the ranking task is to convert it
into a regression or classification problem and then sort the documents based on the
relevance scores or the probability that each document belongs to the relevant class,
respectively. In our work, we consider the decoder as a regression function that is
trained to map the probabilistic embeddings z for the given pair (@, D) into a real-
valued relevance score such that the most relevant documents to a given query are
scored higher to maximize a rank-based metric:
G = JRek(a) 7)
As shown in Figure 3, we add a fully connected layer with a linear activation
function to establish fFe*:

=[N e) =2 W (3)
The input and output of the decoder are z € R¥ and s € R, respectively and W € R¥
is a weight matrix. This component models the conditional distribution ¢(y|z) with
parameters of ¢ that are the weights of regression layers (W), in VarCrossEncoder.

3.3 Model Learning

To specifically optimize for the removal of irrelevant and redundant information from
the input representations, we adopt the Information Bottleneck (IB) principle [65].
Let (@, D,y) be a training sample where y is the binary relevance label for the query-
document pair (@, D). Given t as the concatenation of the query @ and document
D, the main objective of the supervised IB is to preserve the information about the
target class in the latent while filtering out irrelevant information from the input [66].
In other words, supervised IB aims to find a compressed representation z of the input
t such that the mutual information between ¢ and z is as low as possible (compression
loss) and preserves information about the output y as high as possible (prediction
loss), by minimizing:

L=p  Itz) - I(zy) 9)
—— ——

Compression Loss Prediction Loss

where 8 >= 0 regulates the trade-off between compression and prediction, and I(.,.)
denotes mutual information. Specifically, I(¢; z) quantifies the amount of information
retained by the latent representation z from ¢, which we aim to minimize to remove
redundancy. Conversely, I(z;y) represents the extent to which z captures useful infor-
mation for predicting y, which we seek to maximize. In the Information Bottleneck
(IB) framework, our goal is to learn a latent representation z that captures only the
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information in ¢ relevant for predicting the label y, while discarding noise and irrele-
vant details. This is achieved by minimizing I(¢; z), encouraging z to be a compressed,
lossy version of ¢, and by maximizing I(z;y), ensuring that z remains informative for
predicting y. The term I(¢;z) acts as a compression loss, penalizing representations
that retain unnecessary input information. Minimizing it helps prevent overfitting
and enhances generalization—particularly important in the presence of uncertainty,
which this work explicitly addresses. Alemi et al. [67] provide an efficient variational
approximation for Equation 9 as follows:

=0 _Er[ KLlps(zlt),r(2)]] + Eapyan[—109a,(yl2)] (10)

Compression Loss Prediction Loss

Here, r(z) is an estimate of the prior probability p(z) of z, and py(z|x) is an estimate of
the posterior probability of z. During training, the compressed sentence representation
z is sampled from the distribution py(z|z), meaning that a specific pattern of noise is
added to the input of the output classifier ¢, (y|z). Increasing this noise decreases the
information conveyed by z. In this way, the variational encoder module can block the
output classifier g, (y|z) from learning to use specific information. At test time, the
expected value of z is used for predicting labels with ¢, (y|z).

We consider parametric Gaussian distributions for prior r(z) and pg(z[t) to allow an
analytic computation for the Kullback-Leibler divergence, namely 7(z) = N (2|10, X0)
and pg(z|t) = N(z|u(t), X(t)), where u and py are K —dimensional mean vectors and
> and X, are diagonal covariance matrices. In other words, the first term in Equation
10 is a regularization term that explicitly constrains N (u(t),X(¢)) to be close to a
multivariate normal distribution, A/(0, 1):

ECompression = KL(p(Z|t)| Ir(z)) = E, [log(p(z\t)) - ZOQ(T(Z))] (11)
By considering the probability density function of multivariate normal distribution,
we have:

KLp(al0)]Ir(@) = B, [5tog 0k~ 50~ m(®) 506~ ult)) + 5 x ~ o) S (x o)
1 X0 1 Tw—1 1 Tg—

= SEullog g ] — SEx— W) 00— ()] + 5B l6x )55 x — o)

= Llog S{;h — B — ()5 (1) (x — u(8))] + 3Byl — 10) S5 (x — pao)]

(12)

Now, since (z — p(t)TS7 () (z — u(t)) € R, we can write it as tr{(z —
p@)TS7(#)(x — u(t))}, where tr{.} is the trace operator. Using the trace trick, we
can write it as tr{(z — u(t))(z — p(t))TS71(t)}. The expectation and trace can be
interchanged to obtain:

14



= LB ltr{(x— i(8))(x — (£) 7S (1)

= %t?"{]Ep[(X = pu(®))(x — p()" 7))} (13)

= %W{]Ep[(x —n()(x — p()"1=7 (1)}
We know E,[(z — u(t))(z — u(t))T] = B(t). Hence, simplifying it to:

Str{E0=7 ()

_ %tr{IK} (14)
K

2
We can now simplify the third term:

Ep[(x — po) 5" (x — po)] = (k(t) — po) "5 (1(t) — po) + tr{Zg'S(1)}  (15)

Combining all this, we obtain:

[Zog B0l g () — o) "S5 M (ut) — o) + tr{zalz@)}}

KL(p(z|t)||r(z)) = % 12(1)]
(16]

When r is N (0,1), we will have:

{Compression = KL(p(z|0)||r(2)) = 5 |n(5)" p(@) + tr{S(0)} - K — loglz(t)l} (17)

N |

The second term in Equation 10 measures how far the predicted labels of
VarCrossEncoder are from true labels. We adapt cross-entropy loss incorporated with
a Sigmoid function as follows:

Cprediction = — (ylog(q(y = 1|z)) + (1 —y)log(1 — q(y = 1|z))) (18)
where ¢(y = 1]z) demonstrates the predicted probability that D is relevant to Q.
Given § as the ranking score for pair (@, D), we use the Sigmoid function to calculate
the probability of ¢(y = 1|z) by substituting the value of the Sigmoid function ¢(s) in
place of ¢(y = 1|z) in the binary cross-entropy loss function:
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EPredzctwn -

1
l 1—y)log(l — ———
vog( =) + (1= wog(1 — 1 =)

)
— — (ulag0) = tog(1+ €5 4 (1= logl ) )
- (-

B 7§ 67§
ylog(1 )—ylog(lJr =) + log( eg))

- (-
=

= log(1+e %) +3(1—y)

ys+ —5—log(l+e g))

ylog(1 + e¢™%) — yloge™ + ylog(1 + e~%) + loge ™ —

log(1+ eig))

(19)

Note that Equation 10 can be approximated using Monte Carlo sampling [68] with

a sample size of N:

1

£ I |5 [ ue) + 10500} ~ K ~ logl(0)] - Hogl1+ ) 4 (1 = )]

N

(20)

£ I |5 (e ) + 10500} — K — logI (0] ~ Hogl1+ ) + (1 = )]

(21)

Algorithm 1 Training the VarCrossEncoder

1: Inputs: Dataset :{Q;, D;,y}¥

2: Outputs: Trained VarCrossEncoder py(z(t), g, (y|2)
3: fori=1to N do

4: t + concat(Q;, D;)

2 15 (1)

1 fH(2)

S fr(2)

€ < sample from N(0, 1)

2 p+ diag(vV/Y).€

10 8¢ fRank(z)

11: LCompression < % [/LT,M +r{Z} - K — log\EH

12: Cprediction < log(1 +e7%) +5(1 —y)

13: min ¢ « Ei]il[ﬁ'ECompression - EPrediction} w.r.t. 97 ¥ by SGD
14: end for
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Algorithm 1 summarizes the computational steps required to optimize Equation
10. To compute the compressed sentence representations py(z|t), as shown in Algo-
rithm 1, we first concatenate the input pair (Q, D) and the feed it fZ(t) through
a transformer based language model (Lines 4-5). It is then followed by fully con-
nected linear layers, each with K hidden units to compute u(t) and ¥(¢) (Lines
6-7). The re-parameterization trick is adapted to estimate the gradients, namely
z = p+ diag(v/'E).e, where ¢ ~ N(0,1) (Lines 8-9). We also use another fully con-
nected linear layer to approximate ¢, (y|z) (Line 10). Finally, the loss function used
for model training is computed based on Equation 10 (Lines 11-13).

3.4 Theoretical Properties

We now formalize several desirable theoretical properties of the VarCrossEncoder
model. These properties help explain the observed improvements in empirical perfor-
mance, particularly under ambiguous, noisy, or out-of-distribution conditions. Each
property is motivated by a principle of robust representation learning and then proved
based on the model’s probabilistic structure.

The first property concerns the stability of ranking scores under latent pertur-
bations. Intuitively, a desirable ranking system should produce stable and reliable
relevance scores even when the inputs are subject to minor ambiguities or variations.
In our model, each query-document pair is mapped to a multivariate Gaussian latent
distribution z ~ N (u(t),X(¢)), and the final relevance score is computed by applying
a linear decoder s = z " W. During inference, the expected value of this score is used:
E[s] = u(t)TW. Since the expected score depends solely on the mean of the latent
distribution, it is deterministic and unaffected by the stochasticity introduced during
training. Moreover, the score variance is given by Var[s] = W TX(t)W, allowing the
model to express its confidence in each prediction.

To formally justify this, recall that for a linear transformation of a Gaussian random
vector z ~ N (u, X), the scalar random variable s = 2T W is also Gaussian, with mean
and variance:

E[s] =W (22)

Var[s] = W'SW (23)

Since the expected score is used at test time, the ranking output is stable with
respect to the stochasticity of the latent space. The variance term Var[s] additionally
enables a direct measure of uncertainty in the predicted score, making this formulation
particularly valuable for retrieval under ambiguous or noisy conditions.

The second property addresses the robustness of the latent space induced by the
variational regularization term in the model’s training objective. VarCrossEncoder
employs the Information Bottleneck principle [67] by minimizing the Kullback-Leibler
(KL) divergence between the learned posterior p(z[t) = N (u(t), X(t)) and a fixed
isotropic prior 7(z) = N(0, I). The KL divergence has a closed-form expression given
by:

(Ie@)? + te(2(t) — K — log [S(¢)]) (24)

|~

Lk, =
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where K is the latent dimension. Each term in this expression serves to regularize the
latent encoding. The norm |[|u1(t)||? penalizes embeddings far from the origin, the trace
tr(X(t)) discourages overly diffuse representations, and the log-determinant log |X(¢)]
penalizes collapsed variances that may overfit to deterministic noise. Together, min-
imizing Lk1, prevents both overconfident and overly uncertain representations [69].
This leads to a form of norm control and scale normalization that is critical for
generalization, especially when test queries deviate from the training distribution.

To see why this regularization enhances robustness, consider the role of each term
in the loss landscape. A large norm ||u(t)|| leads to higher KL penalty, forcing embed-
dings to remain near the prior’s center unless strongly supported by data. Similarly,
if 3(t) becomes too large (i.e., high uncertainty across all dimensions), the trace term
increases the loss. On the other hand, if 3(¢) collapses to zero (i.e., fully deterministic
encoding), the log-determinant becomes negatively infinite. Thus, the KL loss creates a
saddle-like geometry where moderate, well-supported embeddings are favored, thereby
enhancing robustness across both in-distribution and out-of-distribution regimes.

The third property pertains to feature selectivity. In a high-dimensional latent
space, not all dimensions are equally informative or reliable. The model should
therefore learn to emphasize latent features that are confident and predictive, while
downweighting dimensions that are uncertain or noisy. In VarCrossEncoder, this arises
naturally from the structure of the latent distribution and the reparameterization trick
used during training.

Let X(t) = diag(o?,...,0%) be the diagonal covariance matrix of the latent
Gaussian for input ¢. Using the reparameterization trick, we write:

z=pt) +ZV2(t) e, e~N(0,]) (25)
Then the decoder score becomes:
s=z W =pt) W+ SV2R)W (26)

The second term, €' %1/2(t)W, represents the stochastic deviation in the score due
to latent uncertainty. Each dimension k contributes a noise term eporWj. During
training, if the noise induced by a particular dimension increases the prediction loss
(e.g., because it leads to inconsistent outputs), the model can respond in two ways:
either it reduces the uncertainty o? via backpropagation through the variance head,
or it reduces the decoder weight Wj. This leads to an emergent behavior where the
model selectively relies on confident and predictive dimensions, while suppressing or
ignoring those with high uncertainty [70].

The probabilistic structure and variational training of VarCrossEncoder ensure
three desirable theoretical properties. First, relevance scores are stable in expecta-
tion and expose their uncertainty through analytically tractable variance. Second,
KL-based regularization leads to bounded, normalized embeddings that generalize
robustly. Finally, the model naturally exhibits feature selectivity, relying more heav-
ily on informative dimensions while suppressing noisy ones. These properties are not
only mathematically grounded but also closely aligned with the empirical strengths
observed in our experiments.
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4 Experiments

We have structured our experiments in such a way to assess whether three char-
acteristics (C1-C3) that were introduced early in the paper have been satisfied in
our proposed approach or not. To this end, we address the following three research
questions:

RQ1. Would capturing uncertainty in the form of probabilistic embeddings as
proposed in VarCrossEncoder maintain the same degree of effectiveness within
in-distribution settings?

RQ2. Given the fact that deterministic embeddings often exhibit weaker performance
in out-of-distribution settings, would the proposed VarCrossEncoder approach show
any notable improvements for out-of-distribution queries?

RQ@3. To what extent can the proposed VarCrossEncoder improve the performance
of the state-of-the-art baseline or more specifically are any improvements over SOTA
baselines due to the more effective performance of VarCrossEncoder on more difficult
query subspaces?

In the following, we first introduced the datasets used for performing the experi-
ments, and the metrics for evaluating the results. Then, we describe the implementa-
tion details for VarCrossEncoder. Finally, we present the results of the experiments
and their analysis.

4.1 Dataset

We employ the well-known ranking dataset of MS MARCO! passage collection [71] for
training VarCrossEncoder. MS MARCO is comprised 8.8M passages extracted from
Web documents. The MS MARCO training set includes over half a million search
queries sampled from the Bing search engine logs and also consists of over 532k relevant
judgments where at least one relevant passage per query is marked by human assessors.
For evaluation purposes, we selected two groups of datasets. The first group consists
of the in-distribution queries and the other contains the out-of-distribution queries.

4.1.1 In-Distribution Datasets

To evaluate the proposed VarCrossEncoder within an in-distribution setting, we used
the MS MARCO Development set (Dev set, for short). It consists of 6,980 queries
and their relevant passage pairs. We also additionally used the TREC Deep Learning
Track 2019 [72], 2020 [73], and Deep Learning Hard (DL-Hard) [74] sets with 43, 54,
and 50 queries, respectively in our evaluations. In contrast to the MS MARCO Dev
set, which has around one relevant document per query, these three query sets provide
multiple relevant documents per document judged on a 4-level relevance scale. Queries
in Deep Learning tracks of 2021 [75] which have been annotated on MS MARCO V2
edition is another evaluation set with 53 topics. Summary statistics for the datasets
used in our experiments are shown in Table 1.

Yhttps://microsoft.github.io/msmarco
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Table 1 Statistics of the datasets used in our experiments.

Dataset Task Domain Relevancy #Queries #Qrel
Train MS MARCO Train set Passage Retrieval Misc. Binary 502,939 532,761
MS MARCO Dev set Passage Retrieval Misc. Binary 6,980 7437
TREC DL 2019 Passage Retrieval Misc. 4-level 47 9,260
In-Distribution TREC DL 2020 Passage Retrieval Misc. 4-level 54 11,386
TREC DL 2021 Passage Retrieval Misc. 4-level 53 10,8286
DL-Hard Passage Retrieval Misc. 4-level 50 4256
FiQA-2018 Question Answering Finance Binary 648 1,706
ELI5 Question Answering Reddit Binary 1,507 18,037
Out-of-Distribution COUGH FAQ Bio-Medical Binary 1,201 39,760
TREC-COVID Document retrieval  Bio-Medical 3-Level 50 66,336
Robust04 Document retrieval News 3-Level 250 311,410

4.1.2 Out-of-Distribution Datasets

For out-of-distribution datasets, we adopted collections that were not related to the
MS MARCO passage retrieval collection and hence could be considered separate and
hence out-of-distribution. The following five datasets were chosen for this purpose:

FiQA-2018 [76]: This dataset contains question-answer pairs in the financial
domain that were extracted from StackExchange posts discussing investment topics
between 2009 and 2017. It includes 57,640 answer posts and 648 questions for testing.
Each question is associated with an average of 2.6 posts with binary labels (relevant
or irrelevant), indicating whether a post is the answer to its corresponding question
or not.

ELI5 [77]: This is an English-language dataset of questions and answers gathered
from the Reddit forum “Explain Like I'm Five” (ELI5). We use the KILT [78] version
of the dataset which has 1,507 development examples. We employ all answers in the
collection to build a corpus with 3,270 answers. Also, for a given query, we consider
its corresponding answers as relevant and other answers in the corpus as irrelevant,
resulting in a set with 18,037 binary relevance judgments.

COUGH [79]: This is an FAQ English dataset constructed by scraping data from
55 websites (e.g., CDC and WHO) containing 1,201 user queries and 7,117 FAQs about
COVID-19. The relevance judgments set includes ~ 32 human-annotated FAQ items
per query with binary judgements.

TREC-COVID [80]: This is an ad-hoc search challenge for scientific articles
related to COVID-19 based on the CORD-19 dataset. It contains 50 queries and 171K
documents. The labels in TREC-COVID are 3-level (i.e. 0, 1, and 2) and there are
430.8 passages on average labeled as 1 or 2 in this version.

Robust04? is a dataset for news retrieval focusing on poorly performing topics. It
has 250 queries and around half a million documents. The labels are 3-level and there
are on average 69.9 passages labeled as relevant for each query.

The statistics of the out-of-distribution datasets are shown in Table 1.

Zhttps://trec.nist.gov/data/robust/04.guidelines.html
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4.2 Evaluation Metrics

To evaluate VarCrossEncoder, we employed the official metrics for each dataset,
namely MRR@10 for the Dev set and NDCG@10 for TREC DL 2019, 2020, and DL-
HARD. In addition to MRR@10 and NDCG@10, we evaluated our proposed approach
for out-of-distribution datasets using precision and average precision at cut-off 10.

4.3 Implementation Details

We used distilbert-base-uncased [81], as the pre-trained version of BERT, with 66
million parameters pre-trained on the Toronto Book Corpus and English Wikipedia.
We trained our model with a batch size of 32 for one epoch. A positive-to-negative
ratio was adopted in the experiments in such a way that for each positive sample
(label 1) four negative samples (label 0) were included. For the purpose of establishing
negative samples, we benefited from the triples that are provided by Microsoft. The
parameters of the model are optimized via AdamW with the learning rate of 2e — 5.

In order to assess to what extent the probabilistic embedding can affect the model,
we compared VarCrossEncoder against Cross Encoder with the same settings.

4.4 First-stage Retriever: BM25

Similar to MS MARCO and TREC DL sets, we used BM25 as the first-stage retriever
to identify a list of the top-1000 documents per query on the out-of-distribution
datasets. BM25 calculates a score for a query—document pair based on the statis-
tics of the words that overlap between them. In order to evaluate our proposed

VarCrossEncoder against Cross Encoder, we re-rank the top-1000 passages retrieved
by BM25.

4.5 Results and Findings

In order to address three research questions, we performed numerous experiments. In
the following, we will present the findings and provide an in-depth analysis.

4.5.1 Findings on Research Question 1 (RQ1)

As mentioned in Section 3, the probabilistic module of our proposed VarCrossEncoder
approach injects uncertainty through a Gaussian multivariate distribution into the
ranking by learning the probabilistic embeddings. In this first research question, we
study the impact of this probabilistic module on the performance of the ranking
task with particular attention to in-distribution datasets. To this end, we compared
the performance of VarCrossEncoder against Cross Encoder for each three types of
probabilistic modules separately. Table 2 shows the comparative results of the impact
of data uncertainty over the overall performance of VarCrossEncoder on the in-
distribution datasets in terms of their official metrics. The best performance for each
dataset is shown in bold.

Since the evaluation datasets are the same domain as the training sets, the
goal of these experiments is to investigate the robustness of VarCrossEncoder

3https://msmarco.zZZ.web.core.windows.net/msmarco1ranki1r1g/qidpidtriples.train.full.Q.tsv.gz
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Table 2 The performance of VarCrossEncoder on in-distribution datasets.

MS MARCO Dev set DL-Hard TREC DL 2019 TREC DL 2020 TREC DL 2021

MRR@10 NDCG@10 NDCG@10 NDCG@10 NDCG@10
Cross Encoder 0.356 0.386 0.698 0.678 0.602
VarCrossEncoder
-VARM 0.358 0.403 0.699 0.69 0.606
-MEANVARM 0.355 0.391 0.712 0.682 0.587
-MEANM 0.345 0.363 0.687 0.686 0.571

in terms of the second characteristic (C2). As shown in Table 2, our proposed
VarCrossEncoder always shows better performance compared to the Cross Encoder
with deterministic embeddings. In particular, we point out that on the DL-Hard
dataset, VarCrossEncoder with the VAR-based module outperforms the baseline by
4.4% in terms of NDCG@10. Also, it is possible to see an improvement of 2.0% on
NDCG@10 over TREC DL 2019 when the MEANVAR-based module is applied in
VarCrossEncoder compared to the baseline.

An important observation that can be made based on the results in Table 2 is that
VarCrossEncoder with the VAR-based module improves the baseline consistently over
all in-distribution datasets while there is no consistent behavior for the two other types
of probabilistic modules. For example, VarCrossEncoder with the MEAN-based mod-
ule outperforms the baseline over only TREC DL 2020. Similarly, VarCrossEncoder
with the MEANVAR-based module shows no performance improvement on either the
MS MARCO Dev set or TREC DL 2021. These observations can be explained by the
fact that the mean of the distribution estimates the most likely feature values while the
variance shows the uncertainty in the feature values. So, to capture data uncertainty,
it is important to learn variance that it minimizes the cross-entropy loss function.

To further investigate the effectiveness of VarCrossEncoder in ranking tasks, we
analyzed its ability to distinguish relevant documents from irrelevant ones based on
their predicted scores. For each query, we calculated the average predicted score of the
relevant documents and compared it against the average score of the irrelevant doc-
uments. Since relevant documents are expected to be more semantically aligned with
the query, we anticipated their scores to be consistently higher. Accordingly, we plot-
ted the average scores of relevant and irrelevant documents across all in-distribution
evaluation sets (excluding MS MARCO Dev) for the three probabilistic modules:
VARM, MEANVARM, and MEANM. As illustrated in Figure 4, the green bars denote
the average scores of relevant documents, while the red bars denote those of irrele-
vant documents. The results show that, across queries, the average scores of relevant
documents are consistently higher than those of irrelevant ones in all evaluation sets
and across all three modules, confirming that VarCrossEncoder effectively separates
relevant from non-relevant items and thereby demonstrates strong regression ability
in ranking. It is worth noting that, since no judgments for irrelevant documents are
provided in MS MARCO Dev, the average score of irrelevant documents is set to zero,
and no corresponding bars are plotted.

In summary and in response to RQ1, we find that moving from deterministic
embeddings to our proposed probabilistic embeddings not only does not negatively
impact the performance of the ranker on in-distribution data, but can also lead
to increased performance if the VAR-based module is adopted for the probabilistic
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Fig. 4 Average predicted scores of relevant and irrelevant documents for each query using the
proposed VarCrossEncoder with the VAR-based module (left), the MEANVAR-based module (middle),
the MEAN-based module (right) across all in-domain evaluation sets. Green bars indicate relevant
documents, and red bars indicate irrelevant documents. The differences observed between relevant
and irrelevant document scores are statistically significant.

module. This is an important observation since one would expect that a determin-
istic embedding could learn in-distribution representations more accurately without
requiring much flexibility afforded by capturing uncertainty. However, based on our
observations, even within in-distribution datasets, capturing uncertainty can both
maintain and increase the performance of the ranker.

4.5.2 Findings on Research Question 2 (RQ2)

Deep neural networks have shown impressive success in document ranking based on
the fact that the training and testing domains follow an independent and identical dis-
tribution. The inevitable performance drop of deep neural ranking models can often
be observed when tested in the out-of-distribution domains. Common neural ranking
methods often neglect the representation discrepancy caused by out-of-distribution
data during testing, as they only consider embeddings as deterministic values. We
believe that the neural ranking model’s ability is enhanced by incorporating the uncer-
tainty of domain shifts during training. Specifically, we hypothesize that the embedding
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Table 3 The performance of VarCrossEncoder and the baseline over the out-of-distributions
datasets (left). Percentage improvement on the ranking task (right). * denotes statistically
significant improvement over Cross Encoder at p < 0.05 based on a paired t-test across queries.

Domain Ranking models ~ NDCGQ@10 P@10 MRR@10 AP@10 | NDCGQ10A% PQ@10A% MRRQ10A% APQ10A%
Cross Encoder 0.277 0.075 0.35 0.212
VarCrossEncoder

FiQA-2018 -VarM 0.299* 0.08* 0.371*  0.234 8.07 5.93 6.14 10.62
-MeanVarM 0.294* 0.078 0.366*  0.229* 6.12 3.07 4.68 7.84
-MeanM 0.28 0.077 0.343 0.216 1.38 1.64 -1.87 2.16
Cross Encoder 0.215 0.146 0.421 0.097
VarCrossEncoder

ELI5 -VarM 0.229*  0.155* 0.443*  0.106* 6.71 6.2 5.26 9
-MeanVarM 0.231* 0.156* 0.442*  0.107* 7.46 7.11 4.99 10.39
-MeanM 0.219 0.148 0.423  0.101* 1.81 1.87 0.49 3.41
Cross Encoder 0.177 0.104 0.311 0.102
VarCrossEncoder

COUGH -VarM 0.199*  0.117* 0.35*  0.116* 12.65 12.75 12.32 13.59
-MeanVarM 0.202* 0.119* 0.352*  0.117* 14.15 14.62 13.03 14.88
-MeanM 0.185*  0.109* 0.316  0.108* 4.56 4.35 1.51 5.83
Cross Encoder 0.514 0.6 0.719 0.011
VarCrossEncoder

TREC-COVID  -VarM 0.539 0.614 0.799  0.012 4.74 2.33 11.08 6.87
-MeanVarM 0.534 0.592 0.771 0.011 3.91 -1.33 7.14 4.15
-MeanM 0.516 0.584 0.765 0.011 0.29 -2.67 6.36 4.43
Cross Encoder 0.42 0.402 0.655 0.096
VarCrossEncoder

Robust04 -VarM 0.443*  0.425* 0.668  0.105* 5.62 5.79 2.09 8.76
-MeanVarM 0.455*  0.432* 0.69* 0.106™ 8.34 7.39 5.44 9.76
-MeanM 0.45*  0.441 0.665  0.105* 7.21 9.79 1.51 9.37

distribution follows a multivariate Gaussian distribution after accounting for poten-
tial uncertainties. Therefore, each embedding is now a probabilistic point with various
distribution possibilities, rather than a deterministic value. The second research ques-
tion (RQ2) aims to explore whether the neural ranking models can be trained with
uncertain representations to mitigate the effects of domain variations and improve
resilience against out-of-distribution data. To address this research question, we adopt
two complementary perspectives. First, we evaluate VarCrossEncoder, trained on the
MS MARCO dataset, across multiple datasets that differ in domain from MS MARCO
in order to assess its effectiveness in out-of-distribution scenarios. Second, we exam-
ine the robustness of VarCrossEncoder under conditions of noise injection in queries
drawn from these out-of-domain datasets.

Generalization of VarCrossEncoder Beyond the Training Domain. To
answer RQ2 from the perspective of generalization, we evaluate our proposed
VarCrossEncoder approach, trained on the MS MARCO set, over five datasets that
are different in domain compared to the MS MARCO set. Table 3 shows the per-
formance of VarCrossEncoder and the base Cross Encoder in terms of NDCG,
Precision, Mean Reciprocal Rank, and Average Precision at cut-off 10 when trained
on the MS MARCO train set and tested over out-of-distribution sets of FiQA-2018
[76], EII5 [77], COUGH [79], TREC-COVID [80], and Robust04. Also, Table 3 shows
the improvement percentage in the ranking task in terms of four evaluation metrics.
The best performance for each dataset is shown in bold.

This second research question explores the robustness of VarCrossEncoder
in terms of the first characteristic C1. As observed in Table 3, the proposed
VarCrossEncoder approach has effectively improved the performance of the base-
line over the out-of-distribution datasets. We make several observations based on the
results in Table 3. In terms of performance, VarCrossEncoder with the MEAN-based
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module has the least improvements over the datasets in terms of four evaluation met-
rics, while the VarCrossEncoder with both VAR and MEANVAR probabilistic modules
exhibit higher improvements. This observation is consistent with observations made
in RQ1 such that the ranking performance is more considerable when the uncertainty
is learned by the parameter of the variance (Var and MeanVar) instead of fixing
it (Mean). The most significant degree of improvement is observed in the COUGH
dataset (14.14% on NDCG@10) when both parameters of the Gaussian distribution
(mean and variance) are learned simultaneously. The VarCrossEncoder approach with
VARVar-based module shows the most impact at 8.07% and 4.74% on two datasets,
namely FiQA-2018 and TREC-COVID, respectively in terms of NDCG@10 while for
both ELI5 and Robust04, the highest improvement is observed when the MEANVAR
module is adopted.

We observe that the improvements of VarCrossEncoder on out-of-distribution
datasets vary by domain. Larger gains are seen in datasets such as COUGH and ELI5,
where queries are short, ambiguous, or phrased in diverse ways, resulting in high levels
of data uncertainty. In these cases, probabilistic embeddings capture the variability
in query—document interactions more effectively than deterministic models. Notably,
the MeanVar module, which models both the mean and variance of interactions, out-
performs modules that focus on only one aspect. By contrast, in more structured or
technical datasets such as TREC-COVID, where terminology is precise and query
intent is clearer, improvements are smaller but still consistent. Here, the Var module,
which focuses solely on modeling variance, performs better than modules that model
both mean and variance simultaneously. Overall, VarCrossEncoder provides consis-
tent improvements across all evaluated datasets, with particularly strong benefits in
domains characterized by noisy or underspecified queries. This suggests that uncer-
tainty modeling is especially effective in such high-uncertainty domains, while also
maintaining robustness in datasets with more structured or specialized vocabulary.

For the out-of-distribution evaluation sets, we conducted the same statistical anal-
ysis by computing, for each query, the average predicted score of relevant documents
and comparing it with the average score of irrelevant documents. Figure 5 shows
these averages for three datasets of COUGH, TREC-COVID, and Robust04 across
the three probabilistic modules: VARM, MEANVARM, and MEANM. The results
demonstrate that, across queries, relevant documents consistently receive higher scores
than irrelevant ones for all datasets and across all three modules, confirming that
VarCrossEncoder effectively separates relevant from irrelevant items and exhibits
strong regression ability in ranking. It is worth noting that this analysis could not be
performed for the ELI5 and FiQA-2018 datasets, due to the same limitation encoun-
tered with MS MARCO Dev, namely, the absence of explicit judgments for irrelevant
documents.

In summary and in response to RQ2, we find that capturing uncertainty in the
neural ranker will lead to notable improvements on out-of-distribution datasets. This
means that the model is able to generalize more effectively to domains that it has
not necessarily seen in the past during the testing phase when uncertainty has been
captured explicitly in the training phase.
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Fig. 5 Average predicted scores of relevant and irrelevant documents for each query using the
proposed VarCrossEncoder with (a) the VAR-based module, (b) the MEANVAR-based module, (c)
the MEAN-based module across all out-of-distribution evaluation sets. Green bars indicate relevant
documents, and red bars indicate irrelevant documents. The differences observed between relevant
and irrelevant document scores are statistically significant.

Robustness of VarCrossEncoder Under Noisy Query Conditions. Neural
ranking model of VarCrossEncoder is designed to capture uncertainty when esti-
mating document relevance for a given query. Capturing such uncertainty enhances
robustness, which is particularly critical in real-world information retrieval systems
where users’ information needs evolve over time and corpus distributions shift, and
noise frequently arises in queries and documents.

In practice, the effectiveness of ranking models can be significantly compromised
by noise, which arises naturally in user queries and documents. For example, spelling
errors, synonym mismatches, and incomplete queries frequently occur in real search
environments. Previous work has shown that neural ranking models are especially
sensitive to such perturbations [82]. To develop models that are more stabile in noisy
conditions, it is essential to systematically evaluate the effects of different noise types
on ranking performance.

To this end, we examine the robustness of VarCrossEncoder in comparison with
Cross Encoder under six forms of word-level noise. These include: (1) spelling errors
(SP), where a query word is substituted with a common misspelling from a predefined
dictionary; (2) wordEmb-insert (WEI), which inserts additional words selected via
similarity in word embeddings [83]; (3) wordEmb-substitute (WES), which replaces a
query word with one of its closest neighbors in the word embedding space; (4) synonym
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Table 4 Performance of Cross Encoder and VarCrossEncoder under different noise types across
out-of-domain sets.

Cross Encoder VarCrossEncoder
RD RS SE SR WEI WES | RD RS SE SR WEI WES
FiQA-2018 0.165 0.27 0.138 0.168 0.146 0.73 | 0.182 0.283 0.173 0.19 0.179 0.92
ELI5 0.156 0.203 0.123 0.143 0.101 0.066 | 0.168 0.219 0.144 0.162 0.123 0.088
COUGH 0.125 0.172 0.089 0.109 0.081 0.051 | 0.156 0.198 0.122 0.138 0.111 0.078
TREC-COVID 0.387 0.509 0.446 0.429 0.419 0.303 | 0.434 0.52 0.444 0.481 0.456 0.36
Robust04 0.194 0.401 0.262 0.321 0.351 0.206 | 0.222 0.443 0.297 0.359 0.4  0.238

replacement (SR), where a word is substituted using WordNet synonyms; (5) random-
swap (RS), which exchanges the positions of two randomly chosen words; and (6)
random-delete (RD), which removes a randomly selected word from the query. Noise
is quantified at the word level, and in all experiments, the level of noise was set to
one, meaning a single word was modified per query.

The chosen noise types were implemented using the NLPaug library [84], a widely
used open-source augmentation toolkit that offers flexible and reproducible meth-
ods for introducing perturbations in textual data. This ensured consistency across
experiments and seamless integration into our evaluation pipeline.

Our evaluation involved injecting one of the six noise types into queries and ranking
documents using both models of VarCrossEncoder and the baseline of Cross Encoder.
Models’ performance was assessed using NDCG@10 across all out-of-domain datasets,
as reported in Table 4. It is important to note that the results for VarCrossEncoder
were obtained using the MeanVarM module.

Two main conclusions can be drawn from the findings. First, the performance of
both models degrades consistently across all datasets when noise is introduced, com-
pared to their noise-free counterparts (based on Table 3). This observation confirms the
sensitivity of neural ranking models to query perturbations. Second, VarCrossEncoder
demonstrates consistently higher performance than the Cross Encoder across nearly
all evaluation sets and noise types. The only exception occurs on the TREC-
COVID dataset under spelling noise, where the Cross Encoder marginally outperforms
VarCrossEncoder. Overall, the results indicate that VarCrossEncoder is more robust
to noisy input, validating the effectiveness of incorporating uncertainty modeling into
the ranking process.

4.5.3 Findings on Research Question 3 (RQ3)

In this research question, we are interested in comparing the performance of
VarCrossEncoder against the state-of-the-art baselines to understand how our pro-
posed approach for capturing uncertainty compares against existing work in the
literature. For this purpose, we consider two groups of baselines: (i) ranking mod-
els based on probabilistic embeddings, and (ii) neural ranking models with multiple
vector representations.

Ranking Models based on Probabilistic Embeddings: the most relevant
state-of-the-art baseline to our work for capturing uncertainty in ranking models is the
Multivariate Representation Learning (MRL) model [23] that learns separate prob-
abilistic representations for queries and documents, using negative multivariate KL
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Table 5 Comparative performance of the baselines with VarCrossEncoder.

MRL EASE-DR PCME VarCrossEncoder
Domain NDCG@10 P@10 MRR@I0 AP@I10 | NDCG@10 P@10 MRR@10 AP@I10 [ NDCG@10 P@l0 MRR@10 AP@10 [ NDCGG1l0 P@10 MRRA10 AP@l0
FiQA-2018 0.081 0.029 0.092 0.051 0.012 0.005 0.016 0.007 0.003 0.002 0.003 0.001 0.294 0.078 0.366 0.229
ELI5 0.143 0.108 0.276 0.056 0.024 0.02 0.056 0.007 0.006 0.004 0.017 0.002 0.231 0.156 0.442 0.107
COUGH 0.096 0.065 0.178 0.048 0.021 0.015 0.043 0.009 0.005 0.004 0.007 0.186 0.202 0.119 0.352 0.117
TREC-COVID 0.448 0.538 0.617 0.011 0.208 0.232 0.438 0.003 0.165 0.186 0.368 0.002 0.534 0.592 0.771 0.0114
Robust04 0.254 0.286 0.371 0.035 0.079 0.078 0.175 0.013 0.048 0.047 0.116 0.008 0.455 0.432 0.69 0.106

Table 6 GPU memory usage and inference time comparison between VarCrossEncoder and
baseline models (evaluated on an RTX 6000 Ada GPU).

MRL EASE-DR PCMR VarCrossEncoder
Memory gpu (MiB) 41617 57464 22355 6707
Inference time (Second) 0.101 5.94 0.006 0.767

divergence for similarity estimation. In contrast, our VarCrossEncoder employs a cross-
encoding framework that models uncertainty at the interaction level between queries
and documents, allowing for directly capturing uncertainty in query-document rele-
vance estimation, rather than at the individual embedding level. EASE-DR [85] is
another baseline that samples the latent space distribution of a variational autoen-
coder to generate isotropic sentence embeddings. It then applies supervised contrastive
learning to enhance the uniformity of these embeddings in the representation space.
As an additioanl baseline, we employed PCME [30], which models samples from paired
data as probabilistic distributions within a shared embedding space. However, instead
of image-caption pairs, we used query-document pairs. Table 5 shows the perfor-
mance of VarCrossEncoder and the baselines over out-of-distribution datasets. For
ease of comparison, we have compared our best-performing variation MEANVARM
against the baselines; however, comparison against other variations of our work can
easily be done according to performance values reported in Table 3. As shown in
Table 5, for all datasets, the baselines show a consistently weaker performance in
terms of all evaluation metrics compared to our method. In other words, our proposed
VarCrossEncoder shows consistently better performance over the baselines on out-
of-distribution datasets pointing to the fact that it has been able to generalize more
effectively by explicitly capturing uncertainty in its training process. It is worth noting
that while PCME also employs probabilistic embeddings, it was originally designed for
cross-modal retrieval tasks such as image—text matching. As a result, it models queries
and documents as independent distributions and measures similarity at the distribu-
tion level, without capturing fine-grained token-level interactions. This architectural
mismatch limits its effectiveness for text-only retrieval, explaining the substantial per-
formance gap we observe compared to VarCrossEncoder, which directly models joint
probabilistic embeddings of query—document pairs.

We conducted additional experiments to evaluate the efficiency of
VarCrossEncoder in terms of GPU memory consumption (MiB) and inference time
(seconds), comparing it against representative baselines, namely MRL, EASE-DR,
and PCMR. The results are summarized in Table 6. As shown, VarCrossEncoder
requires substantially less GPU memory than the baselines while maintaining
competitive inference efficiency.
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Table 7 Comparative performance of the colBERTv2 [51] with VarCrossEncoder.

colBERTv2 VarCrossEncoder
NDCG@10 P@l10 MRR@10 APQ@10 | NDCGQ@Q10 P@10 MRR@10 APQI10
FiQA-2018 0.324 0.087 0.398 0.257 0.294 0.078 0.366 0.229
ELI5 0.274 0.187 0.499 0.132 0.231 0.156 0.442 0.107
COUGH 0.244 0.147 0.418 0.142 0.202 0.119 0.352 0.117
TREC-COVID 0.51 0.57 0.735 0.11 0.534 0.592 0.771 0.114
Robust04 0.428 0.408 0.656 0.095 0.455 0.432 0.69 0.106

It is important to consider that ranking methods must not only be effective
but also fast in practice. We therefore analyze the inference time results as fol-
lows: (1) MRL achieves substantially lower inference latency—approximately 7x
faster than VarCrossEncoder. This difference arises because VarCrossEncoder, being
a cross-encoder architecture, jointly encodes query—document pairs at runtime. In
contrast, MRL only computes the query representation online and then applies a Kull-
back—Leibler divergence operation against pre-computed document representations,
making inference considerably faster. (2) Compared to EASE-DR, VarCrossEncoder
is at least 8 faster, highlighting its advantage over other probabilistic baselines where
high latency may hinder real-world deployment. (3) Although PCMR achieves the
lowest inference time, this comes at the expense of substantially higher memory usage
and extremely long training time.

Overall, these results indicate that VarCrossEncoder strikes a more practi-
cal balance between efficiency and retrieval effectiveness than existing probabilistic
baselines.

It is important to note that VarCrossEncoder, similar to other cross-encoder archi-
tectures, is designed for use in a re-ranking setting and thus inherits the scalability
limitations inherent to this family of models. Although the probabilistic module intro-
duces only negligible computational overhead relative to a standard cross-encoder,
the model is not intended to directly score entire corpora. Instead, it operates on a
candidate set retrieved by a first-stage retriever (e.g., the top-100 or top-1000 docu-
ments returned by BM25 or a dense dual-encoder), within which VarCrossEncoder
can effectively capture uncertainty and enhance ranking robustness.

Neural Ranking Models with Multiple Vector Representations: we
include ColBERTVv2 [51] as a representative multi-vector baseline because it is widely
adopted and achieves strong performance in recent retrieval literature. ColBERTv2
encodes queries and documents into multiple contextualized vectors, which enables
fine-grained lexical and semantic matching at the retrieval stage. It is therefore best
understood as a high-capacity retriever. Our proposed VarCrossEncoder, in contrast,
functions as a re-ranker that refines the candidate set returned by a first-stage retriever
such as BM25. While the two approaches are not directly comparable, the contrast
is instructive and points to possible synergies if combined within a hybrid pipeline.
Table 7 reports results for both approaches. VarCrossEncoder achieves competitive
performance, surpassing ColBERTv2 on TREC-COVID and Robust04 while trailing
slightly on FiQA-2018, ELI5, and COUGH. These findings highlight the potential of
uncertainty-aware re-ranking under distributional shift and position VarCrossEncoder
as a complementary method to strong retrievers such as ColBERTv2.
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Table 8 The performance of VarCrossEncoder and the baselines over the low-performance queries.

Domain Cross Encoder VarCrossEncoder MRL EASE-DR PCME
MS MARCO Dev set 0.019 0.03 0.003 0.005 0.0004

DL-Hard 0.055 0.082 0.011 0.012 0.004

In-domain TREC DL 2019 0.253 0.257 0.065 0.029 0.007
TREC DL 2020 0.261 0.27 0.084 0.052 0.007

TREC DL 2021 0.208 0.216 0.063 0.036 0.02

FiQA-2018 0.003 0.019 0.013 0.003 0.001

ELI5 0.015 0.025 0.032 0.008 0.002
Out-of-domain  COUGH 0.002 0.018 0.024 0.005 0.002
TREC-COVID 0.149 0.183 0.156 0.068 0.053

Robust04 0.078 0.095 0.068 0.02 0.021

The comparison results are reported in Table 7 for out-of-domain datasets. We
observe that VarCrossEncoder achieves competitive performance, outperforming Col-
BERTV2 on several datasets (e.g., TREC-COVID and Robust04), while remaining
slightly behind on others (e.g., FiQA-2018, ELI5, and COUGH). These findings sug-
gest that the proposed model provides a promising alternative for uncertainty-aware
re-ranking, particularly in domains with distributional shifts.

5 Impact on Hard Queries

Zhang et al. [86] have argued that ideal ranking models are expected to be not only
effective in terms of high mean retrieval performance over all queries (e.g., mean aver-
age precision (MAP)) but also stable in terms of low variance of retrieval performance
across different queries. In the same direction, Wu et al. [87] introduced the concept of
performance variance as a characteristic of robust ranking models (C3) and analyzed
it by emphasizing the poorly performing queries. Therefore, in this section, we focus
on poorly performing queries (also referred to as Hard queries) to study the robust-
ness of VarCrossEncoder. For this purpose, We first introduce the evaluation metric
for identifying poorly performing queries and then report our findings.

Voorhees [88] introduced the %mno measure as the percentage of queries that are
not able to retrieve any relevant documents in their top ten retrieved documents. The
ranking model would be more robust with a lower %no value. Bigdeli et al. [89] defined
the lowest-performing queries as the most difficult queries for a ranker to be those that
fall in the lower half of retrieval effectiveness compared to other queries. We evaluate
the robustness of VarCrossEncoder in terms of the poorly performing queries using
the strategy proposed in [89].

Following [89], to identify poorly performing queries, we rank queries based on their
performance values that are achieved by the baseline Cross Encoder and choose the
bottom 50% of queries to constitute Hard queries. Table 8 shows the performance of
state-of-the-art baseline MRL as well as the performance of our proposed model for all
evaluation datasets. It is worth mentioning that the performance scores of all datasets
are measured based on NDCGQ@10 except the Dev set which is based on the official
metrics of MRR@10. The highest performance is shown in bold for each evaluation set.

As shown in Table 8, the performance of our proposed approach is higher than
MRL in all datasets except ELI5 and COUGH, which means that VarCrossEncoder
has been able to address a larger subset of the poorly performing queries compared to
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the baselines. This shows that when the representations of the query-document pairs
are mapped into the latent probabilistic space, a noticeable number of low-performing
queries are then effectively, or at least partially, addressed by VarCrossEncoder.

6 Discussion

The primary objective of the discussion section is to conduct an in-depth examination
of the factors that influence the effectiveness of VarCrossEncoder. In particular, we
focus on two critical aspects: (1) the role of the Information Bottleneck’s 5 param-
eter, which governs the trade-off between preserving task-relevant information and
enforcing compression in the learned representations; and (2) the impact of different
pre-trained language models used as the backbone encoders. By systematically analyz-
ing these dimensions, we aim to provide insights into how hyperparameter choices and
architectural variations affect both the efficiency and the overall retrieval performance
of the proposed model.

Impact of the Information Bottleneck’s 5 Parameter: Based on equation
9, the Information Bottleneck parameter, denoted as 3, controls the trade-off between
compression and prediction in probabilistic representation learning. Its value directly
influences the performance of VarCrossEncoder by determining the extent to which
irrelevant information is suppressed during encoding. To evaluate the sensitivity of the
model to the 5 parameter, we first outline the strategy adopted for its selection. We
employed a cross-set validation approach, whereby 5 was tuned on a dataset distinct
from the one used for evaluation. This strategy reduces the risk of overfitting the
hyperparameter to a specific benchmark and provides a more reliable estimate of the
model’s generalization ability. For example, when assessing performance on TREC DL
2022, the parameter was optimized using TREC DL 2021, and vice versa. Following
[67], we conducted experiments across multiple 3 values, ranging from 10~ to 107°.
For these experiments, we adopted MEANVARM as the probabilistic module within
the model.

The Figure 6 illustrates the performance trends of VarCrossEncoder across differ-
ent datasets as the information bottleneck’s 3 parameter varies from 1072 to 107°.
Several conclusions can be drawn from observing the results presented in the figure:
(1) Overall, the model demonstrates stable performance within a range of S values,
with noticeable variation depending on the evaluation set. (2) Most datasets, such as
TREC LD 2019, TREC LD 2020, and FiQA-2018, show stable performance across
the full range of 8 values, suggesting that VarCrossEncoder is not highly sensitive to
this hyperparameter. (3) Datasets like TREC LD 2021 and DL-hard benefit slightly
from B values around 1077 to 1076, where scores reach their highest levels. This indi-
cates that a moderate degree of compression may help filter out irrelevant information
without overly constraining the predictive capacity of the model. (4) At 107°, sev-
eral datasets, such as TREC DL 2020, TREC-COVID, and ELI5, exhibit a small but
consistent decline, implying that excessive emphasis on compression can negatively
impact retrieval effectiveness.

Impact of Pre-trained Language Models: The backbone encoder in our
framework is designed to provide deterministic point representations of input queries
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in terms of NDCG@10 (MRR@10 for Dev set).

and documents within the latent space by leveraging pre-trained language models.
To assess the influence of different pre-trained language models on the effectiveness
of the proposed model, we conduct a series of experiments where four alternative
encoders—DeBERTa [90], RoBERTa [91], ALBERT [92], and BERT [63]—are used
in place of DistilBERT [81]. We then evaluate the performance of VarCrossEncoder
across both in-domain and out-of-domain datasets.

The results, reported in Table 9, demonstrate that while DistilBERT achieves
competitive performance, larger pre-trained language models such as DeBERTa and
RoBERTa generally provide performance gains in several datasets, particularly in
FiQA-2018, ELI5, and Robust04. However, the performance trends also suggest that
the relative advantage of larger pre-trained language models is not uniform across all
evaluation sets, indicating that the choice of backbone encoder should be informed by
domain-specific requirements.
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Table 9 Comparison of VarCrossEncoder performance when using different pre-trained language
models as the backbone encoder across in-domain and out-of-domain datasets.

Domain DeBERTa RoBERTa ALBERT BERT DistiBERT

MS MARCO Dev set 0.367 0.351 0.368 0.364 0.358

DL-Hard 0.393 0.399 0.379 0.384 0.403

TREC DL 2019 0.716 0.673 0.716 0.708 0.699

In-domain TREC DL 2020 0.651 0.655 0.685 0.685 0.69
TREC DL 2021 0.633 0.584 0.602 0.613 0.606

FiQA-2018 0.381 0.327 0.327 0.332 0.299

ELI5 0.325 0.265 0.265 0.286 0.229
Out-of-domain  COUGH 0.248 0.232 0.232 0.141 0.199
TREC-COVID 0.567 0.548 0.548 0.436 0.539

Robust04 0.475 0.463 0.473 0.285 0.443

Table 10 The performance of the baseline (trained on lget) (left), VarCrossEncoder with the
VAR-based module (trained on !) (middle), and VarCrossEncoder with the VAR-based module when
trained with the synthetic loss function of £syninetic (right).

Cross Encoder VarCrossEncoder VarCrossEncoder ([ﬂ,numm)
Domain NDCG@10 P@10 MRR@10 AP@10 | NDCG@10 P@l10 MRR@I0 AP@Q@I10 | NDCGQI0 P@10 MRRQ@I0 APQI0
FiQA-2018 0.277  0.075 0.35 0.212 0.299  0.08 0.371 0.234 | 0.293 0.08 0.363 0.228
ELI5 0.215  0.146 0.421 0.097 0.229  0.155 0.443 0.106 | 0.226 0.152  0.434 0.104
COUGH 0.177  0.104 0.311 0.102 0.199  0.117 0.35 0.116 | 0.181 0.105  0.322 0.104
TREC-COVID 0.514 0.6 0.719 0.011 0.539  0.614 0.799 0.012 | 0.534 0.6 0.791 0.012
Robust04 0.42  0.402 0.655 0.096 0.443  0.425 0.668 0.105 | 0.429 0.41 0.661 0.098

7 Ablation Study

Our proposed VarCrossEncoder approach uses the loss function defined in Equation
21 to learn the model parameters. Given that our proposed model can accommodate
different types of loss functions, the main goal of the ablation study is to investigate
the impact of different loss functions on the performance of VarCrossEncoder.

Equation 5 indicates that all identity embeddings p(t) are impacted by 3(¢) during
the training period. This will prompt the model to predict small ¥ for all samples in
order to suppress the unstable ingredients in § such that the loss can still converge
at the end. As such, given [CLS] as the original deterministic representation, we
can apply a deterministic score Sge; = Pget([CLS] - Waet) where Wyey and ¢ges(.) is
the same as W and fff’"mk(.)7 respectively. The adoption of 54¢; leads to introducing
a deterministic loss, as £4.; based on Equation 18 where o (540;) is used instead of
q(y = 1|[CLS]). Now, we can define a multi-objective loss function as follows:

Esynthetic =AY + (]- - )\) . édet (27)

where A is a trade-off hyper-parameter. Finally, we apply Lsynthetic as the total cost
function. We would like to identify whether the linear interpolation of the determinis-
tic loss £4¢; and probabilistic loss £ have complementary and synergistic behavior on
each other. Tables 10-12 show model performances on the ranking task for each prob-
abilistic module separately when the VarCrossEncoder is trained based on synthetic
loss Lsyninetic- In these experiments, the value of A is set to 0.5.

Given that the baseline and VarCrossEncoder are Cross Encoders that are
trained based on only the deterministic and probabilistic cost functions, respectively,

33



Table 11 The performance of the baseline (trained on lgc¢) (left), VarCrossEncoder with the
MEANVAR-based module (trained on !) (middle), and VarCrossEncoder with the MEANVAR-based
module when trained with the synthetic loss function of £synthetic (right).

Cross Encoder VarCrossEncoder VarCrossEncoder (Csynthetic)
Domain NDCG@10 P@10 MRR@10 AP@I10 | NDCG@10 P@10 MRR@10 AP@I10 | NDCG@10 P@10 MRR@10 AP@10
FiQA-2018 0.277  0.075 0.35 0.212 0.294  0.078 0.366 0.229 0.289  0.078 0.363 0.225
ELI5 0.215  0.146 0.421 0.097 0.231  0.156 0.442 0.107 0.224  0.153 0.43 0.102
COUGH 0.177  0.104 0.311 0.102 0.202  0.119 0.352 0.117 0.196  0.115 0.342 0.114
TREC-COVID 0.514 0.6 0.719 0.011 0.534  0.592 0.771 0.011 0.502  0.574 0.759 0.011
Robust04 0.42  0.402 0.655 0.096 0.455  0.432 0.69 0.106 0.44 0.42 0.681 0.101

Table 12 The performance of the baseline (trained on lgc¢) (left), VarCrossEncoder with the
MEAN-based module (trained on !) (middle), and VarCrossEncoder with the MEAN-based module
when trained with the synthetic loss function of £syntnetic (right).

Cross Encoder VarCrossEncoder VarCrossEncoder (/.’ay,,mm(.)
Domain NDCG@10 P@10 MRR@10 AP@10 | NDCG@10 P@10 MRR@10 AP@10 | NDCG@10 P@10 MRR@I0 APQ@I0
FiQA-2018 0.277  0.075 0.35 0.212 0.28  0.077 0.343 0.216 0.285  0.079 0.347 0.218
ELI5 0.215  0.146 0.421 0.097 0.219  0.148 0.423 0.101 0.227  0.155 0.431 0.104
COUGH 0.177  0.104 0.311 0.102 0.185  0.109 0.316 0.108 0.188  0.111 0.317 0.109
TREC-COVID 0.514 0.6 0.719 0.011 0.516  0.584 0.765 0.011 0.497 0.55 0.814 0.01
Robust04 042 0.402 0.655 0.096 0.45  0.441 0.665 0.105 0.434  0.419 0.645 0.101

in this scenario, we are interested to see whether the linear integration of both losses
in VarCrossEncoder is able to act as effectively as when the models are trained
separately based on each individual loss. As shown in Table 10, we observe that
VarCrossEncoder with the VAR-based module significantly outperforms the Cross
Encoder when trained based on synthetic loss over five out-of-domain datasets in terms
of all evaluation metrics, which shows the effectiveness of the synthetic loss £syninetic
over the deterministic loss ¢ for the ranking task. However, VarCrossEncoder with
synthetic loss shows poor performance against VarCrossEncoder with the probabilis-
tic loss when the VAR-based module is applied. We can make the same observation for
VarCrossEncoder with the MEANVAR-based module based on the results reported in
Table 11.

As reported in Table 12, adopting the MEAN-based module as the probabilistic
module, the performance of VarCrossEncoder with synthetic loss is better than its
peers with the probabilistic and deterministic loss in three out of five datasets of
FiQA-2018, ELI5, and COUGH. In TREC-COVID and Robust04, VarCrossEncoder
with only the probabilistic module would be able to provide better performance.

Finally, we have conducted experiments on the in-distribution datasets to inves-
tigate the impact of the synthetic loss Lsyntnetic on the ranking performance. The
performance of VarCrossEncoder is reported in Table 13 when trained based on the
synthetic loss £syninetic in terms of MRR@10 for the Dev set and NDCG@10 for other
evaluation sets for each probabilistic module separately. As shown in the table, we can
generally conclude that VarCrossEncoder are not able to improve the ranking perfor-
mance of the baseline when trained based on £gyn¢hetic (except over DL-Hars, TREC
DL 2020 and 2021 with VAR-based module and over TREC DL 2019 with MEAN-
VAR-based module). Also, VarCrossEncoder with Lsynthetic Shows poor performance
in comparison to VarCrossEncoder when trained based on only the probabilistic loss.

To further analyze and understand the importance of the synthetic loss, we have
performed additional experiments for different values of A and shown the performance
of VarCrossEncoder for each probabilistic module separately for all in-distribution
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Table 13 The performance of the baseline (trained on lge+) (left), VarCrossEncoder (trained on [)
(middle), and VarCrossEncoder when trained with the synthetic loss function of £syntnetic (right).

Cross Encoder VarCrossEncoder VarCrossEncoder (Zsymhem)

VARM  MEANVARM  MEANM | VARM MEANVARM MEANM
MS MARCO Dev set 0.356 0.358 0.355 0.345 0.354 0.351 0.337
DL-Hard 0.386 0.403 0.391 0.363 0.399 0.385 0.369
TREC DL 2019 0.698 0.699 0.712 0.687 0.689 0.7 0.692
TREC DL 2020 0.678 0.69 0.682 0.686 0.684 0.674 0.675
TREC DL 2021 0.602 0.606 0.587 0.571 0.605 0.601 0.579
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Fig. 7 The Performance of our Proposed VarCrossEncoder with (a) VAR-based module. (b) MEAN-
VAR-based module. (¢) MEAN-based module for different values of A in terms of NDCG@10 (MRR@10
for Dev set).

and out-of-distribution datasets in terms of NDCGQ@10 (MRR@10 for Dev set) in
Figure 7. In the in-distribution datasets, the highest performance is achieved for A of
1 and 0 when the VAR-based and MEAN-based modules are adapted in the model,
respectively. Regardless of which probabilistic module is used in the model, the per-
formance of VarCrossEncoder is higher when the value of A is set to 1, which points
to cases when the model is trained only based on the probabilistic loss, in three of the
five out-of-distribution datasets except Robust04 and TREC-COVID. Based on the
performance shown in this Figure, we can conclude that A\ values do not have much
meaningful impact on the model’s performance, especially over the FiQA 2018, ELI5,
and COUGH datasets.

In order to study the impact of the loss function on the model’s performance, we
introduce a new cost function in such a way that we first define a synthetic score,
given 5 and 54.; as follows:

—

Ssynthetic — A5+ (1 - >‘) ’ S/dz (28)
and then compute the loss based on Equation 21 in which ssmic is used. Tables

14-16 show the performance of VarCrossEncoder when the model’s parameters are
learned through the cost function that is based on the synthetic score ssy/mh\mc in
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Table 14 The performance of the baseline (trained based on gd/;) (left), VarCrossEncoder with
the VAR-based module (trained on §) (middle), and VarCrossEncoder with the VAR-based module
when trained with the synthetic score function of synthetic (right).

Cross Encoder VarCrossEncoder VarCrossEncoder (s )
Domain NDCG@10 P@10 MRR@10 AP@I0 | NDCG@10 P@10 MRR@10 APQ@I0 | NDCGQ@10 P@10 MRR@10 APQ@I0
FiQA-2018 0.277  0.075 0.35 0.212 0.299 0.08 0.371 0.234 0.285  0.079 0.354 0.221
ELI5 0.215  0.146 0.421 0.097 0.229  0.155 0.443 0.106 0.229  0.155 0.435 0.106
COUGH 0.177  0.104 0.311 0.102 0.199  0.117 0.35 0.116 0.196  0.115 0.341 0.114
TREC-COVID 0.514 0.6 0.719 0.011 0.539  0.614 0.799 0.012 0.507  0.586 0.742 0.011
Robust04 0.42  0.402 0.655 0.096 0.443  0.425 0.668 0.105 0.464  0.446 0.701 0.107

Table 15 The performance of the baseline (trained based on sget) (left), VarCrossEncoder with
the MEANVAR-based module (trained based on 3) (middle), and VarCrossEncoder with the
MEANVAR-based module when trained with the synthetic score function of sgynthetic (right).

Cross Encoder VarCrossEncoder VarCrossEncoder («“synrhcm)
Domain NDCG@10 P@10 MRR@10 AP@I10 | NDCG@10 P@10 MRR@10 AP@I0 | NDCG@10 P@10 MRRQ@10 AP@I10
FiQA-2018 0.277  0.075 0.35 0.212 0.294  0.078 0.366 0.229 0.291  0.079 0.361 0.225
ELI5 0.215  0.146 0.421 0.097 0.231  0.156 0.442 0.107 0.225  0.152 0.104
COUGH 0.177  0.104 0.311 0.102 0.202  0.119 0.352 0.117 0.191  0.111 0.111
TREC-COVID 0.514 0.6 0.719 0.011 0.534  0.592 0.771 0.011 0.5 0.568 0.01
Robust04 042 0.402 0.655 0.096 0.455  0.432 0.69 0.106 0.45 0.431 0.105

Table 16 The performance of the baseline (trained based on 54.¢) (left), VarCrossEncoder with
the Mean-based module (trained based on §) (middle), and VarCrossEncoder with the Mean-based
module when trained with the synthetic score of ssyﬁtic (right).

Cross Encoder VarCrossEncoder VarCrossEncoder (ssy,”h(,m)
Domain NDCG@10 P@10 MRR@10 AP@10 | NDCG@10 P@10 MRR@10 AP@10 | NDCG@10 P@10 MRR@I0 APQ@I0
FiQA-2018 0.277 0.075 0.35 0.212 0.28 0.077 0.343 0.216 0.273 0.074 0.337 0.211
ELI5 0.215 0.146 0.421 0.097 0.219 0.148 0.423 0.101 0.21 0.146 0.397 0.095
COUGH 0.177 0.104 0.311 0.102 0.185 0.109 0.316 0.108 0.183 0.108 0.316 0.105
TREC-COVID 0.514 0.6 0.719 0.011 0.516 0.584 0.765 0.011 0.48 0.534 0.732 0.009
Robust04 0.42 0.402 0.655 0.096 0.45 0.441 0.665 0.105 0.436 0.417 0.695 0.099

terms of NDCG@10 for each probabilistic module separately. The value of A is set to
0.5 in these experiments.

Based on the results reported in Tables 14-16, an important observation is that
adapting the synthetic score ssmic in the final loss function leads to no improve-
ments against settings where only the probabilistic score s is used in the loss regardless
of which types of probabilistic modules are applied in the model (except Robust04).
Also, the ranking performance of VarCrossEncoder with SS@ic over in-distribution
datasets is reported in Table 17 for all probabilistic models in terms of NDCG@10
(MRR@10 for Dev set). Based on the results, we can see that VarCrossEncoder with
VARM and MEANVARM outperforms the baseline when the synthetic score ssy/m;@ic
is used in the final loss function. Furthermore, In order to investigate the impact
of \ on SS@ic and also on the final performance, we depict the performance of
VarCrossEncoderin terms of NDCG@10 for each probabilistic module separately in
Figure 8. As shown in the Figure, the highest performance is when A is set to 1 for all
probabilistic modules, which means that VarCrossEncoder has the best performance
in ranking when the final score is computed based on only the probabilistic score.

8 Concluding Remarks

In this work, we have proposed VarCrossEncoder, a Probabilistic-Neural Ranking
Model, to estimate data uncertainty in the retrieval task. VarCrossEncoder relies on
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Table 17 The performance of the baseline (trained based on §gc¢) (left), VarCrossEncoder
(trained on 3) (middle), and VarCrossEncoder when trained with the synthetic score function of
Ssyﬁtic (Tlght)

Cross Encoder VarCrossEncoder VarCrossEncoder (Ssynthetic)
VarM MeanVarM MeanM | VarM MeanVarM MeanM
MS MARCO Dev set 0.356 0.358 0.355 0.345 | 0.357 0.354 0.307
DL-Hard 0.386 0.403 0.391 0.363 | 0.375 0.405 0.355
TREC DL 2019 0.698 0.699 0.712 0.687 | 0.716 0.705 0.674
TREC DL 2020 0.678 0.69 0.682 0.686 | 0.679 0.691 0.649
TREC DL 2021 0.602 0.606 0.587 0.571 | 0.614 0.585 0.547
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Fig. 8 The Performance of our Proposed VarCrossEncoder with (a) VAR-based module. (b) MEAN-
VAR-based module. (c) MEAN-based module for different values of A in terms of NDCG@10 (MRR@10
for Dev set).

learning the probabilistic embeddings for each sample of the query-document pair in
order to give a distributional estimation instead of a point estimation in the latent
space. We demonstrated that query-document uncertainty can be represented as a
Gaussian distribution by adding only the probabilistic module to the state-of-the-art
dense retriever of the Cross Encoder. Also, we have proposed three types of proba-
bilistic modules depending on which parameters of the Gaussian distribution (mean or
variance) are learned. Our proposed model has been evaluated by performing a series
of experiments over two groups of query sets, in-distribution and out-of-distribution
sets.

Our proposed model has been evaluated by performing a series of experiments over
two groups of query sets, in-distribution and out-of-distribution sets. The summary of
our key findings is as follows:

® The application of data uncertainty leads to improvement in the performance of
the ranking task. Depending on which parameters of the Gaussian distribution are
learned, the degree of improvement may be different. The ranking performance is
more considerable when uncertainty is learned using variance instead of fixing it.

® Given the Cross Encoder is a well-known dense retriever, VarCrossEncoder has
improved its performance consistently over all in-distribution datasets when it is
incorporated with data uncertainty.
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® Since the feature statistics of the unseen domain are often not consistent
with the training domain due to differing domain characteristics, our proposed
VarCrossEncoder approach has effectively improved the performance of the baseline
over the out-of-distribution datasets in terms of all evaluation metrics.

We would like to extend our work in the following directions:

® VarCrossEncoder considers uncertainty by modeling each query-document pair
embedding as a Gaussian distribution such that feature (mean) and uncertainty
(variance) are learned simultaneously. Other distributions (such as the Dirichlet
distribution as a common way to model a textual document) can be used to take
uncertainty into account. To this end, we would like to extend the work in this
paper further to an end-to-end model that is able to choose a proper distribution
for input samples, and hence we are interested in exploring its potential role under
a probabilistic ranking scenario.

® Uncertainty modeling by Gaussian distribution leads to mapping each input data
to an area instead of a point in the latent space, such that the parameters of mean
and variance demonstrate the center and spread of the area respectively while one
can define the spread of the area by a neighborhood radius.

® Given that there are some well-known neural ranking models such as PreTTR, and
CoCondenser, and given uncertainty is captured via the independent probabilistic
module in our proposed VarCrossEncoder, we are interested in studying whether
one can adapt this module in other such ranking models to consider uncertainty.
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