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LLM-as-a-Judge in Entity Retrieval: Assessing Explicit and
Implicit Relevance

Anonymous Author(s)

ABSTRACT
Entity retrieval plays a critical role in information access systems,
yet the development and evaluation of retrieval models remain
constrained by the limited availability of high-quality supervi-
sion. While recent work has demonstrated the utility of large
language models (LLMs) as relevance assessors in passage and
document retrieval, their reliability in the context of entity re-
trieval—where targets are abstract, underspecified, and often se-
mantically sparse—remains unexplored. In this work, we evaluate
LLM-based judgments against two complementary supervision sig-
nals: human-annotated relevance labels from the DBpedia-Entity
benchmark and implicit feedback from user clicks in the LaQuE
dataset. We show that LLMs exhibit strong agreement with expert
annotations and replicate user click patterns with over 91% agree-
ment, suggesting alignment with behavioral judgments despite
noisy input queries. We further identify and analyze systematic
mismatches for user clicks on irrelevant entities. Our findings es-
tablish LLMs not only as effective annotators for entity relevance
judgment—even when given only the entity title—but also as pow-
erful tools for predicting click-through behavior and simulating
explainable user intent. Our code, prompts, and data are publicly
available at: https://anonymous.4open.science/r/ClickLLM-E812

1 INTRODUCTION
Entity retrieval is central to modern information access, underpin-
ning web search, digital assistants, and academic platforms. Studies
show that a large portion of queries—over 70% on Bing and more
than half on Semantic Scholar—are entity-focused [7, 21, 35]. This
growing demand is supported by knowledge graphs like DBpe-
dia, Wikidata, and YAGO [15, 30, 34], which provide structured
representations of entities and serve as foundational resources for
both retrieval systems and language model training [24, 25]. De-
spite this importance, progress in entity retrieval is constrained
by the scarcity of high-quality evaluation benchmarks [5, 6, 9]. In
contrast to ad hoc passage retrieval, where datasets such as MS
MARCO have enabled the development of data-intensive neural
systems, entity retrieval suffers from a lack of diverse, large-scale,
and manually curated datasets [23].

Existing resources such as the DBpedia-Entity collections re-
main limited in scale and do not support robust training or reliable
fine-grained evaluation [16]. To address this gap, recent work has
turned to silver-standard resources such as LaQuE, which uses click-
through data from the ORCAS dataset to construct over 2 million
query-entity relevance pairs [2, 10]. Despite offering scale and be-
havioral diversity, these annotations are based on implicit feedback
from user clicks rather than expert judgments, limiting their reli-
ability [19, 20]. In this work, we investigate the potential of large
language models (LLMs) to serve as relevance assessors for entity
retrieval. While LLMs have demonstrated strong alignment with hu-
man judgments in document and passage retrieval [1, 12, 22, 31, 33],

their applicability to entity-centric tasks where targets are abstract,
structured, and often underspecified remains uncertain [29]. Our
study evaluates whether LLM-based judgments can complement
or reinforce both expert annotations and click-derived feedback.
Unlike prior work [14, 36],which focuses on improving LLM ef-
ficiency for long user behavior sequences in click through rate
prediction, our work investigates the use of LLMs for interpretable
relevance assessment and user behavior analysis in entity-centric
search, where user queries target real-world entities.

Our paper offers the following contributions: (1)Weprovide the
the first systematic analysis of LLM-based relevance judgments in
entity retrieval, comparing them against both expert labels (DBpedia-
Entity) and click-derived labels (LaQuE). (2) We examine the align-
ment between LLM judgments and user clicks, identifying where
the two agree and where they diverge, with a focus on understand-
ing whether LLMs can recover semantic relevance from behavioral
signals. (3) We introduce a novel analysis of click-relevance mis-
matches by isolating cases where users clicked on entities unani-
mously judged irrelevant. We generate plausible explanations for
these behaviors, revealing common patterns such as lexical confu-
sion and familiarity-driven exploration.

Our findings show that LLMs can produce relevance judgments
for entities, which align closely with both expert annotations and
user click behavior. On theDBpedia-Entity benchmark, LLMs achieve
agreement scores comparable to those reported for passage retrieval
tasks. In LaQuE dataset, LLMs correctly identify over 91% of rele-
vant clicked entities, demonstrating high alignment with implicit
user feedback. Notably, when user clicks diverge from LLM-based
relevance judgments, our analysis shows that these disagreements
are not random but follow consistent behavioral patterns. By sys-
tematically identifying and categorizing these patterns, LLMs are
able to do beyond relevance judgment by explaining why users
behave the way they do, offering insights into common sources of
noise or misunderstanding in click-based data during entity search.

2 OVERVIEW OF METHODOLOGY
This study is motivated by two objectives (1) evaluating whether
LLMs can function as high-quality relevance assessors for entity
retrieval, and (2) uncovering how their judgments relate to both
expert labels and behavioral signals derived from user clicks. Entity
retrieval presents distinct challenges compared to passage or docu-
ment retrieval: entities are often short, semantically abstract, and
tied to structured representations [35], while user queries seeking
entities are often underspecified and multifaceted [11, 28]. These
characteristics complicate both annotation and evaluation of rele-
vant entities for user queries. Traditional supervised resources for
this task are limited in scale and coverage, and behavioral data such
as clicks are abundant but noisy. Our approach aims to bridge this
gap by positioning LLMs as scalable, interpretable, and semantically
grounded judgment agents capable of operating in both high- and
low-supervision environments[8, 26, 27]. This aligns directly with
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Table 1: Example queries and relevance judgments from
DBpedia-Entity.

Query Entity Relevance Judgment

LLM Human

Einstein Relativity theory Theory of Relativity 2 2
Disney Orlando Greater Orlando 1 0
Austin Texas Texas 0 1
Guitar Classical Bach Johann Sebastian Bach 2 0

our core research questions concerning the alignment of LLM judg-
ments with expert annotations, their agreement with user behavior,
and their capacity to explain divergences between the two.

We adopt a three-stage evaluation framework. First, we as-
sess LLM relevance judgments against expert-labeled data from
DBpedia-Entity v2. We prompt two LLMs, Qwen and LLaMA, un-
der two input conditions: query + entity title and query +
entity title + abstract. These variations allow us to measure
the relative influence of surface cues and contextual grounding. Rel-
evance is evaluated in both binary and graded formats [3, 12, 33],
enabling comparisons across granularities. Agreement with human
labels is quantified using Cohen’s kappa, and confusion matrices
are analyzed to identify systematic judgment patterns. Second, we
evaluate LLM judgments against behavioral feedback from LaQuE,
a large-scale dataset derived from real-world user clicks [2]. As
LaQuE lacks negative labels, we treat clicked entities as implicitly
relevant and compute click-agreement under both input conditions.
This helps assess whether LLMs can recover semantic relevance
from implicit feedback. While this evaluation lacks the symmetry
of expert-labeled datasets, it offers scale and diversity due to the
data size. Third, to understand sources of disagreement between
LLMs and user click behavior, we isolate a filtered set of query-
entity pairs where users clicked on entities consistently judged as
irrelevant. We then use LLMs to generate plausible explanations
for these mismatches, hypothesizing why a user might click on an
entity despite its irrelevance. This provides diagnostic insight into
the epistemic and behavioral divergences between relevance and
observed user behavior.

3 EMPIRICAL SETUP
3.1 Datasets
We evaluate LLM-based relevance judgments using two benchmark
datasets for entity retrieval: DBpedia-Entity v2 [16] and LaQuE [2].
DBpedia-Entity v2 is one of the most widely used resources for
evaluating entity retrieval models. It contains 485 queries spanning
four types, namely entities, keyword queries, entity lists, and natu-
ral language questions. Each query is annotated with graded human
relevance labels on a 3-point scale.In total, the dataset includes over
50,000 query-entity relevance judgments. LaQuE, in contrast, is
a large-scale resource constructed from clickthrough logs in the
ORCAS dataset [10]. It consists of over twomillion real-user queries
paired with Wikipedia entities that users clicked on, enabling large-
scale training and evaluation in realistic settings. For this study,
we randomly sample 15,000 queries from LaQuE, yielding 16,218
query-entity pairs. Each pair corresponds to an entity clicked by
a user in response to the query. Unlike DBpedia, LaQuE provides
only positive click signals, i.e., it lacks explicit non-relevance la-
bels for unclicked entities. While DBpedia supports fine-grained

Table 2: Example queries from the LaQuE dataset with corre-
sponding clicked entities and LLM relevance judgments.

Query Clicked Entity LLM Judgment

Apple Mac Macintosh Relevant
Indian History in Hindi Hindi Not Relevant
CNN News Cast Members List of CNN Anchors Relevant
When Was Color Invented Color television Not Relevant

evaluation with full graded supervision, LaQuE allows us to assess
whether LLMs can approximate user behavior and identify relevant
entities from implicit feedback. Together, these datasets enable a
comprehensive examination of LLM-based judgments across both
explicitly annotated and behavior-driven relevance signals.

3.2 LLM-based relevance judgment
Our goal is to evaluate whether LLMs can act as reliable judges
across expert-labeled and behavior-derived signals and under vary-
ing levels of contextual input for entity search. We conduct exper-
iments using two LLMs: Qwen3:8b and LLaMA4:Scout. Both are
evaluated under two supervision settings (expert annotation and
click data) and two input conditions (query + entity title to explore
whether the model’s internal knowledge is sufficient to determine
relevance, and query + entity title + abstract to resolve any possi-
ble lexical ambiguity). This design allows us to assess the models’
ability to reason about entity relevance based on prior knowledge
alone, as well as with structured contextual support. Due to space
constraints, we report only results for Qwen in the main text; out-
comes for LLaMA, which follow similar trends, are available on our
GitHub repository. While prior work has commonly used the UM-
BRELLA prompt [31, 33] for eliciting graded relevance scores, we
found that it generalizes poorly to entity retrieval. Entities tend to
be short, lack lexical continuity, and depend more heavily on factual
grounding than topical elaboration. To address this, we adapt the
UMBRELLA framework by explicitly guiding the model through
three reasoning steps: (1) estimating the likely user intent behind
the query, (2) measuring factual or conceptual alignment between
the query and entity, and (3) producing a final judgment. This mod-
ified prompt is is made publicly available for replication on our
Github repository. For DBpedia-Entity, we evaluate model outputs
against human annotations using a three-grade scale (0 = irrelevant,
1 = relevant, 2 = highly relevant), reporting both graded and bina-
rized agreement metrics. For LaQuE, we treat clicked entities as
implicitly relevant and measure whether the LLMs assign relevance
labels consistent with user behavior. Representative examples from
each dataset are shown in Table 1 and Table 2.

4 FINDINGS
4.1 Agreement with Human Annotation
Our goal in this analysis is to evaluate how closely LLM-based
relevance judgments align with expert human annotations in the
DBpedia-Entity v2 dataset. We consider both graded and binary rel-
evance settings and assess performance under two input conditions:
using the entity title alone and using both the title and DBpedia
abstract. This setup allows us to examine the role of contextual in-
formation in supporting entity-level judgments, which are typically
more abstract and structurally sparse than document-based tasks.
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(a) Title only (Graded) (b) Title + Abstract (Graded) (c) Title only (Binary) (d) Title + Abstract (Binary)

Figure 1: Comparing LLM-based relevance judgments to human annotations on DBpedia-Entity.

Table 3: Cohen 𝜅 scores for the binary and graded LLM judge-
ment from DBpedia-Entity

Input Binary Graded

Titles 0.3900 0.2733
Titles + Abstracts 0.4623 0.3042

Figure 1 presents the confusion matrices for all configurations.
In the graded setting (Figures 1a and 1b), where relevance is as-
signed on a 3-point scale (0 = irrelevant, 1 = relevant, 2 = highly
relevant), the model shows strong performance on identifying irrel-
evant entities when using titles alone, correctly classifying 27,516
instances. However, its ability to identify highly relevant entities
is limited, with only 2,636 level-2 entities labeled correctly. When
abstracts are included, the number of correctly classified level-2
entities increases to 3,610, a 37% improvement. This gain in recall
comes at a cost, namely correctly identified irrelevant entities drop
to 23,584, and false positives at level 2 increase from 2,480 to 3,389.

This trade-off illustrates a consistent pattern where adding con-
textual information improves recall for relevant content but introduces
noise for non-relevant cases. The inclusion of the abstract also ap-
pears to help sharpen distinctions between grade 1 and grade 2. In
the title-only setup, the model tends to overuse grade 1, likely due
to insufficient disambiguation, whereas the abstract enables more
confident and accurate assignments to grade 2. This is evidenced
by the increase from 2,636 to 3,610 correct grade-2 predictions.

In the binary condition (Figures 1c and 1d), relevance labels
are collapsed into 0 (irrelevant) and 1 (relevant). With the title-
only input, the model correctly identifies 27,516 irrelevant and
8,813 relevant entities. When abstracts are added, the number of
correct relevant classifications increases to 12,885, a 46% improve-
ment. Interestingly, this improvement in recall is accompanied by
a reduction in false positives where irrelevant entities misclassi-
fied as relevant decrease from 7,862 to 3,790. This suggests that
in some cases, abstract information helps the model reject entities
that exhibit surface-level lexical similarity to the query but are
topically unrelated. These patterns indicate that titles alone serve
as effective coarse-grained signals for filtering irrelevant entities,
while abstracts provide the necessary disambiguation to recover
higher-relevance items especially in ambiguous or underspecified
cases. However, the added context can also blur boundaries between
relevance classes, leading to increased confusion in borderline in-
stances. This precision–recall trade-off is especially important in
high-precision applications [13, 17].

To quantify agreement with expert annotations, Table 3 reports
Cohen’s Kappa coefficients for both input conditions. With titles

Table 4: Agreement between LLM relevance judgments and
Click-through data on 15k queries.

Input #Agreements Accuracy

Titles 14, 910 91.93%
Titles + Abstracts 14, 888 91.79%

only, the binary setting yields 𝜅 = 0.3900 and the graded setting
𝜅 = 0.2733. When abstracts are added, these values increase to
𝜅 = 0.4623 and 𝜅 = 0.3042, respectively. These levels of agree-
ment fall within the range reported in recent work on LLM-based
relevance judgment for document and passage retrieval, includ-
ing evaluations using the UMBRELLA framework on TREC DL
2019–2023 benchmarks []. Given the increased sparsity, ambiguity,
and lack of lexical overlap in entity retrieval [], these results are
encouraging. They suggest that LLMs can approximate expert-level
relevance decisions even with minimal input, and that structured
contextual information further improves alignment.

4.2 Agreement with Click-through Data
We also examine how well LLMs align with user click behavior i.e.,
we study the agreement between the LLM’s predictions and the
entities that users actually clicked on in the LaQuE dataset. Un-
like DBpedia-Entity, the LaQuE dataset consists of real-world user
queries, often short, noisy, and loosely structured. These queries
are not professionally curated and exhibit considerable variation in
spelling, grammar, and intent, which makes relevance estimation
more challenging. We conduct the same experimental setup as in
the previous section: both binary and graded relevance judgments
are generated using two LLM input settings, namely (1) query +
entity title, and (2) query + entity title and abstract. However, a key
difference is that LaQuE only provides information about entities
that were clicked. There are no explicit non-relevant judgments
for unclicked entities. As a result, we cannot compute confusion
matrices or standard agreement metrics such as Cohen’s Kappa. In-
stead, we report the proportion of clicked entities that were labeled
as relevant or highly relevant by the LLMs under each condition.
This allows us to assess how well the LLMs align with implicit
user judgments, albeit from a one-sided (positive-only) perspective.
Table 4 reports the agreement between LLM-based relevance judg-
ments and user click behavior on the LaQuE dataset. Despite the
absence of explicit relevance labels, LLMs show strong alignment
with implicit user preferences. Using only the entity title, the model
agrees with user clicks in 91.93% of cases; adding the entity abstract
yields a similar rate of 91.79%, suggesting that even minimal input
suffices to replicate user behavior at scale. While abstracts do not
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Table 5: Example queries from the LaQuE dataset with corresponding clicked entities and LLM click-through reasoning.

Query Clicked Entity LLM Judgement
LLM Reasoning

X Factor USA Judges The X Factor (UK TV series) Name or lexical similarity, Prominent Results Bias
Palm Springs Florida Palm Springs, California Name or lexical similarity, Geographic name confusion
Brad Pitt Vegan List of vegans Category or topical association, Prominent Result Bias, Exploratory curiosity
John Bundy Ted Bundy Name or lexical similarity, Prominent Result Bias, Exploratory curiosity, Familiarity/Recognition Bias

notably improve overall agreement, they increase the proportion
of entities judged as highly relevant, indicating LLMs can capture
more nuanced signals with additional context. The slight drop in
agreement may reflect the model’s ability to reject entities clicked
due to superficial cues like lexical overlap or position bias. These
findings highlight the potential of LLMs to enhance click through
data and extract meaningful relevance signals from noisy feedback.

4.3 User Clicks on Non-Relevant Entities
User clicks are often treated as implicit indicators of relevance, yet
they do not always reflect genuine semantic alignment between
query and result. Instead, clicks may arise from misunderstand-
ing, ambiguity, interface design, or user intent that diverges from
the literal query. The goal of this analysis is to investigate such
mismatches, specifically cases where users clicked on entities that
were consistently judged irrelevant in order to identify systematic
patterns in user behavior that lead to misleading feedback signals in
silver standard datasets such as LaQue. To ensure that we are analyz-
ing truly irrelevant clicks and not cases where the LLM assessments
may themselves be noisy or uncertain, we adopt a conservative
filtering strategy. For each query-entity pair in the LaQuE dataset,
we obtain relevance judgments from four independent LLM config-
urations: two models (LLaMA and Qwen) and two input settings
(query + entity title, query + entity title and abstract). We retain
only those query-entity pairs labeled as irrelevant by at least three
of the four configurations. This consensus-based filtering ensures
high confidence in the irrelevance assessments and enables us to
focus on well-substantiated disagreements between user behavior
and model judgments. Using this approach, we identify 420 query-
entity pairs that were clicked by users despite being consistently
rated as irrelevant by the models.

To understand why users might have clicked on these entities,
inspired by [27] we adopt an interpretable autoprompting strategy.
This technique facilitates the extraction of human-interpretable ra-
tionales from LLMs, aiding in the interpretation of complex user be-
haviors. To this end, we adopt this approach and likewise prompt an
LLM (Qwen) with the query and the clicked (but judged-irrelevant)
entity. The prompt clearly states that the entity is not relevant
and asks the model to hypothesize plausible user motivations for
the click. These explanations are grounded in known patterns of
search behavior, such as attention to surface features, curiosity, or
cognitive heuristics [4, 18, 32]. To avoid redundancy and overfitting
to individual cases, we then prompt to summertime the list of rea-
sons over user’s motivation to click on irrelevant entities. The final
set of categories captures diverse sources of mismatch, including
but not limited to ‘lexical similarity’, ‘ambiguity’, ‘layout bias’, and
‘user familiarity’ and more. After obtaining these categories, we
do reason assignment i.e., assigning one or more reasons to each
query-entity pair through the LLM. Table 5 presents representative
examples of such cases, including the original query, the clicked

Figure 2: Distribution of LLM-generated reasons for user
clicks on entities judged irrelevant. Prominent result bias
and lexical similarity are the most frequent factors.

entity, and the rationale generated by the LLM. Figure 2 summa-
rizes the frequency of these reasons across the filtered dataset. The
most common explanation was Prominent Result Bias, sug-
gesting that users are strongly influenced by interface placement
and visual salience consistent with well-established findings in
click behavior research [18]. The next most frequent category was
Lexical Overlap where users clicked on entities that matched
query terms on the surface level but were semantically off-topic.
Other notable reasons included Familiarity or Recognition,
where users clicked based on prior knowledge rather than relevance,
and Category-Level Association, reflecting loose conceptual
ties that fall short of strict topical relevance. While these reasons
have not been validated through human annotation, they offer a
promising first step toward more explainable and interpretable
evaluation of entity-centric retrieval behavior.

This analysis reveals that LLMs are not only useful as scalable rel-
evance assessors but also as diagnostic tools for interpreting noisy
user behavioral data when performing entity search. By identify-
ing the latent factors that drive user clicks, even when misaligned
with query intent, LLMs can help disentangle relevance from at-
tention and improve the interpretability of implicit feedback in
entity-centric retrieval settings.

5 CONCLUSION
This work demonstrates that large language models (LLMs) are ef-
fective tools for both evaluating and interpreting relevance in entity
retrieval. On both expert-labeled (DBpedia-Entity) and behavior-
based (LaQuE) datasets, LLMs align well with ground-truth and
user click data, especially when provided with contextual signals
like entity abstracts. Beyond assessment, LLMs can generate plau-
sible explanations for user clicks on irrelevant entities, revealing
systematic patterns such as interface bias, lexical overlap, and fa-
miliarity effects. These capabilities suggest that future evaluation
frameworks can integrate LLM-based diagnostics to better interpret
noisy user behavior—particularly in domains where labeled data is
limited and click signals are imperfect.
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