
Jointly Learning Content-Network

Representations for Collaborative Expert

Discovery

Abstract

The success of community question answering (CQA) platforms is in part depen-
dent on how well questions are matched with the best experts that can effectively
answer them in a timely manner. As the complexity of questions on CQA
platforms increases, necessitating the collaboration of multiple experts, existing
expert-finding methods are inadequate because they are designed to evaluate the
suitability of individual experts for specific questions rather than collaborative
expertise. This paper introduces a novel approach to identify collaborative teams
of experts by employing graph neural networks and kernel pooling techniques,
trained end-to-end. Our approach not only predicts potential individual experts
but also forms teams that collectively enhance the answer quality. Through exten-
sive experiments on real-life datasets, we show our proposed model is able to (1)
find more qualified experts for new questions by at least 4.4% and 6.7% superior
ranks in terms of ranking metrics NDCG and MAP, respectively, compared to the
best expert finding baselines; (2) form a collaborative team of experts with 4.7%
higher skill coverage than collaborative expert finding baselines.

1 Introduction

Community-based question answering (CQA) platforms are active communities of
users who provide high-quality answers to questions posted by other users. The success
of such communities can be significantly influenced by their ability to match questions
with users who possess the appropriate expertise to provide answers. The research
literature offers rich approaches to effectively pair experts and questions, and as such,
expert finding or question routing has become a popular topic in the past few years [1–
4]. Existing expert finding approaches typically rely on the textual similarity between
newly posted questions and the content previously generated by experts. Additionally,
these approaches may leverage the social network connections of experts to enhance
the quality and relevance of the identified experts [5–7].

However, despite these advances, a substantial number of questions on CQA
platforms remain unanswered or without satisfactory answers. For example, as of
November 2023, Stack Overflow had approximately 3.4 million unanswered questions

1

and over 11.7 million questions without an accepted answer1. This gap underscores the
limitations of current expert finding systems, particularly when it comes to addressing
complex inquiries that often require the input of multiple experts.

The complexity of many questions on platforms like Stack Overflow and Yahoo!
is reflected in extended discussion threads, where the average length is 6.7 interac-
tions [8]. Research indicates that extended discussions are more likely to lead to an
accepted answer when answerers collaborate effectively [9]. Collaboration is most effec-
tive when experts with complementary skills work together, allowing them to tackle
different aspects of complex questions and deliver higher-quality answers. [9]. These
insights suggest a new approach to expert finding, emphasizing collaboration as a
means to increase the likelihood of resolving complex questions.

In this paper, we tackle the problem of collaborative expert finding for question
answering. We define ‘collaboration’ as a process where each expert’s contribution to
a discussion thread introduces new insights or perspectives that enrich the conversa-
tion. These contributions enable subsequent experts to refine, expand, or build upon
the discussion, ultimately leading to a more comprehensive answer. Our objective
is to assemble a group of experts who, through their complementary contributions,
collectively address the various aspects of a complex question.

The collaborative expert finding task is defined by two key objectives: (1) Skill
Completeness: The assembled team must collectively encompass all the skills required
to effectively answer the question. (2) Effective Collaboration: The team members
must contribute in a way that their insights enable other experts to refine and enhance
the overall answer, leading to a comprehensive and well-rounded solution.

Two potential directions for addressing the collaborative experts finding task
include: 1. Top-k Expert Selection: A straightforward approach is to use the top-k
experts identified by traditional expert-finding methods [6, 10]. These methods lever-
age both textual information (e.g., question titles, bodies, tags) and topological data
(e.g., relationships between questions, tags, and answerers) to retrieve experts rele-
vant to newly posted questions [1, 2, 6, 10]. However, this approach does not account
for the quality of past collaborations among experts. It primarily ranks experts based
on individual suitability for the question, without considering how well these experts
might work together as a team (Challenge 1). 2. Graph-Based Team Formation:
Another approach is to adopt existing graph-based team formation techniques, which
identify teams from expert networks by maximizing skill coverage and minimizing col-
laboration costs [11–14]. However, they are not well-suited to our task for two main
reasons. First, most graph-based methods require a pre-defined set of skills as input,
which is impractical in the dynamic environment of CQA platforms where skills are
latent and continuously evolving (Challenge 2). Second, these methods are compu-
tationally expensive and often only explore limited portions of the graph, leading to
sub-optimal teams (Challenge 3). As a result, they are unlikely to effectively address
the collaborative expert finding task in a scalable and efficient manner.

To address these challenges, in this paper, we propose a neural embedding-based
method for collaborative experts finding in the context of community question answer-
ing. Our method aspires to find a team of experts to answer a given question such

1https://data.stackexchange.com/stackoverflow/queries

2

that the experts have a high likelihood to collaborate effectively and collectively cover
all of the required skills for a new question. Our main contributions are as follows:

• Joint Embedding of Content and Network for Collaborative Quality:
We propose a novel neural embedding-based framework that jointly learns rep-
resentations of both content (questions, answers) and network topology (expert
interactions) in an end-to-end manner. This joint learning captures the quality of
past collaborations among experts, ensuring that the recommended teams have
a higher likelihood of effective collaboration, directly addressing Challenge 1.

• Dynamic Skill Representation without Predefined Skill Sets: Our
framework dynamically learns latent skill representations from the continu-
ous interactions and content on the CQA platform. By eliminating the need
for pre-defined skills, our method remains effective in the constantly evolving
environment of CQA platforms, directly addressing Challenge 2.

• Efficient and Scalable Team Formation: The proposed framework maps the
CQA network and its textual data into an efficient embedding space, significantly
reducing computational complexity. This enables scalable identification of expert
teams, overcoming the limitations of existing graph-based methods in terms of
efficiency and effectiveness, thus addressing Challenge 3.

• Enhanced Expert Team Recommendation: Our approach extends tradi-
tional expert finding by recommending teams rather than individuals, with a
focus on maximizing skill coverage and collaboration potential. This ensures that
the assembled teams are knowledgeable and capable of working well together.

2 Related Work

Expert Finding Techniques. Expert finding studies can be classified into three
categories according to the types of information sources they utilize from a CQA plat-
form, i.e., content-based, network-based, and hybrid methods. Content-based methods
utilize the textual content of each expert generated in the past to recommend the best
answerers for a newly posted question. The studies usually model the task of expert
finding as a document ranking problem and solve it [15, 16]. Network-based methods
utilize the topological information extracted from the relationships among entities in
the environment [17, 18]. Hybrid methods combine content-based and network-based
methods to improve the performance of the expert finding systems [19, 20]. Traditional
expert-finding methods rely on hand-crafted features, which limit their understand-
ing of question semantics. Recent advancements in deep learning have improved these
systems by enabling a better grasp of question meaning. For example, Peng et al. [4]
proposed a multi-view matching method for expert finding, called PMEF, that learns
question features from their title, body, and tag views, instead of relying only on one
view; then it integrates different view information by a personalized attention network.
Liu et al. [21] proposed an efficient non-sampling learning model that works based
on whole data instead of negative sampling for the task of expert finding. Peng et
al., [22] introduced the Hierarchical Matching network (EFHM), which features word
and question-level match encoders to capture fine-grained semantic matching between
historical answers and target questions, along with an expert-level match encoder to
learn an overall expert feature for matching the target question. Despite these studies

3

that only utilizes textual content of questions, Sun et al. [3] proposed a method, called
EnC here, which constructs a heterogeneous network using questions, tags, askers, and
answerers. Then, a graph convolutional network is employed to learn the embeddings
of the four types of entities in an end-to-end fashion by utilizing only the topological
information. Li et al. [2] proposed a method, called NeR here, which applies a het-
erogeneous information network (HIN) embedding model to embed question content,
their askers, answerers, and their relationships into the same latent space. Then, such
latent representations of the three entities are fed into a convolutional scoring func-
tion to rank existing answerers for a new question. The main differences between our
method and previous deep-learning studies are: (1) Our method jointly learns latent
representations of question and answer content and the relationships of entities on the
CQA platform, while others typically separate topological and textual embeddings.
This joint learning enriches embedding vectors, enhancing the model’s understanding
of expert knowledge and community connectivity. (2) Our end-to-end framework con-
tinuously optimizes latent representations based on predicted expert ranks, directly
aligning with real-world recommendation needs, unlike other methods with separate
optimization stages.

Recently, researchers explore pre-training’s potential for expert finding [6, 23].
Peng et all. [23] proposed an expert-level pre-training paradigm that integrates expert
interest and expertise simultaneously. This approach incorporated historical answered
question titles and vote score information to capture expert representations compre-
hensively. They extended their work in [24] by introducing personalized information
integration and a more fine-grained expert pre-training architecture, enhancing the
model’s ability to capture unique expert representations and interests. As another
work, Peng et al. [25] proposed a title-body contrastive learning task during pre-
training to improve question representations by leveraging the semantic relationship
between question titles and bodies. These approaches for expert finding in CQA
platforms overlook expert collaboration, making it challenging to provide qualified
answers, especially for multi-disciplinary questions. The research done in [9, 26], are
among the few studies that aims to route a new question to a small team of experts
who collaboratively work with each other to answer the question. Our work stands out
by estimating expert collaboration and skill alignment using embeddings for experts,
questions, and tags. Experts with more interactions or common tags receive higher
similarity scores due to closely aligned embeddings.

Team Formation Techniques. Another line of research related to our work
is the problem of finding a team of experts from expert networks using graph-based
search techniques which has received a lot of attention in recent years [12, 27]. For
example, Lappas et al. [11] proposed a method, called CC here, to find a team while
maximizing the collaboration level among the members. Khan et al. [12] proposed
approximation algorithms, called CS, to form compact groups in a way that members
are closely connected and each one owns as many required skills as possible. Kargar et
al. [27] designed a method, named CO, to find a team while maximizing the collabora-
tion level among team members and their expertise level by considering the problem of
group discovery over weighted node-labeled network graphs. Recently, there has been
an interest in the problem of finding a team of experts from expert networks using

4

neural-based approaches. Sapienza et al.’s work [28] pioneers the use of neural archi-
tectures for team formation, employing an autoencoder design for faster computation.
However, this approach is susceptible to overfitting, leading to less-than-optimal per-
formance, especially given the sparse nature of collaboration networks. Etemadi et al.
[29] proposed team2box (t2b), a system that creates expert teams to answer specific
questions by using neural embeddings. These embeddings consider question content,
expert engagement, and past collaboration history. Rad et al. [14] proposed a neural
network architecture, going beyond simple mappings between skill and expert nodes.
Their variational Bayesian neural network mines teams with past collaborative history,
ensuring coverage of the required skills.

Despite the great success in team formation methods, these methods are compu-
tationally expensive (is NP-hard in practice), and requires heuristic-based approxi-
mations that lead to sub-optimal teams due to how subgraphs are explored locally.
Our method overcomes such limitations by mapping the CQA network graph and its
textual data into an efficient embedding space.

3 Problem Formulation
Let Q = {q1, q2, ..., qn} be a set of n questions, and U = {u1, u2, ..., um} be a set of m
users in a CQA platform. For each question qi, let aki ∈ U be its asker. Assume that
there exist ni answers as Ai = {a1, a2, .., ak, .., ani

} where answer ak is provided by
expert ek ∈ U with quality (voting) scores of sk. Score sk is a value calculated based on
the difference between answer ak’s up-votes and down-votes which is assigned by users
who viewed the answer. Further, let Tgi = {t1, t2, .., tz} be a set of tags of question qi
assigned by its asker. Terms expert and answerer are used interchangeably in the rest
of the paper. Given new question q, our task is to retrieve a ranked list of k potential
experts from U such that top-ranked expert(s) satisfy three Objectives (O):
O1) Each highly ranked expert has a high probability of giving a qualified answer.
Suppose R : U → N1 be a rank function learned to return the ranks of the answerers
for question q. Given two answerers ei and ej with si ≥ sj , we have: R(ei) ≥ R(ej),
where R(e) is a positive integer indicates the rank of e;
O2) The top-k experts as a team have all the required complementary skills to answer
the question. That is, the content similarity between new question q and the answers
given by the experts in the team set T to past questions should be maximized. Given
question q, and two teams Tm and Tn, Tm is preferred iff:∑

ai∈ATm

sim(q, ai) ≥
∑

aj∈ATn

sim(q, aj), (1)

where function sim(q, a) is the content similarity between question q and answer a,
and AT is a set of past answers written by members of team T.
O3) The top-k experts as a team have exhibited a high likelihood to collaborate with
each other. In other words, there is a high tendency for each pair of experts in the
team to collaborate with each other:∑

ei,ej∈Tm

P
cl
(ei, ej) ≥

∑
ek,el∈Tn

P
cl
(ek, el), (2)

5

q1

q2
q3

u1

u2

u3

u4

u5

u6

t1

t2

t3t4

t5

8
(a1, 6)

12
(a2, 24)

5

(a2 , 8)

{ti
tl
e3

, b
od

y3
}

{title1, body1}

{title2 , body2}

ask ▷

◁
a
sk

◁ answer

◁ answer

(a
1 , 9

)

(a
1 , 5

)(a
2
, 4
)

◁ ask

answer ▷

a
n
s
w
e
r

▷

◁
a
n
s
w
e
r

a
n
s
w
e
r

▷

ans
wer

▷(a3,
14)

Teams Collaboration Teams Collaboration
{u3, u4} 1 {u3, u5} 1
{u3, u6} 0 {u4, u5} 2
{u4, u6} 0 {u5, u6} 1

Fig. 1 A CQA heterogeneous network comprises three node types: questions (q), tags (t), and users
(u), where users can be either askers or answerers. The edge weight q− e indicates an answer’s score,
for instance, (a3, 14) means the answer a3 by user u5 received 14 votes. Consider forming a team of
two; past collaboration data shows that experts u3 and u4 jointly answered one question, indicating
a collaboration score of 1. The optimal team, based on highest collaboration, is {u4, u5}.
where function P

cl
quantifies the past collaboration level between a pair of experts.

We will present an example of P
cl
in Section 5.4.

4 Proposed Framework
In this section, we first provide an overview of our framework for collaborative expert
finding. Then, we explore its various components.

4.1 Overview

To retrieve a ranked list of k potential experts for a qiven question q, we model
a CQA platform as an undirected heterogeneous network in which questions, tags,
askers, and answerers are nodes of the network, and their relationships are considered
as the edges of the network. Note that, as we will use this network for learning the
embedding representations, the network is modelled as an undirected graph. This
allows the proposed framework to capture deeper relationships among entities in the
network while a directed network would limit the learning model to only one directional
relationship (e.g., from expert to question or vice versa) among the entities. Formally,
the CQA network is defined as follows:

CQA Heterogeneous Network is denoted as G(V, E , T) where V is a set of
nodes, E a set of edges, and T is the set of node and edge types. Furthermore, let
TV(⊂ T) denote node types, which can be questions (q), tags (t), and users (u) which
can be askers (ak), or answerers (e). Similarly, TE(⊂ T) indicates a set of edge types
which can be question-tag (q—t), question-asker (q—ak), or question-answerer (q—e)
relationships. A toy example of a CQA network with three questions, five tags, and
six users (three askers and four answerers) is depicted in Fig. 1. Note that a user can
be both an asker and an answerer. Each question node has two attributes, i.e., title
and body. Furthermore, each question-answerer edge has two attributes, namely the
answer and the answer score. As an example in Fig. 1, answer a2 with a voting score
of 24 is provided by answerer u4 for question q1.

Our proposed framework is illustrated in Fig. 2. Given a question, we employ the
topological and textual information of the entities in the CQA network to predict
the ranking scores of the answerers. Our framework encodes topological information
through node embeddings and textual content of nodes’ attributes through soft term

6

 ଵ

 ଵ

ೌ

𝑺
𝒕𝒓

𝒖
𝒄

𝒕𝒖
𝒓

𝒆
𝑪

𝒐
𝒏

𝒕𝒆
𝒏

𝒕

𝑺𝒕𝒓𝒄𝒖𝒕𝒖𝒓𝒆 𝑬𝒏𝒄𝒐𝒅𝒆𝒓

𝑪𝒐𝒏𝒕𝒆𝒏𝒕 𝑬𝒏𝒄𝒐𝒅𝒆𝒓

𝑀𝐿𝑃
𝑅𝑎𝑛𝑘𝑒𝑟

𝑨𝒏𝒔𝒘𝒆𝒓𝒔ᇱ

𝑹𝒂𝒏𝒌

𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

…௧

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑣𝑒𝑟
𝑡𝑎𝑔𝑠 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑴𝒏𝒂×𝒏𝒒 ቐ

𝑲(𝑴𝟏)
…

𝑲(𝑴𝒏𝒂
)

→ 𝒚 = 𝐥𝐨𝐠 𝑲(𝑴𝒊)

𝒏𝒂

𝒊ୀ𝟏

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
 𝑀𝑎𝑡𝑟𝑖𝑥

𝐾𝑒𝑟𝑛𝑒𝑙𝑠 𝑆𝑜𝑓𝑡 − 𝑇𝐹
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

…

ଵ…

௭

𝐻(ାଵ)[𝑣] = 𝜎((𝐴መ௩௩𝐻() 𝑣 + 𝐴መ௩௦𝐻()[𝑠]
௦∈ே(௩)

)𝑊())

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 − 𝑏𝑎𝑠𝑒𝑑 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑟𝑢𝑙𝑒:

…

…
Fig. 2 The proposed framework overview

frequency (TF) features. Then, such latent representations are fed into a multilayer
perceptron (MLP) based ranker to predict the ranking scores of the answerers.

4.2 Key Components of the Framework

Our framework consists of three main components: (1) Structure encoder that maps
a sub-graph of the CQA network into vector space. It receives a sampled node of type
question and all its neighbours as subgraph g and uses a graph neural network to
produce the embeddings of nodes in g named X = (x1, ..,xng

) ∈ Rng×d where ng is the
number of nodes in g and d is the domination of embedding vectors x; (2) Content
encoder that captures the content similarity between a question and its answers.
To do so, a kernel pooling function is employed to capture such text similarities and
generate Soft-TF feature vectors denoted by Y = (y1, ..,yz) ∈ Rz×r, where z can
be the number of edges of question-expert type in g and r is the dimension of Soft-
TF feature vectors y; (3) MLP Ranker, which receives the topological features, i.e.
embedding vectors X, and textual information, i.e. embedding vectors Y, and predicts
the ranking scores of the answerers. The model is trained end-to-end. For a new
question, its asker, and tags, a subgraph g is constructed with potential answerers.
The edges in g are attributed with the content of the experts’ past answers. Finally,
the predicted scores for all answerers are employed to rank the experts.

4.2.1 Structure Encoder

The structure encoder captures the relationships between the entities in the CQA plat-
form as the nodes of the CQA network. It preserves the higher-order proximity among
the entities, i.e. questions, their tags, askers and answerers, in the embedding space.
This latent representation is utilized to discover potential answerers to new questions.
The encoder works as follows. Suppose A is the adjacency matrix of undirected CQA
graph G, and g ⊆ G is a subgraph of the CQA network G with a node of question type
and all of its neighbours. In general, the latent representation of node v ∈ g is obtained

7

by the encoder based on the representations of its neighbouring nodes as follows:

H(i+1)[v] = Aggregate
∀s∈N(v),(s,v)∈E

(
Extract(H(i)[s], H(i)[v])

)
, (3)

where H(i)[v] is the latent representation of v in the ith layer of the structure encoder
(i = 0, 1, .., h), H(0) is initialized by the identity matrix, and N(v) is a set of neigh-
bor nodes of v. The function Extract(.) gathers useful information from the latent
representation of each neighbor of v, and Aggregate is an operator that combines the
extracted information from the neighborhood of v. We define the encoder as:

H(i+1)[v] = σ

 ∑
s∈N(v)

H(i)[s]

W (i)

 , (4)

where W (i) is the matrix of trainable weights in layer i and σ is a non-linear activation
function. Eq. 4 extracts the latent representation of neighbours of v and utilizes the
summation operator as an aggregate function to obtain embedding of node v in layer
i+ 1 of the network. It also applies convolution operators W (i) to transform features
into a specific space with a given dimension and adds non-linearity into the layer using
σ. However, Eq. 4 suffers from two problems. First, for each node, it only considers
the feature vectors of all its neighbours and overlooks the features of the node itself.
Thus, the feature vector of node v should be added to the summation of its neighbours’
feature vectors. In other words, a self-loop should be added into the adjacency matrix
A to consider each node in its neighbour set, i.e., Ã = A+IN , where IN is the identity
matrix. Applying such remedy in Eq. 4, we obtain:

H(i+1)[v] = σ

H(i)[v] +
∑

s∈N(v)

H(i)[s]

W (i)

 . (5)

Second, the summation operator, as an aggregate function, will completely change
the scale of embedding vectors in layer i+ 1, i.e., H(i+1). To resolve the problem, the
feature vectors in layer i can be normalized based on the importance of the neighbour
nodes which can be inferred using node degrees. Thus, matrix Ã should be normalized
based on node degrees as: Â = D̃−0.5ÃD̃−0.5, where D̃ is the degree matrix of Ã and
its diagonal elements is obtained as:

D̃ij =

{∑N
k=1 Ãik i == j,

0 otherwise
(6)

8

where Ãij is the element of the ith row and jth column in matrix Ã. Finally, the latent
representation of node v ∈ g is obtained by:

H(i+1)[v] = σ

ÂvvH
(i)[v] +

∑
s∈N(v)

ÂvsH
(i)[s]

W (i)

 . (7)

Suppose ng be the number of nodes in subgraph g and their labels as v1, .., vng
. We

obtain a list of embedding vectors of nodes in g asX = (H(h)[v1], H
(h)[v2], ..,H

(h)[vng])
where X ∈ Rng×d and d is the embedding dimension. The trainable parameters in the
structure encoder, i.e. W (0),W (1), ...,W (h), are randomly initialized and learned in an
end-to-end way in parallel with the parameters of the content encoder. The training
details will be explained later in Section 4.3. Other parameters, i.e. Ã, D̃, and Â, are
computed based on the adjacency matrix A of the CQA network graph G.

4.2.2 Content Encoder

In parallel with the structure encoder, the textual information extracted from g is used
to learn soft TF features. Let l be textual contents as txt1, txt2, .., txtl extracted from
the attributes of nodes and edges of g. Given txti and txtj as a pair of such texts, the
similarity between them is translated into soft-TF features. Given txti and txtj with

ni and nj words, respectively, let Vi = (vi
1,v

i
2, ...,v

i
ni
) and Vj = (vj

1,v
j
2, ...,v

j
nj
) be

lists of embedding vectors of words in txti and txtj , where Vi ∈ Rni×d′
, Vj ∈ Rnj×d′

and d′ be the embedding dimension of words. We let differentiable function Ψ be used
to obtain the soft-TF feature vector of pair (txti, txtj) as:

yk = Ψ(Vi,Vj). (8)

Let Y = (y1,y2, ..,yz) be a list of z soft-TF vectors extracted from the textual
similarities among l contexts as txt1, txt2, .., txtl and Y ∈ Rz×r where r is the
dimension of Soft-TF features vectors. Note that only the pair of related texts (e.g.
question title or body with one of its answers) are encoded in list Y. We utilize a
neural learn-to-ranking method based on kernel pooling as function Ψ to capture the
textual similarity between questions and their answers as follows. First, embeddings
of words in q and its answer a are utilized to compute the translation matrix M as:

Mij =
va
i v

q
j

||va
i ||.||v

q
j ||

(9)

where vectors va
i and vq

j are the embedding vector of the ith word in answer a and

the jth word in question q, respectively. Note that such word embedding vectors are
learned in an end-to-end fashion during the training phase. Element Mij demonstrates
the similarity between the embedding vector of the ith word in answer a and the jth

word in question q. We note that row i in matrix M ∈ Rna×nq denoted by Mi captures
the similarity between the ith word of answer a and all the words in q. To reduce the
size of M, r kernels denoted by K are applied on Mi (i = 1, 2, ..., na) to obtain an

9

r-dimensional feature vector. The log-sum of such na feature vectors is computed to
obtain the similarity between answer a and question q as the soft-TF feature vector
Y. The effectiveness of the soft-TF features depends on the kernels used in the model.
We adopt the RBF kernel due to its performance reported in the literature [30], and
for being differentiable. Assume a kernel vector K with r kernels as {K1,K2, ...,Kr},
the RBF kernel Kk (k = 1, 2, ..., r) is applied on the ith row of the translation matrix
M, i.e., Mi, as follows:

Kk(Mi) =

nq∑
j=1

exp

(
− (Mij − µk)

2

2σ2
k

)
. (10)

where µk and σk are the parameters of kernel Kk. By applying r kernels on the ith

row of the translation matrix M, we get a vector with r values as:

K(Mi) = {K1(Mi),K2(Mi), ...,Kr(Mi)}.

Given matrix M with na rows, we end up with na vectors as
K(M1),K(M2), ...,K(Mna). The soft-TF feature vector ya is computed as:

ya =

na∑
i=1

log K(Mi). (11)

where ya ∈ Rr. Such soft-TF vectors are computed for pairs of questions and answers.

4.2.3 The MLP Ranker

The MLP ranker predicts the ranking scores of answerers extracted from question-
expert relations in g. We construct the input vector Xin with fixed size by concate-
nating the vectors in X and Y. Such feature vector Xin is fed into an MLP network to
predict the ranking scores of answerers given the question sampled in subgraph g as:

R(Xin) = σ(l)
(
σ(l−1)(...σ(0)(Xinθ

(0) + b(0))...)θ(l) + b(l)
)
. (12)

where σ(l), θ(l), and b(l) are the non-linear activation function, the trainable weights
matrix, and the bias vector of hidden layer l, respectively.

4.3 Model Training

The main steps of each epoch of training in our framework are summarized in Alg. 1.

10

Algorithm 1: Training the model
Input: G(V, E, T)

Output: θ, b,V,W(0), . . . ,W(h)

begin
foreach node q of type question in G do

Construct sub-graph g using all neighbors of q
foreach node v in g do

for i← 0 to h− 1 do

H(i+1)[v] = σ
((
ÂvvH

(i)[v] +
∑

s∈N(v) ÂvsH
(i)[s]

)
W (i)

)
end

end

xt = 1
|tg|

∑
t∈tg H(h)[t], tg = {t ∈ g | TV(t) == tags}

Aq = {u ∈ g | TV(u) == experts}
ak = u ∈ g where TV(u) == asker
foreach u ∈ Aq do

au = answer of u extracted from edge (q, u)
su = score of answer au

yau = Ψ(Vq,Vau) // Content encoder

ŝu = R(H(h)[q] ∥ H(h)[ak] ∥ xt ∥ H(h)[u] ∥ yau
)

end

Minimize L(θ, b,V,W(0), . . . ,W(h)) = 1
|Aq|

∑
u∈Aq

(ŝu − su)
2

end

end

First, for each node q of type question in G, sub-graph g is constructed by ran-
domly selecting q, and all its neighbour nodes and edges among them (Line 3). Then,
the proposed structure encoder embeds topological properties of g (Lines 4-8). Then,
topological information encoded in the embeddings of nodes is utilized along with tex-
tual information to predict the ranking score of each answerer of q (Lines 12-18). To do
so, for each answerer u of question q, content encoder Ψ extracts the soft-TF features
between the content of q and answer au written by u, i.e. yau

(Line 15). Then, input
vector Xin is constructed by concatenating embeddings of question q, its asker, tags,
answerer u, and soft-TF feature vector yau

, and fed into the model (Line 16). Let tg
be a set of nodes of type tag in g. Since the size of tg is not the same for all questions
and given the fact that the MLP ranker accepts a fixed-sized input Xin, we obtain
the average of embeddings of nodes in tg (Line 9) and utilize it in the input vector.
Finally, the MLP ranker predicts the ranking scores of answerer u of question q given
the topological and textual information encoded in Xin. Then, the mean square error
of predicted ranking scores of answerers and their answers’ voting scores are employed
as a loss function to learn the trainable parameters of the model (Line 18). The loss
function for all questions in the training set is computed as:

L(θ, b,V,W(0), ..,W(h)) =
1

n

n∑
i=1

1

ni

ni∑
u=1

(ŝu − su)
2. (13)

where ŝu and su are the predicted ranking score of answerer u and the true voting
score of her answer au given question qi with ni answers, and n is the total number
of questions. The training parameters are the ranking parameters θ, and b, the word
embedding vectors V and the weight matrices W(0),..,W(h) of the structure encoder.
The trainable parameters are learned using back-propagation through the network by
optimizing Eq. 13. The details of parameter training is discussed in Appendix A.

11

Table 1 Statistics of the datasets after cleaning.

Datasets |Q| Answers Words
Tags Experts Users Teams

All Score >=4 Original After Cleaning
android 882 3,728 2,136 6,862,586 205,154 510 1,018 1,511 857
history 1,697 6,839 4,702 5,447,670 916,589 567 1,164 1,838 1,575
dba 2,906 9,357 6,976 27,783,124 1,171,967 578 1,794 3,475 2,554
physics 4,912 19,475 12,559 31,327,261 2,142,405 717 2,938 5,636 4,613

4.4 Predicting Expert Ranks

The trained model recommends potential answerers given new question q. Assume
ak and t1,..., tz to be the asker and tags of question q, respectively. Our framework
predicts the relevance score of each user u in the CQA platform as follows. First, the
structure encoder produces the embedding vectors of nodes q, ak, u, t

1
, ..., tz. Note

that the encoder returns zeros for the embeddings of nodes that are not in G (e.g.,
node q). Concurrently, the content encoder captures the textual similarity between
the past content generated by user u and new question q, and generates soft-TF
features. Let Xu and Yu be the encoded topological and textual information given
question q and user u. Then, the MLP ranker predicts the relevance score of user u
given the topological and textual data encoded by the structure and content encoders:
ŝu = R(Xu||Yu), where ŝu is the ranking score of user u given question q. This process
is repeated for all experts to obtain their scores, after which they are ranked.

5 Experiments
We carried out extensive experiments on several real-world datasets from a variety
of domains to investigate the performance of the proposed method. Our code, pre-
processed datasets, and results are publicly available2.

Datasets. We conduct experiments using several real-world datasets from Stack
Exchange, released in September 2019. In the pre-processing step, we removed all
stop words and special characters and kept only questions with at least two answers.
Additionally, answers with voting scores lower than four were eliminated. Table 1
summarizes the properties of the datasets before and after performing preprocessing.
The statistics show that more than 80% of answers in each dataset have voting scores
in the range of [4, 20].

Baselines. We adopt two sets of baselines: (1) Expert Finding Techniques:
We evaluate the proposed method against state-of-the-art expert finding techniques,
including PMEF[4] that incorporates different view textual information for expert and
question learning in a personalized way, and NeRank (NeR) [2] and EndCold (EnC)
[3] which use network topology for node representation and then the textual infor-
mation of questions are leveraged (not in an end-to-end fashion) to predict the best
answerer for a new question. Additionally, we apply neural-based learn-to-rank meth-
ods including DUET [31], CKNRM [32], KNRM [30], DSSM [33], ArcII [34], and
ANMM [35] for expert finding. Such methods treat questions and their answers as
queries and corresponding documents, employing neural ranking algorithms to prior-
itize the most relevant information. To apply these methods, we employ the default

2Anonymized due to the submission policy. Link will be added here.

12

parameters implemented in MatchZoo [36]. The methods were repeated five times on
the datasets, and the best results were reported for each one. (2) Team Formation
Techniques: We also compare the proposed method with four state-of-the-art team
formation techniques: CC [11], CO [27], CS [12]. These methods consider different com-
binations of collaboration, expertise levels, or both, among team members and within
their network connections to form teams of experts. It’s worth mentioning that all these
methods are heuristics-driven. We further consider recent neural based team discovery
method, t2b [29]. This method uses neural embeddings to match experts and questions
effectively, focusing on their compatibility and previous successful collaborations.

Experimental Setup. For the neural-based methods, 90% of each dataset is used
as training and validation data, and the rest is used for testing. For the expert finding
task, the methods are used to predict the relevance score of the answerers of each test
question along with some random experts as noise. The number of such random experts
is equal to the number of actual answerers to that question. Based on our datasets,
the minimum number of potential answerers for a test question is four. Furthermore,
for the team formation methods, all experts in each dataset are considered as potential
answerers given a test question. Please See Appendix B.1 for further details.

Evaluation Metrics. Given the different nature of methods in expert finding
and team formation, different sets of metrics are employed. (1) Expert Finding:
Given a test question and a list of potential answerers, expert finding methods produce
ranked lists of answerers in which the top-ranked answerer is the most suitable one to
answer the question. Thus, popular ranking measures, such as normalized discounted
cumulative gain (NDCG) and mean average precision (MAP), are utilized. Intuitively,
the NDCG@k metric indicates how well the predicted ranked list of size k matches with
the true ranks of the answerers. Similarly, MAP@k reveals the average portion of the
top-k ranked experts among the actual answerers. In our experiments, the maximum
value of search depth k is determined based on the maximum number of potential
answerers of the test questions. Take android data as an example, we set k = 1, 2, .., 5
because the maximum number of answerers of test questions in this dataset is five
(see details in Appendix B1). (2) Team Formation: Inspired by [29], we employ the
following metrics in our evaluations: (a) The Skill Coverage (SC) metric is used
to gauge how well the background knowledge of experts in a retrieved team aligns
with the subject matter of a new question. (b) Collaboration Level (CL) reveals
the willingness of the team members to collaborate as a team. Such a metric plays
an important role in team success. (c) Gold Standard Team Match (GM) assesses
how closely a discovered team matches the actual answerers of a question, who are
considered the gold standard team. In the context of the Stack Exchange datasets, a
gold standard team consists of users who have successfully answered a question marked
as ’Answered’. Please see Appendix B.2 for further details on the metrics.

5.1 Comparison with Baselines

In this section, we compare our proposed framework with two sets of baselines: Expert
Finding Techniques and Team Formation Techniques.

13

1 2 3 4 5
0.4

0.6

0.8

1.0

ND
CG

@
k

♣
android

2 4 6 8 10
0.4

0.6

0.8
¶♣

¶
¶ ¶♣ ¶♣ ¶♣ ¶♣ ¶♣ ¶♣ ¶♣ ¶♣

history

1 2 3 4 5 6 7
0.4

0.6

0.8

1.0

♣

¶ ¶ ¶♣ ¶♣ ¶♣ ¶♣
dba

1 2 3 4 5 6 7 8 9
0.4

0.6

0.8 ♣

¶♣
¶ ¶♣ ¶♣ ¶♣ ¶♣ ¶♣ ¶♣
physics

1 2 3 4 5
k

0.3

0.4

0.5

0.6

0.7
M
AP

@
k

android

2 4 6 8 10
k

0.3

0.4

0.5

0.6

0.7
¶

history

Our EnC NeR PMEF DUET CKNRM KNRM DSSM ANMM ArcII

1 2 3 4 5 6 7
k

0.3

0.4

0.5

0.6

0.7

¶
¶ ¶ ¶ ¶

dba

1 2 3 4 5 6 7 8 9
k

0.3

0.4

0.5

0.6

0.7 physics

Fig. 3 Performance of the our method compared to expert finding and learn-to-rank techniques
using NDCG and MAP at search depths k from one to the maximum number of answerers. Statistical
significance is indicated by ¶ and ♣ when our method is significantly better than EnC and NeR,
respectively, based on a paired t-test with a 95% confidence interval. Very small evaluation metric
values for some k are omitted for clarity.

5.1.1 Comparison with Expert Finding Techniques

In this section, we evaluate our method’s performance in expert finding by predicting
relevance scores for answerers of each test question, including some random experts
as noise. The gold standard is the answerer with the highest voting score, with other
answerers ranked accordingly. Random noise experts receive a voting score of zero.
We use common ranking measures, NDCG and MAP, to assess the results. The results
achieved by the methods are reported in Fig. 3. Our observations are as follows:
• The expert ranks recommended by our approach are better aligned with their actual
ranks compared to all the other baseline methods. The experiments reported in
the first row of Fig. 3 indicate that the experts’ ranking produced by our method
achieves consistently higher ranking scores in terms of NDCG compared to those
retrieved by the expert finding and learn-to-rank baselines. The empirical results
reveal that our method generates on average 4.4% superior ranks in terms of NDCG
compared to our best baselines, i.e. EnC and NeR, on all datasets;

• Our method effectively differentiates between relevant and irrelevant potential
answerers for a new question. The results depicted in the second row of Fig. 3
demonstrate that our method stably outperforms the baselines in terms of MAP. MAP
measures how well a method identifies true answerers among experts for a test ques-
tion. Our experiments show that, on average, our method achieves 7.7% and 6.7%
higher MAP scores across all datasets compared to EnC and NeR, our top baselines.

• The results depicted in Fig. 3 shows that our method consistently obtains similar
NDCG and MAP regardless of the dataset. This shows the stability of our proposed
approach compared to the other baselines. Furthermore, the superiority of our
method does not degrade by employing different values for the search depth k.
Experiments show that our model’s end-to-end learning of latent representa-

tions from both topological and textual data in the CQA environment significantly
outperforms state-of-the-art expert-finding methods.

14

Table 2 Comparative Performance Analysis of Top Expert Finding Methods (NeR, Enc), Team
Formation Methods (t2b, CC), and Our Method in Terms of Team Size as Determined by CC.

Datasets τ
SC% CL GM%

CC NeR EnC t2b Our CC NeR EnC t2b Our CC NeR EnC t2b Our

android 4 78.7 53.0 78.8 85.6 86.7 3.5 0.9 7.1 6.2 8.5 15.6 4.2 7.6 14.2 27.4
history 4 89.4 83.9 91.2 93.7 94.4 9.6 9.1 53.3 28.9 14.4 14.4 7.7 13.5 17.0 31.3
dba 3 88.9 81.4 86.3 92.1 90.4 6.8 5.4 11.1 21.0 6.0 13.4 6.9 10.4 13.8 38.1
physics 3 92.7 87.2 91.3 96.2 95.1 6.2 16.9 40.2 22.4 36.0 9.5 5.7 8.8 12.1 17.5

Table 3 Comparative Performance Analysis of Top Expert Finding Methods (NeR, Enc), Team
Formation Methods (t2b, CO), and Our Method in Terms of Team Size as Determined by CO.

Datasets τ
SC% CL GM%

CO NeR EnC t2b Our CO NeR EnC t2b Our CO NeR EnC t2b Our

android 6 86.3 59.0 80.4 85.6 90.5 2.6 1.8 9.4 12.4 16.8 17.8 5.2 8.2 14.8 29.2
history 5 90.2 87.0 95.1 95.0 96.6 18.5 13.2 88.0 50.7 26.2 15.4 9.8 18.2 18.8 39.8
dba 6 92.8 88.8 92.9 93.5 96.0 6.4 8.7 28.9 55.6 19.3 14.3 10.4 14.7 17.4 50.6
physics 7 94.3 96.2 97.3 97.1 98.0 7.0 75.0 119.9 85.5 125.6 11.0 13.3 15.7 14.7 26.8

Table 4 Comparative Performance Analysis of Top Expert Finding Methods (NeR, Enc), Team
Formation Methods (t2b, CS), and Our Method in Terms of Team Size as Determined by CS.

Datasets τ
SC% CL GM%

CS NeR EnC t2b Our CS NeR EnC t2b Our CS NeR EnC t2b Our

android 8 85.0 68.0 82.9 86.4 92.4 2.9 3.4 10.3 21.0 33.0 20.3 8.5 10.6 16.0 34.8
history 8 95.2 91.5 97.6 95.1 97.8 23.7 16.2 157.784.1 44.8 19.8 12.1 23.9 21.6 48.1
dba 6 91.2 89.6 93.2 93.8 95.8 10.1 8.6 27.0 55.0 19.1 13.9 10.6 14.4 17.4 51.8
physics 10 91.5 97.5 98.0 97.3 98.6 3.7 144.0 219.0122.0 212.6 9.7 17.6 20.3 15.6 30.4

5.1.2 Comparison with Team Formation Techniques

We now investigate the performance of our proposed method against team formation
techniques. We compare our proposed method and the top two best performing expert
finding baselines, i.e. EnC and NeR, against the team formation baselines. The results
are reported in Tables 2, 3, and 4. The team size for CC, CO, CS, i.e. τ , is not the input
parameter. Thus, they build teams with different sizes for test questions. As such,
the sizes of teams discovered by the team formation methods are used as the number
of experts that will be retrieved by EnC, NeR, t2b and our method. The average size
of teams (τ) for each dataset is depicted in the second column of the tables. Note
that the t2b method is a neural-based approach and takes the team size as the input.
Therefore, it is run using the team sizes determined by CC, CO, and CS separately, with
results reported in the tables. The results reported in the tables indicate that:
• The experts retrieved by our proposed method possess broader skills. As inferred
from the table, the skill coverage, i.e., SC, of teams discovered by our method is
on average 4.22%, 4.37%, 5.42%, and 2.5% higher than those constructed by team
formation baselines CC, CO, CS, and t2b, respectively;

• The teams’ members formed by our method enjoy a high willingness to cooperate
with each other. The experiments indicate that the past collaboration level, i.e. CL,
between the members of teams constructed by our approach is on average 2.4, 5.4,
7.6 times higher than the experts in teams created by CC, CO, and CS, respectively.

15

1 2 3 4 5
0.6

0.7

0.8

0.9

N
D

C
G

@
k

android

1 2 3 4 5 6 7 8 9 10 11
0.6

0.7

0.8

0.9

history

1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

dba

1 2 3 4 5 6 7 8 9
0.6

0.7

0.8

0.9

physics

1 2 3 4 5

k

0.4

0.5

0.6

0.7
M

A
P

@
k

android

1 2 3 4 5 6 7 8 9 10 11

k

0.4

0.5

0.6

0.7
history

(M5) Topology+Tags+Text (M4) Topology+Text (M3) Topology+Tags (M2) Topology Only (M1) Text Only

1 2 3 4 5 6 7

k

0.4

0.5

0.6

0.7 dba

1 2 3 4 5 6 7 8 9

k

0.4

0.5

0.6

0.7 physics

Fig. 4 Performance of the proposed method variations in terms of NDCG and MAP at different k.

• Our approach constructs more realistic teams. The GM metric reveals that our
method involves the actual answerers of test questions in its discovered teams on
average 2.4 times higher than the team formation baselines.

• Although EnC and t2b sometimes achieve higher CL scores, this does not equate
to better overall team effectiveness, as shown by their lower GM scores. Higher CL

suggests frequent past interactions, but the goal is to provide the best answers, thus
higher GM score. Our method’s significantly higher GM scores indicate that it forms
teams that are both theoretically ideal and practically competent in addressing
questions, even if CL scores are occasionally lower.

5.2 Ablation Study

Our framework depicted in Fig. 2 can have different variations. As such, in this section,
we investigate the impact of using the textual and topological information extracted
from the CQA platform in the performance of such variations. To do so, we consider
different variations of the proposed framework as follows.
(M1) Text Only: This variation employs only the content of the questions (tags, title,
and body) and their answers in the content encoder.
(M2) Topology Only: In this model, the CQA network is built by removing tags from
the network and only the topological data are considered in the structure encoder.
(M3) Topology+Tags: This variation employs the topological network data and tag
information of the CQA network.
(M4) Topology+Text: In this variation, we remove the tag nodes from the CQA
network. As such, the network topological data is used in the structure encoder and
the questions, their askers and answerers are used in the content encoder but tag
information are not considered.
(M5) Topology+Tags+Text: This variation incorporates all the proposed elements
of our proposed framework as described in Fig 1. The results of our ablation study
are reported in Fig. 4. We summarize our observations as follows.
• Employing both textual and topological data extracted from a CQA system leads
to more effective rankings and hence to the retrieval of more relevant experts. As
depicted, the models that use both textual and topological data, i.e., M4 and M5,
obtain superior results in terms of ranking measures, i.e., NDCG and MAP, in all

16

datasets. The results demonstrate that M5 achieves on average 4.4% and 21.6%
higher NDCG, and 8.6% and 29.8% higher MAP compared to M3 (tpology+tags) and
M1 (textual content only), respectively.

• Utilizing only the content of questions and their answers, i.e., M1, results in a model
with the lowest performance. The reason is that such a model only relies on the
textual similarity between a new question and past textual content generated by
the experts and overlooks the information extracted from the relationships among
the entities in the CQA network.

• We also find that the topological data extracted from a CQA platform is more
informative compared to the textual information, i.e., the content of questions and
their answers. The model that employs only the topology of the CQA network, i.e.,
M3, obtains 16.4% and 19.7% higher NDCG and MAP compared to the model that
only employs textual content (M1).

• Removing tags from the CQA network has a negative yet small impact on perfor-
mance. The impact becomes negligible as the size of the network increases. Note
that the number of tags are almost the same in all datasets (see Appendix B1).
When the dataset is small the chance of having unique tags among questions will
be high compared to larger datasets. Therefore, using tags in smaller datasets will
be more informative to discover relevant experts.

5.3 Discussion

Our method outperformed state-of-the-art expert finding baselines, achieving on aver-
age 4.4% and 6.7% superior expert rankings in terms of NDCG and MAP, respectively. It
also formed teams with higher skill coverage and comparable past collaboration lev-
els, meeting objectives O2 and O3. Specifically, our method provided 4.7% broader
knowledge and 14.6% higher expertise levels, with collaboration levels 1.7 times higher
than the best team formation baseline. Additionally, using both topological and tex-
tual data led to 4.4% and 8.61% better NDCG and MAP scores compared to using only
topological data. Topological data alone proved more effective than textual data, with
16.44% and 19.7% better NDCG and MAP performance. Overall, our method effectively
balances team formation metrics, producing teams with comprehensive skills, sub-
stantial expertise, and strong past collaboration. Additional experimental results are
available in Appendix B.

While our framework shows notable improvements in collaborative expert finding,
it is important to recognize its limitations and potential drawbacks for a balanced
view. (1) Dynamic Nature of CQA Platforms. CQA platforms are dynamic, with
constant additions of questions, answers, and users. Our current framework, which
requires retraining to update embeddings and model parameters, may struggle with
these changes. Future work could explore incremental or online learning approaches
for real-time updates without extensive retraining. (2) Network Sparsity. In sparse
CQA networks, where some users rarely answer questions or certain questions involve
only a small group of users, the available topological information may be limited. This
can impact the quality of the learned embeddings and the final results. Although our
framework uses textual information to mitigate this issue, network sparsity remains a
challenge. Future research could investigate data augmentation techniques or the inte-
gration of external knowledge sources to improve model robustness in such conditions.

17

(3) Diversity of Expertise. While our method emphasizes forming collaborative
teams with complementary skills, it does not explicitly ensure diversity in expertise or
perspectives. Incorporating diversity metrics in future work could enhance team qual-
ity by providing more comprehensive and innovative solutions to complex questions.
(4) Bias and Fairness. Like many machine learning models, our framework may
unintentionally learn and propagate biases from the training data, potentially lead-
ing to unfair recommendations that favor certain users or groups. Future work should
focus on incorporating bias detection and mitigation strategies to ensure fairness and
equity in expert finding and team formation. By addressing these limitations in future
research, we aim to enhance the robustness and fairness of the proposed framework,
making it more suitable for practical deployment in diverse CQA environments.

6 Conclusion

We introduced a framework for finding collaborative experts in CQA platforms by
integrating topological and textual data. Our method jointly learns latent representa-
tions of these data, resulting in superior performance compared to existing techniques.
Extensive experiments on four real-world datasets demonstrated that our approach
achieves higher ranking metrics (NDCG and MAP) and better skill coverage in form-
ing expert teams. In the future, we plan to focus on recommending experts with
specific roles, such as reviewers and editors, to create more realistic and functional
teams. Additionally, we plan to consider users’ willingness to participate and study
the characteristics of effective teams to enhance our team formation strategies.

References

[1] Yuan, S., Zhang, Y., Hall, W., Cabotà, J.B.: Expert finding in community
question answering: a review. AI Review 53(2), 843–874 (2020)

[2] Li, Z., Jiang, J.-Y., Sun, Y., Wang, W.: Personalized question routing via
heterogeneous network embedding. In: AAAI, vol. 33, pp. 192–199 (2019)

[3] Sun, J., Zhao, J., Sun, H., Parthasarathy, S.: Endcold: An end-to-end framework
for cold question routing in community question answering services. In: IJCAI,
pp. 3244–3250 (2020)

[4] Peng, Q., Liu, H., Wang, Y., Xu, H., Jiao, P., Shao, M., Wang, W.: Towards a
multi-view attentive matching for personalized expert finding. In: WWW (2022)

[5] Qian, L., Wang, J., Lin, H., Xu, B., Yang, L.: Heterogeneous information net-
work embedding based on multiperspective metapath for question routing. Knowl.
Based Syst. 240, 107842 (2022)

[6] Liu, H., Lv, Z., Yang, Q., Xu, D., Peng, Q.: Expertbert: Pretraining expert
finding. In: CIKM, pp. 4244–4248 (2022)

[7] Kundu, D., Mandal, D.P.: Formulation of a hybrid expertise retrieval system in
community question answering services. Appl. Intell. 49(2), 463–477 (2019)

18

[8] Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., Hartmann, B.: Design
lessons from the fastest q&a site in the west. In: SIGCHI, pp. 2857–2866 (2011)

[9] Chang, S., Pal, A.: Routing questions for collaborative answering in community
question answering. In: ASONAM, pp. 494–501 (2013)

[10] Liu, H., Lv, Z., Yang, Q., Xu, D., Peng, Q.: Efficient non-sampling expert finding.
In: CIKM, pp. 4239–4243 (2022)

[11] Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
SIGKDD, pp. 467–476 (2009)

[12] Khan, A., Golab, L., Kargar, M., Szlichta, J., Zihayat, M.: Compact group
discovery in attributed graphs and social networks. Information Processing &
Management 57(2), 102054 (2020)

[13] Kou, Y., Shen, D., Snell, Q., Li, D., Nie, T., Yu, G., Ma, S.: Efficient team
formation in social networks based on constrained pattern graph. In: ICDE, pp.
889–900 (2020)

[14] Hamidi Rad, R., Fani, H., Bagheri, E., Kargar, M., Srivastava, D., Szlichta, J.: A
variational neural architecture for skill-based team formation. TOIS, 1–28 (2023)

[15] Li, M., Li, Y., Chen, Y., Xu, Y.: Batch recommendation of experts to questions
in community-based question-answering with a sailfish optimizer. Expert Syst.
Appl. 169, 114484 (2021)

[16] Krishna, V., Vasiliauskaite, V., Antulov-Fantulin, N.: Question routing via
activity-weighted modularity-enhanced factorization. SNAM 12(1), 155 (2022)

[17] Zhu, H., Chen, E., Xiong, H., Cao, H., Tian, J.: Ranking user authority with
relevant knowledge categories for expert finding. WWW 17(5), 1081–1107 (2014)

[18] Shahriari, M., Parekodi, S., Klamma, R.: Community ranking algorithms for
expert identification in question-answer forums. In: I-KNOW, pp. 8–188 (2015)

[19] Sorkhani, S., Etemadi, R., Bigdeli, A., Zihayat, M., Bagheri, E.: Feature-based
question routing in community question answering platforms. INS 608, 696–717
(2022)

[20] Amendola, M., Passarella, A., Perego, R.: Towards robust expert finding in
community question answering platforms, 152–168 (2024)

[21] Liu, H., Lv, Z., Yang, Q., Xu, D., Peng, Q.: Efficient non-sampling expert finding.
In: CIKM, pp. 4239–4243 (2022)

[22] Peng, Q., Wang, W., Liu, H., Wang, Y., Xu, H., Shao, M.: Towards comprehensive
expert finding with a hierarchical matching network. Knowl. Based Syst. (2022)

19

[23] Peng, Q., Liu, H.: Expertplm: Pre-training expert representation for expert
finding. In: EMNLP, pp. 1043–1052 (2022)

[24] Peng, Q., Liu, H., Xu, H., Wang, Y., Wang, W.: PEPT: expert finding meets
personalized pre-training. CoRR abs/2312.12162 (2023)

[25] Peng, Q., Liu, H., Lv, Z., Yang, Q., Wang, W.: Contrastive pre-training for
personalized expert finding. In: EMNLP, pp. 15797–15806 (2023)

[26] Etemadi, R., Zihayat, M., Feng, K., Adelman, J., Bagheri, E.: Collaborative
experts discovery in social coding platforms. In: CIKM, pp. 3009–3013 (2021)

[27] Kargar, M., Golab, L., Srivastava, D., Szlichta, J., Zihayat, M.: Effective key-
word search over weighted graphs. IEEE Transactions on Knowledge and Data
Engineering (2020)

[28] Sapienza, A., Goyal, P., Ferrara, E.: Deep neural networks for optimal team
composition. Frontiers Big Data 2, 14 (2019)

[29] Etemadi, R., Zihayat, M., Feng, K., Adelman, J., Bagheri, E.: Embedding-based
team formation for community question answering. INS, 671–692 (2023)

[30] Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neural ad-hoc
ranking with kernel pooling. In: SIGIR, pp. 55–64 (2017)

[31] Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and distributed
representations of text for web search. In: WWW, pp. 1291–1299 (2017)

[32] Dai, Z., Xiong, C., Callan, J., Liu, Z.: Convolutional neural networks for soft-
matching n-grams in ad-hoc search. In: WSDM, pp. 126–134 (2018)

[33] Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep
structured semantic models for web search using clickthrough data. In: CIKM,
pp. 2333–2338 (2013)

[34] Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for
matching natural language sentences. In: NIPS, pp. 2042–2050 (2014)

[35] Yang, L., Ai, Q., Guo, J., Croft, W.B.: anmm: Ranking short answer texts with
attention-based neural matching model. In: CIKM, pp. 287–296 (2016)

[36] Guo, J., Fan, Y., Ji, X., Cheng, X.: Matchzoo: A learning, practicing, and
developing system for neural text matching. In: SIGIR, pp. 1297–1300 (2019)

[37] Liu, S., Chen, L., Dong, H., Wang, Z., Wu, D., Huang, Z.: Higher-order weighted
graph convolutional networks. arXiv preprint arXiv:1911.04129 (2019)

20

7 Appendix A

Appendix A Parameter training of MLP Ranker

Starting from the loss in Eq. 13, the gradients are first propagated to the last layer of the
MLP ranker and update the parameters θ(l) and b(l) as:

θ(l) = θ(l) − µ
∂L(θ, b,V,W(0), ..,W(h))

∂θ(l)
, (A1)

b(l) = b(l) − µ
∂L(θ, b,V,W(0), ..,W(h))

∂b(l)
, (A2)

where µ is the learning rate. After updating trainable parameters through l layers of the
MLP ranker, the gradients are propagated to the weight matrices of the structure encoder
through Eq. 7 as:

W(h) = W(h) − µ
∂σ(0)

(
Xinθ

(0) + b(0)
)

∂W(h)
. (A3)

Finally, the trainable weights W(i) for i=h-1,..,0 in the remaining layers of the structure
encoder are updated as:

W(i) = W(i) − µ
∂σ

(
ÂH(i+1)W (i+1)

)
∂W(i)

. (A4)

In parallel, the gradients are passed from the first layer of the MLP ranker to the word
embedding vectors starting from the soft-TF vectors obtained by Eq. 11. Then, the kernels
(Eq. 10) pass the gradients to the word similarities in the translation matrix M. Finally, the
embedding vectors of words in questions and answers, i.e., V, are updated as:

V = V− µ
∂M

∂V
. (A5)

The gradient received by each element of the translation matrix M is obtained based on Eq.
10 as:

∇Mij =

r∑
k=1

∇Kk(Mi)× σ2
k

(µk −Mij)exp
(
(Mij−µk)2

−2σ2
k

) . (A6)

The gradients of each kernel Kk for k = 1, .., r are received from the first layer of the MLP
ranker based on Eq. 11.

Appendix B Supplementary Experiments

B.1 Experimental details on Network Parameters and
Baselines

The number of hidden layers of the GCN in our model and the EnC method is two. It has
been empirically proved that GCNs with two layers are capable of capturing higher-order
topological proximities [37]. The embedding dimension, i.e., d, is set to 32 for nodes and 300
for words. Akin to [30], the number of RBF kernels is set as r = 11. Parameters of the kernels
are set as µ1 = 1.0, and µ2 = 0.9, µ3 = 0.7, .., µ11 = −0.9, and σ1 = 10−3, and for the rest
σ = 0.1. The first kernel, i.e. µ1 = 1.0 and σ1 = 10−3, captures the exact matches. While the
others are evenly spaced in [0.9,-0.9] and can be viewed as ten soft-TF bins. We employed

21

Adam as the optimization method with an exponential decay learning rate initialized from
{5× 10−5, 10−4} and other parameters with default values. For the other methods, we used
the implementations suggested by the authors with default parameters (the best values used
by their authors). For each method, the best results from five independent repetitions on the
datasets are reported.

B.2 Team Formation Performance Metrics

Below we present how we compute each performance metrics (1) The Skill Coverage (SC)
metric is used to gauge how well the background knowledge of experts in a retrieved team
aligns with the subject matter of a new question. To calculate SC for a new question, we
count the number of common tags between the new question and existing questions answered
by members of a discovered team. Ideally, a team should have complete coverage, indicating
that the tags of existing questions answered by team members are fully matched with the
tags of the new question. Given tg(i) as a set of tags for question qi, skill coverage, denoted
as SC, of retrieved team Tk given new question qk is computed as:

SC(qk,Tk) = |tg(k) ∩ {
⋃

qi∈QTk

tg(i)}|/|tg(k)|, (B7)

where QTk is the set of past questions answered by experts in Tk, and |x| is the size of set x.
We compute the average of SC over n test questions as: 100

n

∑n
k=1 SC(qk,Tk). The range of

SC values is in [0, 100] where larger values are more desirable. Given two teams Tn and Tm

and test question qk, team Tm is preferred based on Eq. 1 iff SC(qk,Tm) ≥ SC(qk,Tn). (2)
Collaboration Level (CL)metric evaluates team collaboration by counting shared questions
answered by team members. It normalizes this count based on the number of potential pairs
in the team to ensure fair comparisons. Essentially, a higher CL score indicates more frequent
collaboration among team members, suggesting a stronger team dynamic and is computed as:

CL(Tk) = α
∑

v,u∈Tk,
v ̸=u

|Q(v) ∩Q(u)|, (B8)

where Q(v) is a set of existing questions answered by expert v, and α is the fraction of the
number of non-empty sets of Q(v) ∩Q(u) over the number of unique pairs of experts in team
Tk, i.e., |Tk| (|Tk| − 1) /2. We compute the average of the CL metric over n new test questions
as:

∑n
k=1 CL(Tk), where Tk is the new team assigned to the new test question qk. The value

of CL is between zero and the number of question nodes in the CQA network. Given two
teams Tn and Tm, team Tm is preferred, based on Eq. 2, iff CL(Tm) ≥ CL(Tn). (3) Gold
Standard Team Match (GM) score is calculated by determining the percentage of the
discovered team (T) that overlaps with the gold standard team (Tg). Specifically, it measures
the proportion of the discovered team members who are also part of the gold standard team,
then multiplies this by 100 to express it as a percentage. A higher GM score indicates that the
discovered team closely resembles the actual experts who answered the question, suggesting
effectiveness in the team discovery process.

The gold standard team match metric, denoted by GM, is calculated as GM =
(
|T ∩

Tg|/|Tg|
)
× 100. The GM metric reflects how likely it is that the discovered experts worked

together in reality to answer a given question.
The computation of the evaluation metrics is elaborated in the following example.

Example 1 Suppose the CQA system depicted in Fig. 1 and a test question (n = 1) as
follows:
qt = {bodyt, titlet}, tg(t) = {t2, t4, t5}

22

2 3 4 5
0

20

40

60

F
re

q
u

en
cy

66

15

4 3

android (n=88)

2 3 4 5 6 7 8 10 11
0

50

100
107

31
16

6 2 1 4 1 1

history (n=169)

2 3 4 5 7

#Answerers

0

100

200

F
re

q
u

en
cy

212

55

19
3 1

dba (n=290)

2 3 4 5 6 7 9

#Answerers

0

100

200

300
330

97

40
10 9 4 1

physics (n=491)

Fig. B1 The statistics of test questions. Here n is the number of test questions.

With actual answerers Tg = {u3, u4}.
Let the retrieved team with size three be:
Tt = {u4, u5, u6}
The evaluation metrics are computed as:

SC =
100

n
SC(qt,Tt)

=
100 |tg(t) ∩ ({t1, t2, t3, t5} ∪ {t1, .., t5} ∪ {t1, t4})|

|tg(t)|
= 100.

SC=100 means that there is a complete match between test question tags, i.e. tg(t), and the
tags of past questions answered by members of Tt, i.e. {t1, t2, t3, t5} ∪ {t1, .., t5} ∪ {t1, t4}.
Collaboration level is computed as:

CL =
1

n
CL(Tt) = α

∑
v,u∈Tt,
v ̸=u

|Q(v) ∩Q(u)|

= α
[
|Q(u4) ∩Q(u5)|+ |Q(u4) ∩Q(u6)|

+ |Q(u5) ∩Q(u6)|
]

=
2

3

[
|{q1, q2}|+ |{}|+ |{q3}|

]
= 2.

Finally, GM is computed as:

GM =
|Tt ∩ Tg|

|Tg|
× 100 =

100

2
= 50.

It means that 50% of the actual answerers of the test question are among the members of the
retrieved team.

B.3 Test Dataset Statistics

The statistics of test questions are summarized in Fig. B1.

B.4 Performance Gap Analysis on Collaborative Team
Discovery

We demonstrate the power of our method compared to team formation approaches through
performance gap analysis. The top two expert finding methods EnC and NeR are selected based

23

Fig. B2 Differential Performance Analysis Across Test Questions — Our method versus CC and top
two expert finding performers, EnC and NeR, as detailed in Table 2.

Fig. B3 Differential Performance Analysis Across Test Questions — Our method versus CO and top
two expert finding performers, EnC and NeR, as detailed in Table 3.

on the results reported in Tables 2, 3, and 4. Furthermore, we focus on three main team for-
mation techniques CC, CO, and CS. Note that although t2b shares similar algorithmic features
with our model, particularly in leveraging network-based information for expert discovery,
the performance gap analysis was specifically designed to examine aspects of expert find-
ing that are distinctively influenced by methods like skill diversity and collaboration level.
These aspects are more prominently addressed by the CC, CS, and CO approaches. This focus

24

Fig. B4 Differential Performance Analysis Across Test Questions — Our method versus CS and top
two expert finding performers, EnC and NeR, as detailed in Table 4

allows us to better highlight and assess the strengths of our model in terms of these particu-
lar metrics. We compare them side by side with our method based on their performance on
each test question and demonstrate the results in Figs. B2, B3, and B4. A positive value in
the figures indicates that the proposed method obtains a superior result compared the corre-
sponding baseline. In contrast, negative values demonstrate that the corresponding baseline
outperforms our method. Zero values demonstrate the methods achieve the same results. We
summarize our observations from the results depicted in the figures as follows:

• The proposed solution outperforms the baselines in terms of skill coverage, i.e. SC demon-
strated in the first row of the figures. In comparison with team formation baselines, the
experiments indicate that our method achieves superior results in 15.2%, 14.5%, and 18.4%
of the test questions compared to CC, CO, and CS. In contrast, baselines CC, CO, and CS out-
perform our method only in 7.4%, 4.1%, and 3.5% of the test questions, respectively. Our
method also outperforms expert finding baselines EnC and NeR in 14.2% and 28.7% of the
test questions, and falls short only in 4.9% and 5.3% of the cases, respectively;

• Our method is the second-best method in terms of past collaborations among team mem-
bers. The results indicate that EnC outperforms the other methods in terms of CL. It
achieves superior results in 61.9% of questions compared our method. The reason for such
an observation is that EnC retrieves expert nodes that have a high degree in the CQA net-
work graph. Such high-degree nodes are likely to have common neighbours and hence lead
to a higher CL;

• Our method consistently achieves superior results in terms of retrieving actual answerers of
test questions, i.e., GM. Compared to the second best baseline, i.e., CC, our method obtains
4.18 times superior results.

25

Fig. B5 The difference of results in terms of ranking metrics NDCG and MAP obtained by the proposed
method and the baselines on each test question on all datasets. Positive values indicate the superiority
of our method compared to baselines.

We argue that while based on above points, EnC has a higher performance on CL, this
comes at the cost of sacrificing skill coverage, SC and GM.

B.5 Performance Gap Analysis on Expert Finding Methods

To better demonstrate why the existing expert finding approaches are not the best solution
for the problem of collaborative expert finding, we analyze the performance gaps in terms
of different performance metrics. We report the performance difference over NDCG, denoted
∆NDCG, and MAP, denoted ∆MAP, obtained from differencing the performance of our approach
and top two performer expert finding methods, EnC and NeR, on each test question in the help-
hurt plots in Fig. B5. In the figure, positive values indicate the superiority of our method. In
contrast, negative values demonstrate the better performance of the corresponding baseline.
The summary of our observations is as follows: (a) Our method outperforms the best baseline,
EnC, on 36.4% of the questions in terms of NDCG, demonstrating significant improvement in
ranking quality where our method is effectively more aligned with the ideal answer rankings;
(b) our proposed approach improves the results over our best baseline, EnC, in terms of MAP
by 32.5%, indicating our method’s robustness in identifying relevant experts regardless of
their order in the ranking list; (c) Interestingly, all methods tend to perform better on MAP

compared to NDCG. This can be attributed to the fact that MAP focuses solely on the presence
of relevant experts within the results, disregarding their specific positions, which often results
in higher performance scores under this metric.

B.6 Trade-off between the Team Formation Metrics

Each team formation metric measures a distinct aspect of the team formation task. Obviously,
these metrics possess different levels of importance given the task at hand. For example,
having the background knowledge required to answer a question, i.e., skill coverage SC, is
the most critical when compared to the other metrics. In other words, forming a highly
collaborative team that does not have the right skill set to answer a question would be
basically pointless. As such, we investigate the trade-off between SC and the other metrics,
CL. We also employ GM to demonstrate how well each method has been able to discover the
actual set of experts who answered the question in reality. To this end, the parameters of
the methods are tuned to form teams of the same size equivalent to the number of experts

26

Fig. B6 Comparison of the methods based on the trade-off between the team formation metrics.
The arrows in the panels indicate the best and worst performance levels in which each method can
be obtained.

who answered the same question in reality. Then, the metrics are computed for each dataset,
and their average on all four datasets is reported in Fig. B6. In each sub-figure, the arrows
demonstrate the best and worst trade-off points. We make several observations as follows:
(a) Our approach is the best choice in terms of the trade-off between skill coverage, i.e. SC.
NeR behaves very poorly in terms of SC which is critical for a team. Our method achieves on
average 19.18% superior results in terms of SC compared to NeR. As depicted in the figure
(the 1st sub-figure from the left), such achievements make our method the best option while
considering both metrics; (b) Although our method forms teams with on average 54.88%
lower past collaboration level, i.e. CL, compared to our best baseline EnC, the skill coverage of
such teams formed by EnC are on average 5.91% lower than those discovered by our method.
This means that having high CL does not guarantee to have the full coverage of the skills
required to answer new questions; (b) Our method not only forms teams with high-skill
coverage but also retrieves more experts from the actual answerers of the test questions.
The results reveal that our model employs the actual answerers in the discovered teams on
average 1.99 times more than the best baseline, i.e. EnC.

As demonstrated in Fig. B6, our proposed method is able to discover teams with superior
characteristics in terms of the trade-off between different team formation metrics. This shows
that our method not only satisfies the critical constraint of team formation metric, i.e., skill
coverage SC, but also shows superior or comparable performance on the other soft constraint,
i.e., CL; hence, reporting the best tradeoff between the team formation metrics.

B.7 Computational Time Analysis and Scalability

In this section, we provide an analysis of the computational time and scalability of our
proposed framework, combining both theoretical analysis and empirical evidence.

The computational time of our framework is primarily determined by the graph neural
network (GNN) and multi-layer perceptron (MLP) components. Let n be the number of
nodes, m the number of edges in the community question answering (CQA) network, and d
the embedding dimension. The GNN’s time complexity for each layer is O(m · d), and for L
layers, it becomes O(L ·m · d). The MLP component, which processes the node embeddings,
has a complexity of O(n · d2) for each layer. Assuming H hidden layers, the total complexity
for the MLP is O(H · n · d2).

Given the typical sparsity of CQA networks, where m is often proportional to n, the over-
all training complexity can be approximated as O(L · n · d + H · n · d2). This complexity is

27

well within the range of other state-of-the-art methods. In fact, our design focuses on leverag-
ing efficient computations without over-complicating the process. Compared to methods like
NeR and EnC, which have similar complexities due to their reliance on node and edge embed-
dings, our framework maintains efficiency while providing the added benefit of learning richer
embeddings through joint optimization. Unlike some heuristic-based methods, such as CC,
CO, and CS, which involve iterative processes, our method’s end-to-end learning approach
simplifies the computational flow, ensuring scalability even as the dataset size increases.

We also conducted experiments across four datasets: android, history, dba, and physics.
The experiments measured the number of samples processed per second during both training
and inference phases, providing empirical evidence of the model’s efficiency. The performance
results are illustrated in Figure B7, which shows the number of samples processed per second
during training and inference across different datasets.

Fig. B7 Performance of the proposed framework (samples/second) across datasets during training
and inference.

The data from Figure B7 shows that as the dataset size increases, the through-
put decreases. For example, the android dataset, being relatively smaller, shows higher
throughput compared to the larger physics dataset. This is consistent with the theoretical
expectations, as larger datasets introduce more complexity and require more computational
resources.

Despite this, the model’s scalability is confirmed to be practical and efficient. Even with
the physics dataset, the model processes over half a sample per second during training and
more than one sample per second during inference. This indicates that the model can handle
large datasets effectively, especially in batch processing environments. The high inference
speed on smaller datasets also supports the model’s suitability for real-time applications.

B.8 Details of Our Findings

In our experiments, we have explored the performance of our proposed method along with
our baselines from two perspectives, i.e., expert finding and team formation. We summarize
our findings as follows:

• To satisfy objectives O1, our proposed method produces superior rankings for experts
compared to the state-of-the-art expert finding baselines. Our experimental study on four

28

diverse real-world datasets indicates that our method achieves on average 4.4%, and 6.7%
superior expert ranks in terms of NDCG and MAP compared to our best baseline;

• Our proposed method is able to discover teams with high skill coverage and comparable
past collaboration level among team members; therefore, satisfying objective O2 and
O3. The experiments reveal that our method obtains on average at least 4.7% broader
background knowledge required to answer new questions with on average at least 14.6
higher expertise level compared to existing team formation methods. Furthermore, the
collaboration level of members of teams constructed by our model is on average 1.7 times
higher than our best team formation baseline;

• We also found that employing both topological and textual data extracted from the CQA
network leads to on average 4.4% and 8.61% superior results compared to the model
which only uses topological data in terms of NDCG and MAP, respectively. Furthermore, the
experiments indicate that topological data are more effective compared to textual data.
Experimental results demonstrate that the model which uses only topological data shows
on average 16.44% and 19.7 % better performance on NDCG and MAP, respectively;

• Our method discovers efficient teams by hitting the right trade-off between team forma-
tion metrics. The experiments demonstrate that teams discovered by our method possess
not only broader required skills to answer the new question but also possess comparable
expertise and past collaboration levels.

29

	Introduction
	Related Work
	Problem Formulation
	Proposed Framework
	Overview
	Key Components of the Framework
	Structure Encoder
	Content Encoder
	The MLP Ranker

	Model Training
	Predicting Expert Ranks

	Experiments
	Comparison with Baselines
	Comparison with Expert Finding Techniques
	Comparison with Team Formation Techniques

	Ablation Study
	Discussion

	Conclusion
	Appendix A
	Parameter training of MLP Ranker
	Supplementary Experiments
	Experimental details on Network Parameters and Baselines
	Team Formation Performance Metrics
	Test Dataset Statistics
	Performance Gap Analysis on Collaborative Team Discovery
	Performance Gap Analysis on Expert Finding Methods
	Trade-off between the Team Formation Metrics
	Computational Time Analysis and Scalability
	Details of Our Findings

