- 3 RADIN HAMIDI RAD, University of Toronto, Canada
- 4 EBRAHIM BAGHERI, University of Toronto, Canada
- 5 MEHDI KARGAR, Toronto Metropolitan University, Canada
- ⁶ DIVESH SRIVASTAVA, AT&T Chief Data Office, USA
- 7 JAREK SZLICHTA, York University, Canada 8

The task of searching over large keyword graphs aims to identify a subgraph where the nodes collectively 9 cover the input query keywords. Although finding an exact solution to this problem is NP-hard, we address 10 it by proposing a novel graph neural network representation learning technique specifically tailored for 11 graphs with missing information. We propose a novel keyword graph representation learning method that 12 incorporates complementary aspects of graphs: global, local, adjusted, and feature semantics. Considering 13 these multiple aspects, our approach remains robust and resilient to missing information. We adopt and fine-14 tune a transformer-based model to aggregate the various features of a graph to generate rich representations, 15 recognizing the pivotal role of keywords in this task. We show through experiments on real-world data that 16 our method outperforms the state-of-the-art approaches and is particularly robust in the face of missing 17 values, underscoring its ability to effectively handle incomplete graphs.

¹⁸ CCS Concepts: • Information systems \rightarrow Novelty in information retrieval; Question answering.

Additional Key Words and Phrases: Graph Representation Learning, Search in Graph, Incomplete Graph, Graph Neural Network, Information Retrieval

22 ACM Reference Format:

12

Radin Hamidi Rad, Ebrahim Bagheri, Mehdi Kargar, Divesh Srivastava, and Jarek Szlichta. 2024. Robust Neural
 Model for Searching over Incomplete Graphs. *ACM Trans. Intell. Syst. Technol.* x, x, Article x (x 2024), 31 pages.
 https://doi.org/XXXXXXXXXXXXXXX

1 Introduction

26

27 With the increasing popularity of graphical structures for information representation, such as 28 social networks, and knowledge graphs, the ability to perform effective graph search is becoming 29 increasingly important. Keyword search over graphs enables the identification of a subgraph that 30 covers the input keywords. Researchers have shown that this problem is NP-Hard [26]. Conse-31 quently, many tractable yet non-deterministic solutions for this problem have been developed to 32 address this challenge. Conventional methods employ greedy or approximation approaches to find 33 subgraph solutions for this problem, such as utilizing proximity ranking [5] and approximation 34 search [26]. More recent approaches have incorporated graph embedding techniques, such as graph 35 convolutional neural networks [29] and graph attention networks [52] to generate embedding 36 vectors to approximate graph search [16, 41, 42, 48, 55]. 37

Authors' Contact Information: Radin Hamidi Rad, radin.rad@utoront.ca, University of Toronto, Toronto, ON, Canada;
 Ebrahim Bagheri, ebrahim.bagheri@utoronto.ca, University of Toronto, Toronto, ON, Canada; Mehdi Kargar, kargar@
 torontomu.ca, Toronto Metropolitan University, Toronto, ON, Canada; Divesh Srivastava, divesh@research.att.com, AT&T
 Chief Data Office, USA; Jarek Szlichta, szlichta@yorku.ca, York University, Toronto, ON, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
 Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
 prior applies particular of the particular of

- prior specific permission and/or a fee. Request permissions from permissions@acm.org.
- ⁴⁰ © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
 ⁴⁷ ACM 0457 (040/00011 ADT)
- ACM 2157-6912/2024/x-ARTx
- 48 https://doi.org/XXXXXXXXXXXXXXX
- 49

These approaches do not however account for *missing* or *incomplete* information with a graph. 50 An *incomplete graph* represents a set of nodes where some of their attributes and/or relationships between them are missing or unknown. This indicates that the dataset or the knowledge about the nodes and their relationships are only partially known. An abstract example of an incomplete graph and its comparison with the equivalent complete version of it can be seen in Figure 1. This incompleteness can result from various factors, including data collection limitations, privacy concerns, technical errors, or the inherent dynamic nature of the relationships being modelled [63]. Consequently, analyzing and interpreting incomplete graphs require special consideration.

Fig. 1. A comparison between a graph without any missing values (a) and a graph with missing values (b). Incomplete graphs can be missing edges, nodes or attributes.

While many existing methods assume that graphs are fully observable and complete, in realworld applications, graphs often suffer from missing values, rendering them incomplete. For instance, researchers have extensively applied graph representation learning methods to tabular data [15, 53]. However, when translating tabular data into graphical structures, different forms of missing information, commonly referred to as missing values can manifest as missing edges, nodes or attributes [17].

Thus, the study of graphs with missing values is of critical importance [11, 57]. Some of the 77 (non-comprehensive) reasons for graph incompleteness can be enumerated as follows: (1) Technical 78 errors: Occur due to software bugs, hardware failures, or network disruptions, leading to missing 79 nodes or edges [2]. (2) Information confidentiality: Results in intentional data omissions to protect 80 privacy, such as anonymized or hidden relationships in social networks [64]. (3) Data source 81 complexity: Arises from challenges in integrating heterogeneous sources with different formats 82 and inconsistencies, often leading to missing information [35, 40]. (4) The dynamic nature of 83 data: Fast-changing systems, such as social networks and financial markets, make it difficult to 84 maintain an up-to-date graph [18, 36, 37]. (5) Resource constraints: Such as computational limitations, 85 storage capacity, or restricted data access, can prevent comprehensive data collection, leading to 86 partial graphs [10]. (6) Intentional abstraction: This is sometimes employed to simplify graphs for 87 specific analyses, omitting less relevant details [7]. (7) System evolution: Leads to outdated graphs 88 when networks change over time but are not continuously updated [1]. These factors collectively 89 contribute to the incompleteness of graph representations across various domains. 90

In the context of methods that facilitate graph search, particularly the cutting-edge techniques 91 that employ graph representation learning [14, 29, 52], the presence of missing information poses 92 significant limitations. This is primarily because the majority, if not all, of these methods operate 93 under the assumption that the underlying graphical structure is complete. Consequently, when 94 dealing with an incomplete graph, the reliability of graph metapaths or message-passing techniques 95 used for learning representations may be compromised. These methods are not designed to handle 96 missing information and, therefore, lack robustness when confronted with such scenarios. As a 97

51 52

53

54

55

56 57

63 64 65

66 67

68

69 70

71

72

73

74

75

76

x:3

result, the performance of state-of-the-art neural methods on incomplete graphs falls short of thedesired levels [22].

101 Our research is motivated by the belief that a robust method for handling missing information should encompass multiple complementary aspects of the graph during the process of learning 102 representations. Our approach emphasizes the importance of considering various aspects, including 103 local, global, and adjusted contexts of nodes, along with the semantic content of nodes, in order to 104 develop a robust graph representation learning method for incomplete graphs. By incorporating 105 106 these different contextual factors, our approach enables the generation of robust and reliable representations using available subsets of data. The method effectively addresses the challenges 107 posed by incomplete information, even in scenarios where only limited information is available for 108 certain subgraphs. 109

110 111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

The main contributions of our work are as follows:

• We propose a transformer-based architecture specifically designed for keyword search over *incomplete graphs*—a problem setting that remains underexplored compared to traditional graph completion or classification tasks. Our method is designed to operate effectively even when critical structural or semantic information is missing.

• Our approach exhibits robustness in the face of incomplete graph structures by capturing both local (micro), global (macro) and adjusted contexts of subgraphs, as well as node semantics. Thus, our model can generate reliable representations even when significant keywords or edges are missing from the graph.

- Global Semantics: By using anchor nodes, our proposed approach captures the broader context of each node within the entire graph. This helps differentiate nodes that might appear similar locally but are situated differently globally.
- Local Semantics: Utilizing the Weisfeiler-Lehman algorithm, our proposed approach captures the structural context of nodes within their immediate neighborhoods. This provides a detailed local view of the graph's structure.
 - Adjusted Semantics: A k-hop strategy helps in balancing the local and global contexts, creating a robust representation that considers both immediate neighbors and more distant nodes.
 - Feature Embedding: We propose to adopt an encoding method to transform sparse keyword occurrences into dense, low-dimensional vectors, capturing the interaction between keywords and preserving as much information as possible.
- Through extensive experiments over real-world data, we demonstrate that our novel method outperforms the current state-of-the-art techniques in keyword search over incomplete graphs. Our model showcases a more robust performance, even in cases where substantial information is missing. This can be attributed to its ability to leverage a range of complementary features for learning the graph representation, even in the presence of missing information.

The structure of this paper is as follows: Section 2 presents an extensive discussion of the related work and how we differ from them. Section 3 provides a clear definition of the problem and principles to search in incomplete graphs. Section 4 presents the proposed method, including model architecture and training. Section 5 presents our extensive experiments. Finally, Section 6 concludes this paper.

2 Related Work

The domain of incomplete graph search, particularly in the context of keyword search, has gained significant attention in recent years. Several methodologies have been proposed to handle missing

147

143

information in graphs, spanning from traditional graph search algorithms to machine learning-based techniques. In this section, we categorize and analyze the key approaches in the literature,

- ¹⁵⁰ highlighting their strengths and limitations.
- Traditional Graph Search Approaches. Traditional graph search algorithms are primarily designed
- for complete graphs with well-defined structures [23, 59]. These algorithms assume full visibility
- of all graph components, which makes them inefficient and inaccurate when faced with missing
- information. The main challenge in incomplete graphs lies in either inferring the missing elements or
- developing robust search strategies that can operate despite incomplete data. One notable example
- is BANKS (Browsing ANd Keyword Searching) [5], which models relational databases as graphs,
 where tuples represent nodes, and relationships form edges. It uses a proximity-based ranking
- system to enable schema-free keyword searches. Despite being widely adopted, its effectiveness
 relies heavily on the underlying database schema. Highly interconnected or complex schemas may
- 160 reduce its efficiency.
- 161 Probabilistic Models for Incomplete Graph Search. Probabilistic models address the uncertainty in
- incomplete graphs by estimating the likelihood of missing connections or attributes. BLINK [23]
- 163 (Bayesian-information and Linkage-disequilibrium method) optimizes keyword searches by leverag-
- ing advanced indexing and querying strategies. While these models improve search accuracy, theycome with high computational costs and require complex implementations to maintain indexing
- 166 structures efficiently.
- 167 Dimensionality Reduction Techniques. Dimensionality reduction techniques help manage large-scale,
- high-dimensional graph data. Principal Component Analysis (PCA) and Kernel PCA (KPCA) [19, 63]
- simplify the feature space, improving search accuracy. KPCA outperforms PCA by capturing non-
- ¹⁷⁰ linear relationships, making it more effective for complex incomplete graphs. However, these
- approaches still struggle with missing data, leading to unstable performance in highly incompletegraphs.
- Machine Learning-Based Methods. Graph Neural Networks (GNNs) have emerged as powerful tools 173 for handling incomplete graphs. These models learn latent representations of nodes and predict 174 missing edges to improve keyword search. Graph Convolutional Networks (GCN) [29] use local 175 node attributes and immediate neighbors to handle missing data but suffer from the oversmoothing 176 problem, where nodes become indistinguishable after multiple layers. A variant, ChebConv [14], 177 mitigates oversmoothing using Chebyshev polynomial expansion, but deeper architectures may 178 still be affected. Graph Attention Networks (GAT) [52] introduce attention mechanisms to prioritize 179 the most relevant neighbor nodes. This approach enhances feature aggregation and model inter-180 pretability, but it is computationally expensive, particularly for large-scale graphs. GraphSAGE [21] 181 extends GNNs by generating node embeddings that incorporate both structural and attribute infor-182 mation. It enables inductive learning for unseen nodes, making it scalable. However, performance 183 is highly dependent on the aggregation function and the size of sampled neighborhoods. Recently, 184 T2-GNN [25] was proposed as a general framework to enhance the robustness of GNNs on in-185 complete graphs using a teacher-student distillation mechanism. Unlike prior methods, T2-GNN 186 separately models feature and structure completion through independent teacher models, ensuring 187 that missing features do not negatively impact structure learning and vice versa. A dual-distillation 188 mechanism is then employed to transfer knowledge from the teacher models to the student GNN, 189 improving its ability to learn representations despite missing information. However, T2-GNN is 190 inherently a supervised method, relying on labeled data for effective knowledge transfer in its 191 teacher-student distillation framework. This dependence on labeled data can limit its applicability 192 in real-world scenarios where annotations are scarce or expensive to obtain. 193
- Hybrid Models for Incomplete Graph Search. Hybrid models combine multiple methodologies to
 overcome the limitations of individual approaches. The Structure-Attribute Transformer (SAT) [11]
- 196

was among the first to propose a hybrid approach. It integrates transformers with graph neural networks to handle missing data by jointly considering structural and attribute information. This model enhances data imputation techniques in graph analysis but may introduce noise, negatively impacting search performance. Later, D²PT [32] was introduced as a dual-channel GNN designed to improve information propagation in incomplete graphs. Unlike conventional GNNs, D²PT employs a diffused propagation then transformation (DPT) backbone that enhances long-range message passing while maintaining efficiency. Additionally, it constructs a global graph based on semantic similarities, enabling information propagation even for stray nodes that would otherwise remain disconnected. To align these two learning processes, D²PT utilizes a contrastive prototype alignment mechanism, ensuring effective knowledge transfer between the original and global graphs. However, D²PT is not specifically designed for search-based tasks on real-world datasets, where labels are not always available or well-structured, potentially limiting its adaptability to large-scale retrieval problems. Recently, KS-GNN [22] employs message-passing and feature aggregation for more accurate keyword searches in incomplete graphs. It integrates a three-term loss function: (1) Reconstruction loss (similar to encoder-decoder architectures), (2) Subgraph keyword-based node similarity, and (3) Keyword frequency regularization. Despite its effectiveness, message-passing mechanisms struggle with missing edges, making KS-GNN less stable for highly incomplete graphs.

Method	Handles Missing Data	Scalability	Supports Keyword Search	Learns Node Representations	Structural & Attribute Integration	Unsupervised Learning	Robust to High Incompleteness
BANKS [5]	×	1	1	×	×	1	×
BLINK [23]	1	×	1	×	×	1	×
PCA [19]	×	1	×	×	×	1	×
KPCA [63]	×	1	×	×	×	1	×
GCN [29]	×	1	×	1	×	1	×
GAT [52]	×	1	×	1	1	1	×
GraphSAGE [21]	×	1	×	1	J	1	×
SAT [11]	×	×	1	1	J	1	×
D ² PT [32]	1	1	×	1	J	×	×
T2-GNN [25]	1	×	×	1	J	×	×
KS-GNN [22]	1	1	1	1	×	1	×
Proposed Method	1	1	1	1	1	1	1

Table 1. Comparison of methods for incomplete graph search.

Comparison of Methods. Table 1 summarizes the capabilities of different methods for incomplete
 graph search. The table highlights key characteristics such as scalability, structural and attribute
 integration, and robustness to highly incomplete graphs. Notably, while some traditional and
 probabilistic methods provide efficient search capabilities, they lack resilience in sparse graphs.
 Machine learning-based approaches, particularly hybrid models, demonstrate improved robustness
 but often require high computational resources.

3 Problem Definition

The task of keyword search in graphs is focused on finding a set of nodes from within the larger graph such that they collectively cover the set of keywords provided by the user in the form of a query. For instance, when searching an academic graph for a query such as *graph neural networks*

Hamidi Rad et al.

Fig. 2. A case study of keyword search in an incomplete graph. The selected nodes collectively cover the query keywords, but missing edges and attributes introduce challenges that affect structural connectivity and semantic completeness.

for protein structures, the objective will be to find and retrieve a set of nodes (e.g., papers) that contain the query keywords. In this paper, we are aiming to address special case of this task where the underline graph is incomplete. In other words, some of the graph attributes or edges may be missing.

To illustrate the challenges of keyword search in incomplete graphs, we present a case study. Consider a user query: *"How can transparency and explainable AI enhance transfer learning in robot navigation with Markov chains?"*. As shown in Figure 2, the incomplete graph may suffer from missing edges and attributes. The objective is to select a group of nodes that ideally cover all the required keywords; however, missing information introduces additional challenges. Some keywords may be absent from the dataset and need to be inferred based on semantic relationships. Similarly, missing edges can disrupt the structural connectivity of the graph, potentially weakening important relationships between nodes. This case study highlights the need for robust methods to handle missing information while ensuring effective keyword search in incomplete graphs.

Let us define this task as follows. Given a set of keywords as the input query, we let the query be:

$$q = \left(w_1, w_2, \dots, w_{n_q}\right) \tag{1}$$

where $(w_1, w_2, ..., w_{n_q})$ denotes keywords in query q with n_q being size of query keywords. Subsequently, the set of keywords for the i^{th} query is denoted as W_{q_i} and defined as follows:

$$W_{q_i} = \left(w_1^{q_i}, w_2^{q_i}, \dots, w_{n_q}^{q_i}\right) \tag{2}$$

Furthermore, we denote the main graph being searched as G(V, E, W), where V is the set of nodes, *E* is the set of edges connecting the nodes, and *W* is the set of keywords. For each $v \in V$, there is the set of associated keywords denoted as W_v and defined as follows:

$$W_v = \left(w_1^v, w_2^v, \dots, w_{n_v}^v\right) \tag{3}$$

where n_v is the size of node keywords. Based on the mentioned definitions for the query as the input and graph as the data, we can now define the task of keyword search: the objective of keyword search on graph *G* is to find a subgraph G'(V', E', W') where $V' \subseteq V$ and $E' \subseteq E$ and keywords associated with V' can collectively cover all the keywords in the query q_i , i.e., $W_{q_i} \subseteq W'$ [23].

The desired output of the keywords search task is to find the most efficient subgraph that not only covers the required keywords but also minimizes pre-defined costs. Thus, we can define the

ACM Trans. Intell. Syst. Technol., Vol. x, No. x, Article x. Publication date: x 2024.

desired output by properly defining the scoring function that is needed to retrieve the subgraph.
The widely adapted scoring function, based on [13, 20, 22, 23, 30, 50], is defined as:

298 299 300

301 302

303 304

305

306 307

308

309

310 311

312

326

297

$$score(v, q_i) = \sum_{j=1}^{n_q} \text{dist}_{\min}\left(v, w_j^{q_i}\right)$$
(4)

where $dist_{\min}\left(v, w_{j}^{q_{i}}\right)$ represents the path length between node v to the nearest node containing keyword $w_{j}^{q_{i}}$, which is the j^{th} keyword in q_{i} 's keyword set.

In other words, the keyword search objective is to find the subgraph G'(V', E', W') whose nodes have minimum cumulative distance from nodes that host the query keywords. The keyword search problem is defined as follows:

$$\forall v \notin V', score(v', q) \ge \max\left(\{score(v_i, q) \mid v_i \in V'\}\right)$$
(5)

Given our focus on incomplete graphs, we need to specifically take incomplete graph characteristics into account. Incompleteness in a graph can occur in the form of missing keywords and edges. Hence, a *desirable method* should satsify the following objectives:

Objective 1: Reduce the dimension of the output to make search feasible

313 While modern graph embedding techniques can effectively manage high-dimensional data, reducing output dimensionality remains a valuable strategy for enhancing search performance. High-314 dimensional spaces can still pose challenges such as increased computational cost and reduced 315 algorithmic efficiency due to the "curse of dimensionality" [3, 43]. In our approach, dimensionality 316 reduction serves to simplify the search space, improving efficiency and robustness, and reduc-317 ing computational overhead. For example, in a scientific collaboration graph such as DBLP [49], 318 nodes represent researchers, and edges represent co-authorships between these researchers. This 319 graph is inherently high-dimensional due to the vast number of potential connections (edges) and 320 attributes (e.g., keywords, publication venues, research topics) associated with each researcher. 321 Current practical techniques such as KS-GNN/KS-PCA [22] and Graph Neural Networks-based 322 methods [6, 14, 21, 29, 52] use dimensionality reduction as an instrument in this regard, enabling the 323 extraction of meaningful low-dimensional features from high-dimensional data, thereby preserving 324 the essential characteristics of the graph while making the search process more manageable. 325

Objective 2: Retain as much key information as possible despite missing keywords and edge information

The loss of keywords and edge information can severely impact the ability to perform accurate and 329 comprehensive keyword search on graphs. For instance, consider an incomplete graph representing 330 a product recommendation system, where nodes are products, and edges indicate that two products 331 are often bought together e.g. an online retail dataset [9]. Due to incomplete data, some edges 332 (product relationships) and keywords (product descriptions or tags) might be missing. To retain key 333 information despite these missing elements, one could employ machine learning models to predict 334 missing edges based on existing connections and shared attributes among products. For example, if 335 product A is often bought with products B and C, and product B is often bought with product D, 336 but the direct link between A and D is missing, the system could infer this relationship based on 337 the shared key information. This approach helps preserve the integrity of the recommendation 338 graph, ensuring that users receive relevant suggestions even in the face of incomplete data. 339

Consequently, it is crucial to devise strategies that minimize the effect of these losses by retaining as much relevant information as possible. This objective focuses on leveraging the remaining data to infer missing information or to highlight connections and patterns that are still discernible despite

the incompleteness. Methods that enhance the robustness of search algorithms against missing data,
 such as incorporating encoding-decoding mechanisms, e.g., denoising autoencoders [4], utilizing
 probabilistic models to predict missing connections [28] are good examples of methods that address
 this objective.

Objective 3: Capture the structural properties of the graph to overcome missing edges

The structural integrity of a graph plays a pivotal role in determining the relevance and context of 350 351 search results. Missing edges can disrupt the connectivity and overall structure of the graph, leading to incomplete or inaccurate search outcomes. Therefore, preserving the structural properties of 352 the graph is paramount. This involves identifying and utilizing alternative paths or relationships 353 within the graph that can compensate for the missing edges. For instance, in a social network such 354 as Facebook and Twitter [33], if two individuals share many mutual connections but are not directly 355 connected in the graph due to missing edges, a graph neural network method (e.g. GCN [29], 356 GAT [52]) could predict the likelihood of a direct connection based on the observed structural 357 patterns. This approach helps maintain the social graph integrity, enabling accurate analysis 358 of community structures, influence spread, and social cohesion despite incomplete information. 359 Additionally, leveraging graph neural networks or other advanced techniques to infer missing 360 structural information can help maintain the integrity of the graph's topology, ensuring that the 361 search algorithm can still navigate the graph effectively and yield relevant results despite the 362 missing connections. 363

4 Methodology

In this section, we present our approach for address the three objectives (**Objectives 1-3**). In order to address objectives O_1 , O_2 and O_3 , we developed our proposed approach around three principles (P_1 , P_2 and P_3), which directly map onto the problem objectives, thus P_1 addresses O_1 , P_2 addresses O_2 and P_3 addresses O_3 as follows:

371 Principle 1: Complexity of subgraph identification

The problem of keyword search in graphs has been shown to be NP-hard [26]. Hence, search in incomplete graphs, as super-sets of complete graphs, is an NP-hard problem. Therefore, we utilize the graph representation learning technique to estimate the relevance of graph elements. This complies with objective O_1 , which discusses the "curse of dimensionality". To address P1, we adopt a graph representation learning strategy to estimate the relevance of keywords to subgraphs through soft-matching, which is inexact yet tractable. This addresses objective O_1 , by reducing the output dimension and introducing a more efficient search space.

380 Principle 2: Addressing missing information

Most, if not all, real-world graphs suffer from missing information. As such, our proposed method 381 should be able to preserve key information from the graph because of its importance for the sake of 382 searching to find correct target nodes. In addition, our proposed method should be able to capture 383 a range of different complementary information from the graph. Because of missing edges, the 384 proposed method must be able to capture the graph structure and maximally use that to share 385 information with the neighbourhood nodes for better connectivity and richer embedding vectors. 386 Also, due to missing keywords, the proposed method should be able to capture information about 387 keywords based on other available information besides the limited set of observable keywords that 388 are available in the graph. This can be achieved by considering other pertinent node attributes, e.g., 389 importance and co-occurrence probability. This principle addresses objective O_2 , trying to retain as 390 much key information as possible. 391

392

348

364

365

370

Fig. 3. The overall architecture of our proposed approach. The architecure comprises a transformer-based neural model that integrates global, local, and adjusted semantics for robust representation learning. Using anchor nodes, Weisfeiler-Lehman algorithm and k-hop message passing techniques to capture global, local, and adjusted semantics, respectively. The semantics is used as positional encoding along with feature embeddings to train a transformer architecture, enabling an efficient keyword-based subgraph search over incomplete graphs.

412 Principle 3: Navigating missing edges

A common challenge in incomplete graphs is the absence of certain edges, which may disrupt 413 the ability to accurately represent the true connections within the graph. This absence not only 414 obscures the graph's underlying structure but also hampers the effective retrieval of relevant 415 subgraphs based on keyword search. To confront this issue head-on, our approach should involve 416 leveraging predictive modelling to infer missing edges based on existing patterns of connectivity 417 and node attributes within the graph. By predicting these missing edges, we aim to reconstruct a 418 more complete picture of the graph topology, thereby enhancing the integrity and utility of the 419 keyword search process. This proactive strategy specifically addresses objective O_3 , ensuring that 420 the proposed method remains robust and effective even in the face of incomplete connectivity data. 421

To satisfy these three principles, we propose a neural architecture for learning representations for 422 an incomplete graph that captures the global, local, and adjusted semantics of the graph. To address 423 these challenges and meet principles, our proposed method utilizes unsupervised learning through 424 a transformer-based neural architecture for generating rich embedding vectors that are suitable for 425 searching over incomplete graphs. The architecture of our proposed approach is shown in Figure 3. 426 We have chosen a transformer architecture for the proposed method for multiple reasons. First, the 427 keyword search task requires identifying nodes that collectively cover a given set of keywords. In a 428 Transformer-based model, we can represent node features as a sequence of tokens, similar to how 429 words are processed in natural language tasks. This tokenized representation allows the model 430 to learn contextual relationships between node attributes, improving the accuracy of keyword 431 matching. Second, unlike GNNs, which rely on predefined structural positions, Transformers can 432 use semantic embeddings as positional information. This allows the model to understand the 433 relationships between nodes based on their feature similarities rather than their adjacency in the 434 graph. As a result, even when graph structure is incomplete, the model can still organize and retrieve 435 relevant nodes effectively. Additionally, Transformers offer scalability advantages. Self-attention 436 mechanisms allow parallel processing of nodes, making the approach computationally efficient for 437 large-scale graphs. Unlike deep GNNs, which suffer from over-smoothing when stacking multiple 438 layers, Transformers maintain distinct feature representations even in deep architectures, ensuring 439 better discrimination between nodes. 440

441

404

405

406

407

408

In what follows, we will explain the representation learning process in subsection 4.1. We will 442 explain how each of the architecture blocks relates to our defined principles. Then we will discuss 443 the search mechanism based on the generated embedding vectors in subsection 4.2. 444

4.1 Indexing 446

447 Using representation vectors in the latent space helps acquire higher performance by several means. First, the common raw graph representations are sparse naturally, thus, it is hard to train 448 449 graph neural models on them. Furthermore, using a transformer-based neural network generates contextualized embedding of nodes. This is especially important when searching over graphs 450 with missing values because contextualization generates more specific and informative embedding 451 vectors. Moreover, low-dimension embedded vectors increase the computation speeds during both 452 the training and inference phases. Lastly, while it is possible to merge different pieces of information 453 454 into one vector by concatenation, training an encoder on a mixture of that information yields a drastically better representation that can improve the downstream searching task performance. 455 This is in response to our first principle (P_1). In response to the second and third principles (P_2 456 and P_3) we propose four representations to be captured in a graph. These embedding vectors 457 create a multi-aspect process of a graph to retain as much key information as possible (P_2) and 458 459 understand graph topology even with edges missing (P_3) . In this subsection, we precisely define these representations, namely Global Semantics (\mathcal{GS}), Adjusted Semantics (\mathcal{AS}), Local Semantics 460 (\mathcal{LS}) and Feature Embedding (\mathcal{FE}) . 461

Global Semantics. This semantic is designed to be utilized as a representation of the target 463 node compared to the entire graph. The goal is to reach an embedding vector that can be used to 464 distinguish two nodes with similar neighbourhood characteristics but in different parts of a graph. 465 To achieve this, we adopt the concept of anchor nodes for determining the global semantics of each 466 node in the graph [65]. It has been shown that positioning nodes within the context of a particular 467 set of anchor nodes can help capture and embody the broader context of the graph structure within 468 node representations [34]. That is because even if two nodes reside in different parts of the graph 469 with a similar neighbourhood, their semantic embeddings still will be different because of their 470 position with respect to anchor nodes. 471

Anchor nodes become especially useful in *incomplete graphs* since missing edges can increase 472 the likelihood of graph node representations losing their discriminative power. According to the 473 Bourgain Theorem [8], selecting the proper set of anchor nodes can drastically affect the quality of representations learnt for graph nodes. Linial et al. [31] have demonstrated a practical approach for generating representations using a random set of anchor nodes. Based on the concept of anchor nodes, we define the Global Semantics (GS) of a node as follows:

477 478 479

480

481

482

483

488

489 490

474

475

476

462

$$\mathcal{GS}(v_i) = \left(\frac{d\left(v_i, S_1\right)}{k}, \frac{d\left(v_i, S_2\right)}{k}, \dots, \frac{d\left(v_i, S_j\right)}{k}\right)$$
(6)

where $S_i \subset V$ represents a set of anchor nodes selected based on the approach proposed by Linial et al. [31], and k is the number of anchor sets. The $d(v_i, S_i)$ is a distance metric for which we adopt the shortest-length path between node v_i and anchor node S_i . The distance can be defined as follows:

$$d(v_i, S_j) = \min_{u \in S_j} d(v, u) \tag{7}$$

Local Semantics. In order to learn the local semantics of each node within its neighbourhood, we utilize the Weisfeiler-Lehman (WL) algorithm [39, 47] which is widely used for distinguishing

ACM Trans. Intell. Syst. Technol., Vol. x, No. x, Article x. Publication date: x 2024.

a pair of non-isomorphic graphs G, G'. The Weisfeiler-Lehman (WL) algorithm maintains a state for each node, which it progressively refines by aggregating the states of the node's neighbours. Often these states are represented by colours for better intuition. This iterative process results in an embedding for the graph, where each node's final state is represented in the form of an embedding that captures the structural context of the node within the entire graph [24].

Therefore, the WL algorithm can represent a node's position in its neighbourhood within a graph. This positioning system offers a local view of the graph for each given node. We incorporate the WL algorithm into a kernel function as suggested in prior research studies [60–62] and define an embedding function to produce the local semantics. More specifically, we define the Local Semantics (\mathcal{LS}) of a node as follows:

$$\mathcal{LS}(v_i) = \left[\sin\left(\frac{\mathrm{WL}\left(v_i\right)}{10000^{\frac{2l}{d_h}}}\right), \cos\left(\frac{\mathrm{WL}\left(v_i\right)}{10000^{\frac{2l+1}{d_h}}}\right) \right]_{l=0}^{\left\lfloor\frac{d_h}{2}\right\rfloor}$$
(8)

1.4.1

where $v_i \in V$, d_h is the embedding dimension and l is the context processed for generating embeddings. In Equation 8, $W\mathcal{L}$ denotes the Weisfeiler-Lehman algorithm. The detailed steps of the $W\mathcal{L}$ algorithm can be seen in Algorithm 1.

A	lgorithm 1: Weisfeiler-Lehman (\mathcal{WL}) algorithm
Ι	Input: $G = (V, E, W)$
1 C	$v_v^0 \leftarrow \text{hash}(W_v) \text{ for all } v \in V$
2 r	repeat
3	$c_v^\ell \leftarrow \operatorname{hash}\left(c_v^{\ell-1}, \left\{c_u^{\ell-1} : u \in \mathcal{N}_G(v)\right\}\right) \forall v \in V$
4 U	until $(c_v^\ell)_{v \in V} = (c_v^{\ell-1})_{v \in V}$
5 r	$\operatorname{return}\left\{c_v^\ell: v \in V\right\}$

In Algorithm 1, we consider graph G = (V, E, W), where V is the set of vertices; $E \subseteq V \times V$ is the set of edges between vertices; and W_V is the set of node keywords: For all $v \in V, W_v \in \mathbb{R}^d$. The neighbors of a vertex v is $\mathcal{N}_G(v) = \{u : (v, u) \in E\}$. Each level of this iterative process is shown by ℓ . Thus, we can formulate the colour of nodes in level ℓ by c_v^{ℓ} .

Lines 2-4 in Algorithm 1, represent an iterative process where the colours are updated so that the colour of node $\sqsubseteq \in V$, becomes different from its neighbourhood $\mathcal{N}_G(v)$. This is done by using an injective hash function *hash* [24]:

$$\forall (v, u) \in V : \text{hash}(W_v) = \text{hash}(W_u) \iff W_v = W_u \tag{9}$$

Capturing local semantics is especially useful when facing missing edges. The local semantics and global semantics can play a complementary role for each other and cover each other's shortcomings in different situations. There can be a graph where several nodes have highly similar global semantics (GS). This is because, due to missing edges, the chance of having nodes with identical distances to anchor nodes increases significantly. Therefore, the local semantics of nodes can help distinguish nodes from each other.

Adjusted Semantics. The objective of the adjusted semantics is to learn a balanced representation
 of a node that considers both immediate node neighbours as well as globally reachable nodes. This
 semantic aspect acts as a complimentary feature to fill the gap between global and neighbourhood
 positioning.

547

552

553

554

555

556

557

558

559

564

565

566 567

For this purpose, we utilize a k-hop strategy to traverse the graph starting from the node of interest, which will result in a sequence of k-visited nodes. This sequence can serve as a context for the node of interest and hence can be used to learn representations for the node based on this concept of Adjusted Semantics (\mathcal{AS}). Therefore, the formulation of the adjusted semantic representation contains a series of mentioned extracted contexts. To achieve this, we can use a similar equation to global semantics Equation 6. The difference is that instead of anchor nodes, k-hops will be used. Thus the $S_i \subset V$ represents the sequence of nodes traversed by the k-hop.

Feature Embedding. In the context of the keyword graph, each node is often associated with a
 set of keywords. However, the number of keywords associated with each node is quite insignificant
 compared to the total number of keywords in the entire graph, making keyword distribution quite
 sparse. In addition, with *missing keywords*, the keyword distribution becomes even more sparse.

In order to produce feature representations, we utilize a tokenizer to transform the sparse occurrence vector of keywords to a dense low-dimension feature embedding representation. This captures the interaction between keywords and the co-occurrence of them.

Let $W_{v_i} = (w_1^{v_i}, w_2^{v_i}, \dots, w_{n_v}^{v_i})$ represent the input sequence of words for node v_i , where $(w_i^{v_i})$ denotes the i_{th} word in the sequence, and n_{v_i} is the length of the sequence for node v_i .

Let *T* represent the vocabulary of tokens, where each token $t_j \in T$ is associated with a unique index *j* such that $j \in \{1, 2, ..., |T|\}$, and |T| is the size of the vocabulary.

The tokenization process can be described by Θ function that maps the input word sequence W_{v_i} to a sequence of tokens $\{t_1, t_2, \ldots, t_{n_{v_i}}\}$:

$$\mathcal{FE}(v_i) = \Theta(\{w_1^{v_i}, w_2^{v_i}, \dots, w_{n_n}^{v_i}\}) = \{t_1, t_2, \dots, t_{n_n}\}$$
(10)

where each token t is an element of the vocabulary T.

4.1.1 **Input Encoding.** The four views on node semantics from the prior sections provide rich information about graph nodes. We integrate the four different embedding vectors through an aggregation function, referred to as AGGREGATE(.). We formulate the final representative embedding vector for $v_i \in V$ as follows:

$$e_i^{in} = \text{AGGREGATE} \left(\mathcal{GS}(v_i), \mathcal{LS}(v_i), \mathcal{AS}(v_i), \mathcal{FE}(v_i) \right)$$
(11)

The AGGREGATE(.) function plays a central role in fusing the diverse dimensions of node semantics into a unified embedding vector. This aggregation enables a holistic representation of each node's characteristics, thereby facilitating stronger and deeper analyses and interpretations. Xu et al. [56] argue that *AGGREGATE*(.) can be implemented through various strategies such as element-wise max-pooling or vector summation.

The keyword search task relies heavily on matching query keywords with node attributes. Thus, it is important to capture and retain as much keyword information as possible. By aggregating embeddings to reflect the collective attribute strength, the summation strategy as the aggregation method creates a broad feature profile for each node. This broad profile is advantageous in keyword search, as it increases the likelihood of matching a wide range of query keywords, thereby compensating for the information loss in incomplete graphs. This complies with our second principle (P_2) .

In addition, an incomplete graph may lack certain edges, leading to challenges in capturing the full relational context of nodes. It is important to save information echoed by existing edges. The summation strategy indirectly compensates for this by emphasizing the available nodal attributes over relational data, thus maintaining a high level of search effectiveness even when the graph

Algorithm 2: Unsupervised Fine-tuning of Transformer Model using Triplet Sampling Input: $G = (V, E, W), \mathcal{GS}(), \mathcal{LS}(), \mathcal{AS}(), \mathcal{FE}()$ **Output:** Fine-tuned model \mathcal{T} 1 Initialize transformer model \mathcal{T} 2 foreach $v_i \in V$ do $e_i^{in} = \text{AGGREGATE} \left(\mathcal{GS}(v_i), \mathcal{LS}(v_i), \mathcal{AS}(v_i), \mathcal{FE}(v_i) \right) / / \text{ Compute embedding } e_i^{in}$ $\dot{\psi}(e_i^{in}) = \mathcal{T}(e_i^{in}) //$ Compute initial representation 5 end 6 repeat foreach $v_i \in V$ do // step 1 in sampling mechanism Select as positive sample $e_{i_{+}}^{in}$ from the 1-hop neighbourhood Select as negative sample $e_{i_{-}}^{i_{n}}$ if not in the 1-hop neighbourhood // step 2 in sampling mechanism **if** $Hamming(e_i^{in}, e_{i_{-}}^{in}) > Hamming(e_i^{in}, e_{i_{-}}^{in})$ **then** $\mathcal{L} = relu(\left(\left[\left\|\psi\left(e_{i}^{in}\right) - \psi\left(e_{i_{+}}^{in}\right)\right\|_{2}^{2} - \left\|\psi\left(e_{i}^{in}\right) - \psi\left(e_{i_{-}}^{in}\right)\right\|_{2}^{2}\right]\right) / / \text{ Calculate}$ triplet loss for i_{th} node Update model \mathcal{T} to minimize \mathcal{L} end end **until** convergence 16 foreach $v_i \in V$ do // sample-and-aggregate neighbor representations $AGGREGATE_{k}^{pool} = \max\left(\left\{\sigma\left(W_{pool}\mathbf{h}_{u_{i}}^{k} + \mathbf{b}\right), \forall u_{i} \in \mathcal{N}(v)\right\}\right)$ 18 end

structure is partially unknown. This addressed our third principle (P_3). Methods that eliminate part of the information, such as pooling-based techniques, are not well-suited for our task.

Moreover, dimensionality is another factor to consider for aggregation. Hence, concatenation is not a practical strategy since four embedding vectors need to be concatenated. This complies with our first principle (P_1).

Altogether, considering our predefined principles and detailed analysis of available aggregation strategies above, we have adapted the vector summation method for the AGGREGATE(.) function. Its capacity to uniformly integrate available information, maximize the utility of partial data, and maintain simplicity and efficiency in analysis makes it particularly apt for navigating the challenges posed by incomplete graphs. This strategy ensures that despite the inherent data limitations, the process of keyword search remains robust, comprehensive, and effective.

4.1.2 **Training the Model**. In this section, we discuss the training procedure. Our proposed method uses a transformer-based model to generate node representation. Let's represent the generated representation for the i^{th} node with $\psi(e_i^{in})$ and the transformer model with \mathcal{T} . Therefore:

$$\psi(e_i^{in}) = \mathcal{T}(e_i^{in}) \tag{12}$$

647

651

655

656

657

658

659

660

661 662

663 664

665

666

667

668

669

674

675

676

677

678

679

680

~

Given the nodes in the keyword graph are primarily associated with keywords, we adopt an 638 unsupervised learning technique to fine-tune the transformer model given the generated semantics 639 and feature embedding vectors. Using the triplet sampling technique [45, 54], each training record 640 has a negative and positive sample. Thus, the loss function tries to maximize the similarity between 641 the target node and the positive sample and minimize the negative sample. The positive and negative 642 samples need to be specifically defined for the keyword search problem. The ideal loss function 643 must take into effect both the semantics and keywords of nodes when comparing the similarity. We 644 have adopted a customized sampling mechanism for the triplet function to consider both semantics 645 and keyword similarity: 646

- (1) To consider the semantics, we explore the 1-hop neighbourhood of the target node to find 648 a positive sample. This is because nodes with the most similar semantics to the target 649 node are its immediate neighbourhood. Thus, a positive sample must be selected from the 650 target node's 1-hop neighbourhood. Likewise, the negative sample will be any node that is not within the 1-hop neighbourhood of the target node and consequently has no edge 652 connecting to the target node. Positive samples are randomly selected from the target node's 653 1-hop neighborhood. Similarly, negative samples are randomly selected from non-neighbors 654 within 1-hop from the target node.
 - (2) To consider the similarity of the keywords, we represent the keywords of each node with one-hot encoding and calculate the Hamming similarity between the target node and its positive and negative samples. Then, we only accept selected positive and negative samples in step 1 if the Hamming similarity between the target node and positive sample is greater than the target and negative sample.

Therefore, the loss function for fine-tuning the model can be formulated as:

$$\mathcal{L} = \frac{1}{N} \sum_{i}^{N} Max \left(\left[\left\| \psi\left(e_{i}^{in}\right) - \psi\left(e_{i_{+}}^{in}\right) \right\|_{2}^{2} - \left\| \psi\left(e_{i}^{in}\right) - \psi\left(e_{i_{-}}^{in}\right) \right\|_{2}^{2} \right], 0 \right)$$
(13)

where $e_{i_i}^{i_n}$ and $e_i^{i_n}$ represent positive and negative samples, respectively. Here, N is the total number of samples. The loss function in Equation 13 maximizes the similarity between the target node and positive sample and simultaneously minimizes the similarity between the target node and negative sample.

After generating representation vectors for each of the nodes in the keyword graph, we utilize a sample-and-aggregate strategy [21]:

AGGREGATE
$$_{k}^{\text{pool}} = \max\left(\left\{\sigma\left(W_{\text{pool}}\,\mathbf{h}_{u_{i}}^{k}+\mathbf{b}\right), \forall u_{i}\in\mathcal{N}(v)\right\}\right)$$
 (14)

where σ is a non-linear activation function, W_{pool} denotes the weight matrices, h_{wi}^k is the aggregated neighborhood vectors related to the k^{th} layer of the model and b is the bias term. The set of neighbour nodes for node v is denoted by $\mathcal{N}(v)$. The benefit of the sample-and-aggregate strategy is that each node's final representation vector is mixed with a set of samples of its neighbours' representations. This will smooth the search space and propagate the information even further, which is a crucial factor in graphs with missing values. The final node representation vectors are used for searching over the keyword graph.

The procedure for fine-tuning the transformer model is detailed in Algorithm 2. This algorithm 681 outlines the steps involved in initializing the model and computing input embeddings (lines 1-5), 682 sampling positive and negative nodes (lines 8-10), computing loss value and updating the model 683 parameters based on it (lines 11-12). By iterating through all samples (line 7), the model learns to 684 distinguish between similar and dissimilar nodes, effectively improving its performance on the 685

x:15

search task. We have used the *relu()* function (line 11) to implement the max(x, 0) in the loss 687 function. Lastly, a sample and aggregate technique will be applied to all nodes in the graphs (lines 688 689 16-18).

4.2 Search 691

690

717

718

719

720

721

722

During the search, the input query is given as a set of keywords. We denote i_{th} query with q_i 692 as defined in Equation 1. The pseudo-algorithm for search operation can be seen in Algorithm 3. 693 Since the query can be treated as a new node (line 1), its input embedding $e_{v_{q_i}}^{in}$ can be computed 694 using only its features, $\mathcal{FE}(v_{a_i})$ (line 2). This is because the query node will not have any semantic 695 embedding as it is not part of the graph. Next, the final representation for the input query node is 696 generated using the transformed model \mathcal{T} (line 3). Lastly, we compute the similarity between all 697 698 the node representations and query nodes (lines 4-6) and return the top - k most similar nodes (line 7). 699

1	
	Input: $G = (V, E, W), q_i, k$
	Output: Top- k similar nodes to the input query q_i
	// Search using query keywords
L	Represent query q_i as new node v_{q_i}
	// Use feature embedding to generate input embedding for v_q
2	$e_{v_{q_i}}^{in} \leftarrow \mathcal{FE}(v_{q_i})$
	<pre>// Generate representation using trained transformer-based model</pre>
3	$\psi(e_{vq_i}^{in}) \leftarrow \mathcal{T}(e_{vq_i}^{in})$
ŧ	for each node $v_i \in V$ do
5	Compute similarity $S(\psi(e_{v_{q_i}}^{in}), \psi(e_{v_i}^{in}))$ between query node v_{q_i} and node v_i
5	end
7	Return top- <i>k</i> nodes $\{v_1, v_2, \ldots, v_k\}$ with the highest similarity

Time Complexity Analysis 4.3

The problem of keyword search in graphs has been shown to be **NP-hard** [26, 27, 58]. Since searching in incomplete graphs generalizes the problem of complete graph search, it remains NP-hard. To address this challenge, the proposed approach leverages graph representation learning to estimate the relevance of graph elements, thereby reducing the search space dimensionality.

Starting with semantics, Global Semantics require computing the shortest path length to anchor 723 nodes. Using Breadth-First Search (BFS) to determine the shortest path between two nodes results 724 in a time complexity of O(V + E). In the worst case, where the graph is complete ($E = V^2$), this 725 simplifies to $O(V^2)$ [12]. 726

Adjusted Semantics utilize k-hop traversal. Since the number of hops is small, in a dense network, 727 the time complexity is dominated by $O(d^k)$, where d is the average node degree and k is the number 728 of hops [12]. Lastly, Local Semantics employ the Weisfeiler-Lehman (WL) graph coloring algorithm 729 with a time complexity of O(hE), when using hashing-based algorithm. Where h is the number of 730 iterations and E is the number of edges [47]. Feature Embedding component employs a tokenizer 731 with a time complexity of $O(n_q)$. Where n_q is size of tokens. 732

Our proposed method incorporates a transformer-based model for graph representation learning. 733 The self-attention mechanism in transformers has a time complexity of: 734

Hamidi Rad et al.

x:16

736 737

740

741

742

743

744 745

746 747

748

753

758

759

760

761

762

763

764

765

766

767

768 769

770

771

772 773

774

777

778

780

781

782

783 784

- $O(n_a^2)$ (15)
- 738 where n_q represents the number of tokens [51]. 739

Finally, a sample-and-aggregate mechanism is applied to generate final embeddings. For a single node *v* with its *k*-hop neighborhood, let:

- *k* be the number of layers,
- *S* be the sample size (number of neighbors sampled per node),
- *F* be the feature dimension.

The time complexity of this process is:

$$O(S^k \times F) \tag{16}$$

The overall time complexity of the proposed method is:

$$O(\text{proposed method}) = O(V^2) + O(d^k) + O(hE) + O(n_q) + O(n_q^2) + O(S^k \times F)$$
 (17)

Search Mechanism Complexity. The search mechanism involves embedding-based keyword 4.3.1 *matching*, reducing the brute-force complexity from:

$$O(V \times n_q) \tag{18}$$

The efficiency of the search is influenced by the number of query keywords (n_a) and the number of graph nodes (V) that must be compared.

Complexity Dominance Considerations: The dominant complexity term depends on various factors:

- In **dense graphs** $(E = V^2)$, the term $O(V^2)$ dominates.
- When using high-hop traversal (k is large), the exponential term $O(d^k)$ can become a bottleneck.
 - If sampling neighborhoods (S^k) is extensive, the complexity $O(S^k \times F)$ may grow significantly.
- The **transformer model** scales quadratically with the number of tokens, meaning $O(n_a^2)$ is crucial for large queries.

In typical scenarios where the number of hops (k) and query tokens (n_q) remain relatively small, the term $O(V^2)$ is the dominant factor in the time complexity from Equation 17. Therefore, it provides a reasonable approximation for the overall time complexity in common use cases.

Experiments 5

Dataset 5.1

775 In our study of keyword search within incomplete graphs, we selected a set of diverse datasets 776 known for their broad application in graph neural network research. This selection mirrors the state-of-the-art approach utilized by KS-GNN [22], ensuring consistency in evaluation criteria and facilitating direct comparison of results. The datasets include: 779

• CiteSeer: A digital library focusing on literature in computer and information science, known for its citation graph, which links documents through citations [44]. In this dataset, nodes represent published papers, and the edges between the nodes indicate citation relationships. Each paper within the graph is associated with a set of keywords.

- DBLP: This is a comprehensive bibliographic database covering major journals and proceedings in the field of computer science, presenting a rich source of academic relationships [49].
 DBLP is analyzed as a co-authorship graph where each node represents an author, and edges signify co-authorship. Each author within the graph is associated with a set of keywords. Keywords associated with each node are extracted from the abstracts of the authors' published work.
 - Amazon Toys: A subset of the Amazon co-purchase graph, where nodes represent products (in this case, toys), and edges indicate frequently co-purchased items, highlighting consumer behavior patterns [38].
 - Amazon Video: Similar to the Amazon Toys dataset but focuses on movies, providing insights into co-purchasing trends among movie products on Amazon [38].

Table 2. Stats of experimental datasets.

Datasets	Nodes	Edges	Keys	Avg Deg	Closeness	Cluster	Cosine	Neigh Sim	Non-Neigh Sim	N/N Ratio	Avg Keys/Node
CiteSeer [44]	3,327	9,104	3,703	5.55	0.05	0.14	0.19	0.21	0.04	4.80	31.61
DBLP [49]	32,361	69,448	4,094	4.29	0.02	0.21	0.31	0.35	0.03	12.10	11.48
Amazon Video [38]	20,882	66,003	11,514	6.23	0.05	0.06	0.004	0.005	0.001	3.31	22.00
Amazon Toy [38]	20,682	224,603	4,114	20.78	0.10	0.40	0.10	0.11	0.002	57.16	3.01

These datasets were chosen due to their relevance in demonstrating the efficacy of chosen baselines in processing incomplete information. The statistical characteristics of datasets are shown in Table 2. The table reports the number of nodes and edges in each dataset, reflecting graph size and connectivity. The keys column denotes the number of unique keywords associated with nodes, which serve as search attributes. Average degree (Avg Deg) represents the mean number of edges per node, indicating graph sparsity or density. Closeness centrality (Closeness) captures how easily a node can reach others, while clustering coefficient (Cluster) measures the tendency of nodes to form tightly connected groups.

To quantify feature similarity, we report mean cosine similarity (Cosine) between node feature vectors, along with neighbor similarity (Neigh Sim) and non-neighbor similarity (Non-Neigh Sim), which indicate the average similarity among connected and unconnected nodes, respectively. The neighbor/non-neighbor similarity ratio (N/N Ratio) further highlights the extent to which connected nodes share higher feature similarity than unconnected ones. Lastly, the average keys per node (Avg Keys/Node) column represents the mean number of keywords assigned to each node, providing insight into attribute density within the dataset.

As seen in Table 2, we have intentionally selected datasets that have differing graph characteristics. 819 For instance, the CiteSeer dataset, with 3,327 nodes and 9,104 edges, focuses on a more compact 820 graph structure yet contains a substantial number of keywords (3,703), represents a relatively 821 compact graph while maintaining a substantial number of keywords (3,703). This results in a 822 high average keys per node value of 31.61, indicating that each node carries a significant amount 823 of textual information, making it well-suited for evaluating search algorithms on feature-rich 824 networks. Additionally, CiteSeer exhibits a moderate neighbor/non-neighbor similarity ratio (N/N 825 Ratio) of 4.80, suggesting that connected nodes tend to have moderately higher semantic similarity 826 than unconnected ones. In contrast, while the DBLP dataset also focuses on academic publications, 827 it features the highest node count (32,361), along with 69,448 edges and 4,094 keywords, forming 828 a large yet relatively sparse network. The average degree (4.29) is lower compared to the other 829 datasets, reflecting a less connected structure. However, the neighbor similarity (0.35) remains 830 significantly higher than the non-neighbor similarity (0.03), leading to a strong N/N Ratio of 12.10. 831 Despite having a comparable number of keywords to CiteSeer, DBLP's average keys per node 832

833

791

792

793

794

795 796 797

804

805

806

807

808

809

810

(11.48) is considerably lower, implying that individual nodes contain fewer descriptive attributes.
 This makes DBLP a suitable benchmark for analyzing search effectiveness in large-scale academic
 graphs with sparse feature distributions.

We have also chosen two other datasets from a completely different domain, that is, electronic 837 commerce. The Amazon Video and Amazon Toy datasets highlight different aspects of graph 838 complexity. The Video dataset, with 20,882 nodes and 66,003 edges, has the highest number of 839 keywords (11,514), leading to a moderately high average keys per node of 22.00. However, it 840 has the lowest cosine similarity (0.004) and neighbor similarity (0.005), indicating that feature-841 based relationships are weaker in this dataset, likely due to the diverse nature of video content. 842 Meanwhile, the Toy dataset, despite having a similar number of nodes (20,682), is significantly 843 more interconnected, with 224,603 edges and a much higher average degree (20.78). The clustering 844 coefficient (0.40) indicates strong local grouping tendencies, while its exceptionally high N/N Ratio 845 (57.16) suggests that connected nodes are far more semantically aligned than unconnected ones. 846 Interestingly, it has the lowest average keys per node (3.01), implying that while nodes in this 847 dataset are densely interconnected, they contain fewer distinguishing textual features. 848

These variations across datasets, spanning differences in graph size, connectivity, feature similarity, and attribute density, provide a rich experimental ground for evaluating graph-based search and learning algorithms. The inclusion of datasets with *highly interconnected structures* (Amazon Toy), *sparse academic graphs* (DBLP), *feature-dense but structurally moderate networks* (CiteSeer), and *semantically diverse but weakly connected content* (Amazon Video) ensures a thorough assessment of our model's performance across different real-world scenarios.

856 5.2 Experimental Setup

855

862

863

864

865

866

867

868

869

870

871

882

In our study, we evaluate our suggested approach against standard techniques for keyword search tasks within two types of networks as suggested by [11, 22, 57]: (1) networks containing only absent keywords, and (2) networks missing both keywords and connections. For each dataset, to mimic real-world conditions and accurately adjust the levels of missing information, we modify the original data in two phases:

- (1) Concealing the keywords for a specified portion (marked as r_w) of randomly chosen nodes in the network;
- (2) Randomly hide a certain percentage (notated as r_e) of the network's edges.

We denote that the random selection functions independently, uniformly and without any tie to graph characteristics. Total number of words in a query q as $n_q = |q|$ and randomly select 100 queries for testing for each n_q value that ranges from 3 to 9, increasing by increments of 2 (i.e. [3,5,7,9]). Therefore, the size of keywords in the results tables indicates the size of the query.

The ground truth is generated by the BLINK [23] method. Similar to KS-GNN [22], the original graph is processed by BLINK and the top-K retrieved answers are used as the gold standard.

Furthermore, in each incomplete network, we create a validation set comprising 100 randomly chosen queries with known correct answers. We adjust the parameters of the methods under comparison using the grid search technique on the validation set. This approach allows for a comprehensive comparison with baseline methods under varying conditions of information incompleteness.

To ensure the reliability and stability of our findings, each method in our study is executed 20 times. This repetition allows us to mitigate any variability caused by random factors in the data or the algorithms. The final results we present are the averages of these runs, providing a more accurate reflection of each method's performance under the experimental conditions. This approach helps in understanding the expected behaviour of these methods in real-world scenarios. For each evaluation setup, the best results are indicated in bold

883 5.3 Code

The implementation of our proposed method and other baselines along with the dataset is publicly
 available on GitHub¹.

887 5.4 Baselines

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930 931 In this study, we introduce a novel approach to keyword search on incomplete graphs, benchmarking against the contemporary state-of-the-art methodologies:

- **KS-GNN** [22]: A versatile method distinguished by its use of a three-term loss function and an encoder-decoder mechanism, enhanced with aggregation for embedding vector creation. This approach is adaptable, allowing for various graph representation learning techniques to be applied, thereby tailoring the search process to the specific characteristics of the graph data.
 - D²PT [32] is a dual-channel GNN that enhances learning in graphs with weak information by employing a diffused propagation then transformation (DPT) backbone. It utilizes a diffusion-based propagation mechanism to compensate for weak connectivity and missing information. Then, D²PT constructs an auxiliary global graph based on the nearest-neighbor strategy to propagate information even for disconnected nodes. D²PT is fundamentally a supervised approach, requiring labeled data for effective training. Therefore, we were only able to evaluate on Citesser and DBLP datasets.
 - GNN-Based Methods:
 - T2-GNN [25] is a teacher-student distillation framework designed to improve robustness on incomplete graphs. It employs two separate teacher models: one for feature
 imputation and another for structure reconstruction, ensuring that missing information
 does not interfere with learning. A dual-distillation mechanism then transfers this
 knowledge to a student GNN. While T2-GNN achieves strong results on standard
 benchmarks, it relies on a fully supervised setting with labeled training data. Thus, we
 were only able to evaluate on Citesser and DBLP datasets.
 - Graph Convolutional Networks (GCN) [29]: Leverages the spectral properties
 of graphs to implement convolutional neural networks directly on graph-structured
 data. This method is pivotal for capturing local node features and their topological
 relationships, making it suitable for tasks that require an understanding of graph
 structure.
 - Graph Attention Networks (GAT) [52]: Introduces an attention mechanism into the graph neural network framework, allowing nodes to weigh the importance of their neighbours' features dynamically. This adaptability enables the model to focus on the most relevant parts of the graph for the task at hand.
 - Chebyshev Convolution (ChebConv) [14]: Utilizes Chebyshev polynomials to approximate the graph Laplacian's spectral filter, enabling the model to learn graph features over various scales. This method is efficient for large graphs where capturing global graph properties is essential.
 - GraphSAGE [21]: Employs a sampling-based approach to efficiently generate node embeddings by aggregating features from a node's local neighbourhood. This methodology is designed to handle large graphs by learning a function that generates embeddings by sampling and aggregating features from a node's neighbourhood.
 - **BLINK+SAT** [11, 23]: A two-stage process where the SAT model initially predicts missing links/keywords, followed by the application of the BLINK method for keyword search. This

¹GitHub code: https://github.com/radinhamidi/A-Robust-Neural-Approach-for-Searching-over-Incomplete-Graphs

sequential approach aims to enhance the accuracy of keyword searches on incomplete graphs by mitigating the impact of missing information.

- PCA-Based Methods:
 - PCA (Principal Component Analysis) [19]: PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. In the context of graph search, PCA can reduce the dimensionality of the graph's feature space, retaining those characteristics most significant for the search while minimizing information loss. This process simplifies the graph's complexity, facilitating a more efficient search operation.
 - Conv-PCA [22]: This method employs a convolutional graph neural network layer to aggregate and refine node representations from the graph's data, capturing both local and global structural patterns effectively. After processing through this convolutional layer, the refined node representations are then subjected to PCA for dimensionality reduction. This sequence ensures that the intricate patterns discerned by the convolutional layer are preserved, albeit in a reduced-dimensional space, enhancing the keyword search's efficiency and accuracy by focusing on the most impactful features.
 - KS-PCA [22]: This approach represents a hybrid approach that merges the strengths of KS-GNN's graph neural network framework with PCA's dimensionality reduction capabilities. In this method, the data is processed by PCA transformation instead of KS-GNN encoder-decoder architecture. This combination aims to harness PCA's efficiency in simplifying data representation and KS-GNN's robustness in handling graph-based data, especially in scenarios characterized by incomplete information.

This comparative list of baselines aims to underscore our proposed method's robustness and versatility in handling keyword searches on incomplete graphs. By evaluating against these diverse methodologies, our goal is to highlight the superior performance and efficiency of our approach, thereby making a significant contribution to the ongoing research in graph search algorithms.

5.5 Ablation Study

An ablation study was conducted to assess the individual and combined effects of the components of our proposed method on its overall performance. We evaluated our proposed method and all component combination variations under a challenging scenario, with half missing edges ($r_e = 50\%$) and half missing keywords ($r_w = 50\%$). This setup allowed us to rigorously investigate the role and impact of each component under conditions of significant data incompleteness. The results are shown in Table 3, from which several key insights emerge:

- (1) **Single-component Efficacy:** Performance of the single components depends on the dataset characteristic. In a small dataset, i.e., CiteSeer, \mathcal{AS} demonstrated slightly better performance relative to its counterparts. However, this changes when the dataset's size starts to grow. This growth can be in terms of the number of nodes (i.e. DBLP), number of total keywords (i.e. Amazon Video) or number of edges (i.e. Amazon Toy). It can be seen that \mathcal{GS} and \mathcal{LS} components perform slightly better than \mathcal{AS} . This can be justified by the fact that by increasing the size of the graph, \mathcal{AS} semantic becomes less efficient in representing either the close neighbourhood or global position of a target node.
- 976(2) Double-component Synergy: The combination of any two components invariably re-
sulted in performance enhancement beyond that achievable by the components in isolation.
Notably, not all the synergies contribute equally to the performance. CiteSeer and DBLP
benefit greatly from combinations $\mathcal{GS} + \mathcal{LS}$ due to the need to capture both broad global

-	r _e	_	50% Miss	ing Edges				
Datasets	r_W	50	50% Missing Keywords					
	n_q	3	5	7	9			
	\mathcal{AS}	25.48	30.74	33.24	34.17			
	GS	25.27	30.41	32.95	33.83			
	\mathcal{LS}	25.35	30.05	33.79	34.01			
CiteSeer	GS + AS	25.95	31.65	34.11	34.75			
	$\mathcal{LS} + \mathcal{AS}$	26.21	32.71	34.17	35.32			
	GS + LS	26.19	32.80	34.94	35.36			
	Proposed Method (All)	27.3	34.57	35.48	36.0 4			
	\mathcal{AS}	11.21	14.37	16.97	18.77			
	GS	11.43	14.89	17.08	19.58			
Datasets CiteSeer Video	\mathcal{LS}	11.84	14.90	17.10	19.71			
Video	GS + AS	12.31	15.35	18.56	20.19			
	$\mathcal{LS} + \mathcal{AS}$	12.49	15.58	18.63	20.34			
	GS + LS	12.09	15.12	18.07	20.1			
	Proposed Method (All)	13.71	16.63	19.09	21.45			
	AS	17.39	23.42	24.74	25.19			
	GS	17.60	23.90	24.83	25.6			
	\mathcal{LS}	17.95	23.98	24.89	25.79			
Toy	GS + AS	18.07	24.07	25.41	26.14			
	$\mathcal{LS} + \mathcal{AS}$	18.31	24.44	25.39	26.85			
	GS + LS	18.60	24.82	25.58	s rds 9 34.17 33.83 34.01 34.75 35.32 35.36 36.04 18.77 19.58 19.71 20.19 20.34 20.11 21.45 25.67 25.79 26.14 26.85 26.92 28.34 28.33 28.40 28.67			
	Proposed Method (All)	19.9	25.54	27.03	28.3 4			
	AS	16.06	23.20	27.59	28.33			
	GS	16.47	23.72	27.62	28.40			
	LS	16.19	23.93	27.48	28.6			
DBLP	GS + AS	18.38	24.37	28.69	29.14			

Table 3. Performance results of the ablation Study for CiteSeer, DBLP, Amazon Toy and Video datasets.

relationships and detailed local structures, which is especially important in sparser graphs like DBLP where the combination of the relationships between nodes is often either very local or requires a broad, global perspective. Amazon Video and Amazon Toy tend to benefit more from $\mathcal{LS} + \mathcal{AS}$ combination, as these can better manage the dense local structures and large number of keywords. This underscores the importance of component interaction in optimizing performance.

(3) Integrated Performance: The holistic integration of all four components significantly
 outperforms any individual or combined subset thereof, across various configurations and
 scenarios. This demonstrates the synergistic effect of the components, each contributing
 uniquely to the framework's robustness and adaptability.

These observations not only highlight the strengths and limitations of the individual components but also affirm the efficacy of the integrated approach in enhancing search performance in incomplete graphs. Future work may explore further optimizations and the potential for additional components to address identified weaknesses, thereby extending the methodology's applicability and effectiveness.

5.6 Comparison With Baselines

LS + AS

GS + LS

Proposed Method (All)

Starting with the first scenario where only keywords are missed, we make several observationsbased on the result from Table 4:

1029

1025

1026

1005

1006

1007

1008 1009

1010

1011

1012

1013

1014

1015

17.84

18.29

18.86

24.02

24.49

25.02

28.13

28.72

29.33

29.01

29.21

30.65

1030	Table 4. Performance for our proposed method and baselines by Hits@100 (%) with Missing Keywords and
1031	No Missing Edges. T2-GNN and D ² PT employ supervised approaches and are evaluated on labeled datasets,
1032	i.e., Citeseer and DBLP.

		2007 Missing Keywords				=			1	700 Missing Varmar 1-			
Datasets	r _w	30%	6 Missin	g Keywo	ords	50%	% Missin	g Keywo	ords	70%	6 Missin	g Keywo	ords
	n _q	3	5	7	9	3	5	7	9	3	5	7	9
	GCN	15.72	16.05	16.33	13.59	12.56	14.01	20.18	19.86	12.79	16.57	15.46	15.12
	GAT	19.02	17.06	22.7	22.46	15.51	22.53	21.53	18.62	16.82	14.9	19.66	23.04
	ChebConv	17.74	20.24	23.04	13.98	15.59	23.2	20.63	20.38	16.92	22.7	18.99	23.24
	GraphSAGE	0.74	0.59	1.23	1.16	3.39	2.36	2.53	1.87	10.45	7.14	8.57	7.74
	BLINK+SAT	8.81	7.23	5.65	4.42	9.14	5.97	5.47	4.88	9.82	8.34	8.75	5.49
CitoSoor	PCA	11.2	8.42	7.05	6.05	9.87	7.33	6.8	5.66	8.4	6.83	6.07	5.46
CileSeei	Conv-PCA	11.56	11.11	9.08	10.32	8.14	10.05	10.76	9.25	12.69	11.06	10.83	7.3
	KS-PCA	25.7	30.06	35.01	36.38	26.08	27.56	30.84	33.82	26.08	28.52	32.08	36
	D^2PT	4.54	5.35	5.57	4.84	3.05	6.17	4.82	6.59	5.93	4.46	5.01	5.37
	T2-GNN	24.75	31.07	36.42	38.55	25.01	32.15	36.22	37.74	22.56	29.82	35.15	37.11
	KS-GNN	29.52	36.37	37.92	39.00	30.07	36.41	38.85	39.00	27.08	37.48	37.66	36.02
	Proposed Method	34.84	43.3	45.05	46.49	34.67	42.68	44.95	46.94	34.79	43.85	45.73	47.03
	GCN	2.75	5.27	3.05	8.04	7.27	2.44	7.17	7.6	5.86	3.85	9.12	11.31
	GAT	4.41	4.77	10.09	2.35	5.93	5.22	10.74	3.68	5.26	12.97	8.72	9.63
	ChebConv	4.56	9.41	5.68	8.96	6.4	4.17	8.5	8.68	7.54	11.03	8.63	17.36
	GraphSAGE	0.42	0.49	0.36	0.82	0.29	0.43	0.53	0.05	0.07	0.01	0.01	0.00
	BLINK+SAT	3.26	6.09	4.01	6.65	3.49	1.66	5.42	3.95	4.25	2.42	3.12	4.24
	PCA	3.78	2.57	2.25	2.38	3.06	2.55	2.21	2.15	2.97	2.51	2.02	1.88
DBLP	Conv-PCA	9.00	13.24	13 29	16.87	5.93	6 56	7 64	10.62	7.00	10.52	10.03	15.68
	KS-PCA	15.28	21 41	25.61	31.64	14 98	20.73	23 21	31.72	12.49	19.49	21.23	28.63
	D ² PT	5 72	5.83	6.22	5 64	5 11	5.98	5.61	5 91	5.03	4 89	5 5 5 5	5 28
	T2-GNN	15.42	23.85	27.31	30.67	15.88	23 14	27.18	30.03	14 75	22 78	25 79	30.12
	KS-GNN	16.21	23.03	20.55	33 51	16.52	20.14	26.85	30.60	15.57	24.15	23.79	20.06
	Proposed Method	23 11	39.99	30 38	40.54	24.01	33.46	38.01	19 13	22 22	32.15	30 16	40.86
	CCN	12.66	16.06	10.56	25.29	16.14	10.46	10.00	22.15	6.40	6 70	11 21	12.06
	CAT	10.47	12.00	0.15	11 25	11.14	19.40	19.99	23.03	0.47	12.26	12.46	12.00
	ChahCany	10.47	13.4	9.15	× 40	0 10	12.10	14.5	7.05	0.04 E 77	12.20 E 06	0.44	12.04
	Crawle ACE	4.45	4.5	4.57	0.47	0.19	12.91	0.4	7.05	0.24	0.25	9.44	13.92
	GraphSAGE	0.49	0.30	0.06	0.05	0.44	0.14	0.00	0.05	0.54	0.55	0.21	0.16
Video	DLIINK+5A1	10.21	9.86	10.99	14.8/	ð.55	0.92	ð.63	5.82	1.18	1.15	4.38	5.55
	PCA Come DCA	1.54	0.91	0.55	0.61	1./1	0.72	0./1	0.57	1.66	0.95	0.66	0.55
	CONV-PCA	1.81	2.46	1.58	2.38	2.43	1.49	1.66	2.54	2.42	2.37	2.80	3.37
	KS-PCA	10.19	12.23	16.15	21.37	11.26	15.62	19.51	23.87	10.66	15.57	19.17	25.36
	KS-GNN	21.43	23.36	22.92	26.79	22.54	22.57	30.41	33.41	21.01	16.48	22.01	28.47
	Proposed Method	23.33	30.13	34.89	38.71	22.76	29.56	34.27	38.11	21.6	27.71	32.73	36.18
	GCN	18.97	21.27	19.13	21.44	18.47	20.26	19.07	22.34	18.03	19.40	18.91	20.73
							~ ~ . ~		01 00	10.1/	00.07	01 07	21 20
	GAT	20.84	22.41	22.6	19.65	21.39	27.43	29.82	31.09	19.16	20.87	21.36	21.00
	GAT ChebConv	20.84 15.5	22.41 18.08	22.6 22.63	19.65 12.0	21.39 14.94	27.43 21.01	29.82 24.27	31.09 19.85	19.16 16.3	20.87 17.48	21.36 19.97	12.35
	GAT ChebConv GraphSAGE	20.84 15.5 0.74	22.41 18.08 0.88	22.6 22.63 5.11	19.65 12.0 4.21	21.39 14.94 4.24	27.43 21.01 12.49	29.82 24.27 6.50	31.09 19.85 6.10	19.16 16.3 1.45	20.87 17.48 4.39	21.36 19.97 6.71	21.80 12.35 1.09
Toy	GAT ChebConv GraphSAGE BLINK+SAT	20.84 15.5 0.74 6.47	22.41 18.08 0.88 8.17	22.6 22.63 5.11 8.12	19.65 12.0 4.21 10.54	21.39 14.94 4.24 6.79	27.43 21.01 12.49 9.59	29.82 24.27 6.50 10.99	31.09 19.85 6.10 11.93	19.16 16.3 1.45 6.44	20.87 17.48 4.39 8.56	21.36 19.97 6.71 11.55	12.35 1.09 8.15
Тоу	GAT ChebConv GraphSAGE BLINK+SAT PCA	20.84 15.5 0.74 6.47 1.15	22.41 18.08 0.88 8.17 0.68	22.6 22.63 5.11 8.12 0.63	19.65 12.0 4.21 10.54 0.51	21.39 14.94 4.24 6.79 1.01	27.43 21.01 12.49 9.59 0.69	29.82 24.27 6.50 10.99 0.51	31.09 19.85 6.10 11.93 0.44	19.16 16.3 1.45 6.44 0.67	20.87 17.48 4.39 8.56 0.47	21.36 19.97 6.71 11.55 0.44	12.35 1.09 8.15 0.30
Тоу	GAT ChebConv GraphSAGE BLINK+SAT PCA Conv-PCA	20.84 15.5 0.74 6.47 1.15 21.34	22.41 18.08 0.88 8.17 0.68 21.99	22.6 22.63 5.11 8.12 0.63 23.76	19.65 12.0 4.21 10.54 0.51 25.40	21.39 14.94 4.24 6.79 1.01 19.17	27.43 21.01 12.49 9.59 0.69 19.72	29.82 24.27 6.50 10.99 0.51 20.21	31.09 19.85 6.10 11.93 0.44 25.22	19.16 16.3 1.45 6.44 0.67 16.99	20.87 17.48 4.39 8.56 0.47 21.61	21.36 19.97 6.71 11.55 0.44 23.95	12.35 1.09 8.15 0.30 24.90
Тоу	GAT ChebConv GraphSAGE BLINK+SAT PCA Conv-PCA KS-PCA	20.84 15.5 0.74 6.47 1.15 21.34 27.23	22.41 18.08 0.88 8.17 0.68 21.99 27.73	22.6 22.63 5.11 8.12 0.63 23.76 31.58	19.65 12.0 4.21 10.54 0.51 25.40 33.79	21.39 14.94 4.24 6.79 1.01 19.17 25.78	27.43 21.01 12.49 9.59 0.69 19.72 28.94	29.82 24.27 6.50 10.99 0.51 20.21 31.04	31.09 19.85 6.10 11.93 0.44 25.22 32.82	19.16 16.3 1.45 6.44 0.67 16.99 18.35	20.87 17.48 4.39 8.56 0.47 21.61 22.03	21.36 19.97 6.71 11.55 0.44 23.95 25.50	21.80 12.35 1.09 8.15 0.30 24.90 26.25
Тоу	GAT ChebConv GraphSAGE BLINK+SAT PCA Conv-PCA KS-PCA KS-GNN	20.84 15.5 0.74 6.47 1.15 21.34 27.23 28.56	22.41 18.08 0.88 8.17 0.68 21.99 27.73 29.85	22.6 22.63 5.11 8.12 0.63 23.76 31.58 29.55	19.65 12.0 4.21 10.54 0.51 25.40 33.79 34.28	21.39 14.94 4.24 6.79 1.01 19.17 25.78 24.65	27.43 21.01 12.49 9.59 0.69 19.72 28.94 29.16	29.82 24.27 6.50 10.99 0.51 20.21 31.04 31.27	31.09 19.85 6.10 11.93 0.44 25.22 32.82 33.25	19.16 16.3 1.45 6.44 0.67 16.99 18.35 21.78	20.87 17.48 4.39 8.56 0.47 21.61 22.03 27.41	21.36 19.97 6.71 11.55 0.44 23.95 25.50 25.55	21.80 12.35 1.09 8.15 0.30 24.90 26.25 30.17

- 1069 1070 1071

1072

1073

(1) Our proposed method has been able to show consistently better performance compared to the baselines on all query sizes and for a different rate of missing keywords. Even when compared to KS-GNN, the state-of-the-art baseline for keyword search on incomplete graphs. We observe a consistent and significant improvement under various conditions.

(2) It can be seen that a change in the size of keywords or the missing rate can cause a change 1074 in performance for some methods while performance remains in the same range for the rest. 1075 More specifically, GCN, GAT, ChebConv, PCA, T2-GNN and KS-GNN are the methods that 1076 suffer performance drop by increasing the missing keyword ratio. On the other hand, the 1077

1078

1079	Table 5. Performance for our proposed method and baselines by Hits@100 (%) with Missing Keywords and
1080	30% Missing Edges. T2-GNN and D ² PT employ supervised approaches and are evaluated on labeled datasets,
1081	i.e., Citeseer and DBLP.

		200	7 Missin	a Varmus	nda	EOg	7 Missin	or Vormus	nda	70% Missing Keywords				
Datasets	r _w	307	5 NIISSIII	g Keywc 7	9	307	5 IVIISSIII	g Keywt 7	9 9	707	6 MISSIII 5	g Keywt 7	9 9	
	GCN	19.00	17.86	21.19	22 44	13.7	15.18	15.82	11.46	11 27	19.34	22.43	21.33	
	GAT	10.58	8.88	0.0	12.44	12.7	18.52	14.36	21.40	12.96	15.98	14.83	12 41	
	ChebConv	18.33	28.27	21.06	17 54	17.89	16.54	28.33	26.67	18.99	22.42	29.54	28 77	
	GraphSAGE	1 25	1.03	0.75	1 03	3.26	2 4 5	3 34	1.62	9.44	7 86	7 59	5 45	
	BI INK+SAT	9.19	8 14	5.68	3 71	8.26	6 79	6.04	8.57	7.88	8 33	7.69	83	
CiteSeer	PCA	11.2	8.42	7.05	6.05	9.20	7 33	6.8	5.66	8.4	6.83	6.07	5 46	
	Conv-PCA	11.2	10.42	9.05	10.55	9.77	10.61	12 73	9.31	12.92	11.83	12 25	8 45	
	KS-PCA	26.08	30.06	32.26	34.65	23.8	26.45	29.11	31.81	26.06	26.57	31.42	34 53	
	D ² PT	4 07	3 48	5 78	3.04	5 34	3 45	5 47	2.88	2.93	1 76	2.86	4 73	
	T2-GNN	24 79	31 16	34 29	38.61	23.83	30.69	33 72	36.98	22.35	28 52	32.86	35.17	
	KS-GNN	28.96	35.75	39.44	39.4	26.48	34.92	36.31	37.3	24.2	27.84	28.19	33.41	
	Proposed Method	32 79	41 72	42 45	43 63	33 28	40 74	41 59	42 48	33 17	41 72	41 72	43 16	
	GCN	4 85	6.71	5.89	3.62	2 91	10.71	9.53	8.5	2 21	2 79	1 4 1	4 56	
	GAT	3 27	3 74	7 37	7 11	3 71	4 49	5 55	8 04	5.63	7 73	8 34	7.63	
	ChebConv	5.51	8 51	12 55	4 24	7.66	12 24	11 94	13.09	63	6 4 4	10.21	14.2	
	GraphSAGE	0.51	0.20	0.42	0.34	0.67	0.25	0.40	0.90	0.40	0.44	0.04	0.02	
	BLINK+SAT	4 78	3 4 5	674	4 58	3.94	3.66	5.05	3.97	2.96	2.75	2.83	7 29	
	PCA	3 78	2.57	2 25	2.38	3.06	2 55	2 21	2 15	2.97	2.75	2.02	1.88	
DBLP	Conv-PCA	8 35	11.8	12 51	14 51	5.00	6.77	7.03	9.91	6.46	9.59	9.47	14 33	
	KS-PCA	15.05	10.00	22.61	28 57	13.68	10.77	21.59	28.96	11.67	17 37	18 38	24 51	
	D ² PT	4 18	5.63	6.05	5 72	4 51	5.03	5.67	5.96	3 3 2	4.08	4 4 1	4.82	
	T2-CNN	1/ 83	10.05	22.25	3.72 27.72	12 21	18 78	21.35	25.00	10.00	16.20	18 80	24.12	
	KS-CNN	15.01	20.40	25.00	20.04	15 70	10.70	21.55	20.70	12.07	17.18	10.09	24.13	
	Proposed Method	13.71 99.90	20.49	25.09	27.04	10.79	25.86	22.13	30.00	10.70	26 36	29.65	24.19	
	CCN	22.27	2 9.00	4.5	1 60	1.62	23.00	4 14	2 04	2 10	20.30	3.01	3.04	
	GAT	3.01	2.75	3.01	2.52	2.51	3 99	3.76	3.84	4.27	3.0	4 31	3.64	
	ChebConv	3 35	4.08	4 85	4 76	2.51	3.03	4 46	4 54	1.27	2 55	5.67	2.04	
	GraphSAGE	0.00	0.11	4.05	4.70	0.26	0.05	0.00	0.04	1.50	1.65	2.07	1 20	
	BI INK+SAT	1.67	1.85	2.48	1.44	0.20	0.05	4.96	2 07	2 10	1.05	0.78	1.29	
Video	PC A	1.07	0.01	0.55	0.61	1 71	0.72	4.90	0.57	1.66	0.05	0.78	0.55	
	Conv-PCA	1.54	1 59	0.55	2.01	1.71	0.72	0.71	1.23	1.00	1 25	1 31	1 38	
	KS-PCA	3.82	4 13	4 88	7 13	3.96	4 52	5 33	6.11	3.64	4 58	5.17	6 55	
	KS-GNN	8.08	8 34	12.88	11.82	6.84	7.68	4 18	11 12	6 37	10.31	13.92	10.07	
	Proposed Method	15 31	18 74	21.8	24.95	14 74	18 98	22.09	25.03	13.87	17 17	20.02	22 39	
	GCN	2 64	2 37	1 78	2 99	2 4 5	2 55	2.04	2 93	2.18	2 21	2 11	2 30	
	CAT	2.04	1.45	2 77	0.02	1.45	0.87	1 1 1	0.64	1 16	0.03	0.74	0.88	
	ChebConv	6.03	6.15	11.60	7.82	7.25	8.25	0.03	8 01	3.00	3.83	4.46	5.17	
	GraphSAGE	0.95	0.15	0.01	0.00	0.28	0.25	9.05	0.91	0.02	0.18	0.20	0.23	
	BI INK+SAT	3 60	3.02	1.01	5.64	0.20	1.34	1.01	5.44	1.74	1 30	172	0.25	
Toy	PC A	1 15	0.69	4.05	0.51	2.30	1.54	0.51	0.44	1.70	0.47	4.75	4.43	
	Conv-PCA	1.10	10.00	0.05	12 20	1.01	0.09	0.51	0.44	6.74	0.47	0.44 8 00	0.50	
	KS-PCA	13.80	10.40	11.45	15.67	7.51	9.00 11.02	7.00	13.02	6.84	0.07	0.79	7.30	
	KS-LCA	12.00	12.05	13.33	15.07	11.33	12.03	12.09	12.02	0.04	0.3/	7.30	10.43	
	Ronaged Math-J	15.82	13.28	14.38	15.22	12.51	12.54	12.08	12.39	9.41 17.20	0.99	12.83	11.15	
	r toposeu method	22.12	20.02	30.26	31.13	22.09	20.37	30.19	31.03	17.52	22.90	23.49	24.03	

1118 1119

1120

1121

1122

1000

rest of the methods, GraphSAGE, BLINK+SAT, Conv-PCA, KS-PCA, D²PT and our proposed method, show minor or no performance drop when the missing keyword ratio increases. This can be interpreted as a result of a robust learning technique that properly captures the structural and semantical characteristics of graphs.

(3) While the performance for the mentioned group remains stable, the overall performance
 varies across methods. For example, the GraphSAGE method shows a significantly poor
 performance compared to the rest. This is because GraphSAGE only utilizes the message
 passing and max-pooling operator to gather information from neighbour nodes. This causes

the model to be unable to distinguish the source of each unique keyword. Smoothing 1128 the neighbourhood information combined with missing values makes the representation 1129 generated by GraphSAGE almost non-functional for the purpose of keyword search in 1130 incomplete graphs. Furthermore, we observe that the D^2PT method also performs poorly 1131 in keyword search overall. This is because the learned representations may not directly 1132 optimize for keyword retrieval. Moreover, over-propagation in diffusion-based propagation 1133 mechanism can lead to over-smoothing, where node representations become too similar 1134 across the graph. 1135

- (4) In the PCA-based group of methods, we can see that PCA and KS-PCA suffer a performance 1136 drop compared to Conv-PCA when increasing the missing keyword ratio. This is because 1137 PCA generates embedding per node, and loss of information directly affects the performance. 1138 On the contrary, although the Conv-PCA does not perform well, it remains robust against 1139 missing information. This is because Conv-PCA uses a graph convolutional neural layer to 1140 aggregate and refine node representations from the graph's data, capturing both local and 1141 global structural patterns effectively. In addition, Conv-PCA uses a decoder unit; therefore, 1142 the reconstruction loss is also taken into account. 1143
- (5) GCN, GAT, and ChebConv models are showing weak performance overall. These models 1144 1145 use graph neural networks along with different techniques to generate representations. GCN uses a convolutional layer to learn the node representations that incorporate infor-1146 mation from their neighbourhoods. ChebConv is based on the Chebyshev Spectral Graph 1147 Convolution framework, which utilizes Chebyshev polynomials of the Laplacian matrix 1148 to efficiently compute graph convolutions. GAT dynamically determines the importance 1149 of each neighbour's features through a self-attention mechanism. While each of these 1150 models uses a unique approach to capture graph information, they all fail to achieve high 1151 performance when it comes to incomplete graphs. This shows that missing information in 1152 graphs needs a special mechanism to focus on the structure and features of nodes in the 1153 graph. Our proposed method uses a multi-aspect graph representation method as a solution 1154 for this. 1155
- (6) BLINK+SAT uses SAT [11], a GNN-based graph completion model, to reconstruct a graph without missing information and then uses BLINK [23] to index the graph and process keyword search. The BLINK+SAT performance is not significant because the graph completion process is a sensitive and unreliable task. The model also loses more performance when the missing information ratio increases. This is because graph completion tasks become more and more challenging when the number of missing information increases.
- (7) We also observe that baselines that adopt a decoder in their architecture, i.e. KS-GNN, KS PCA, Conv-PCA and our proposed method, are achieving higher performance in comparison
 to those without a decoder. This shows that decoders, in general, help models achieve better
 performance by adding reconstruction loss to their training loss function. To better assess
 this fact, the Conv-PCA performance should be compared to the ordinary PCA method.
 - (8) The proposed method shows consistent good performance when the size of the input query increases. This shows that the method can learn additional contextual information from the presence of additional keywords in the query. This pattern is also observed for the KS-GNN, KS-PCA and Conv-PCA methods; however, the degree of improvement and the performance measures are lower than our proposed approach.

Moving to the second scenario, where graph experiences both missing keywords and missing edges, we make several observations based on the result from Table 5:

x:24

1167

1168

1169

1170

1171 1172 1173

1174

- (1) The overall performance for the majority of the methods drops by introducing the missing 1177 edge challenge to the problem. GCN, GAT, ChenConv, GraphSage, BLINK+SAT, PCA and 1178 ConvPCA are all subject to this pattern. This shows that the mentioned methods are not 1179 robust against missing edges, and the structural properties of the graph are not captured 1180 efficiently for search in incomplete graphs. While this was expected, we observe that for 1181 GCN and ChebConv methods, the pattern is the opposite for CiteSeer dataset particularly. 1182 This can be due to CiteSeer being a relatively small graph, and alteration cannot hurt the 1183 structure significantly. 1184
- (2) BLINK+SAT shows an exceptionally reduced performance when facing missing edges.
 BLINK+SAT uses a graph completion technique for missing information recovery. This
 proves that this technique may not be a good solution for search in incomplete graphs.
- (3) For our proposed method and the baselines, including KS-GNN, the state-of-the-art model,
 the missing edges impact differently on each dataset. Our proposed method is more robust
 on CiteSeer and DBLP datasets. While it outperforms the other methods on the Toy and
 Video dataset, the performance is more impacted by the missing edge. It can be concluded
 that graph attributes, such as the number of nodes, edges and keywords, can contribute to
 the model performance and tolerance against missing values.
 - (4) We can conclude that our proposed method performs better than all baselines, even for cases when both missing keywords and edges exist. It can be seen that despite the missing values in both edges and keywords, our proposed method consistently outperformed others. This is because the proposed method crafts graph representations from four different perspectives, providing complementary information to deal with missing values.

1200 5.7 Sensitivity Analysis

1194

1195

1196

1197

1198 1199

This sensitivity analysis investigates the impact of keyword size on the performance of our proposed search method, focusing on its responsiveness and robustness to keyword size variations. We examine the behaviour of our model with query keyword sizes of $n_q = \{3, 5, 7, 9\}$. The analysis aims to demonstrate the extent to which keyword size influences the efficacy of our proposed method. The results can be seen in Figure 4. All other setup parameters remain the same during the study. We studied performance with several rates of missing keywords (r_w) and edges (r_e) to ensure that observed performance trends could be attributed solely to changes in keyword size.

The results reveal distinct trends in the performance of our proposed search method as the 1208 keyword size increases. Notably, our method exhibited a better Hit@k score compared to smaller 1209 keyword sizes (3 and 5) across all four datasets. This indicates a positive correlation between 1210 keyword size and search performance. Our model maintained a competitive edge as the keyword 1211 size increased to 7 and 9, suggesting its robustness in capturing relevant information even with 1212 a larger set of keywords, however the rate of performance increase slowed down and near to 1213 flat in Citeseer and DBLP datasets. This shows that having a large number of unique keywords 1214 (i.e. Amazon Video dataset) or a large number of edges (i.e. Amazon Toy dataset) plays a role in 1215 determining the ideal minimum number of keywords per node. 1216

Our proposed method's notable performance with smaller keyword sizes can be attributed to its sophisticated mechanism for handling missing information, allowing for more precise and relevant search results. As keyword size expands, the complexity of the search increases, yet our method demonstrates commendable adaptability and effectiveness. This demonstrates that the method is capable of capturing a greater range of semantics as the information density of the graph increases.

Overall, our method shows to be *robust* to missing keywords from the graph. It can be observed in Figure 4 that the performance of the method at different conditions for $n_q = 9$ remains comparable regardless of the percentage of missing keywords. However, according to Tables 4 and 5, this is not

Fig edge missing keyword sizes (n_q) on the effectiveness of keyword searches. Each subplot represents the search sensitivity under different keyword missing rates (r_w) and . 4 Sensitivity Analysis of our proposed method for Citeseer, Video, Toy and DBLP datasets. These figures illustrate the performance impact of varying rates (r_e)

ACM Trans. Intell. Syst. Technol., Vol. x, No. x, Article x. Publication date: x 2024.

x:26

applicable to the best baseline KS-GNN method. This is due to our proposed method's enhancedability to capture more structural information from the graph, surpassing that of KS-GNN.

1278 5.8 Discussion on Satisfying Design Objectives

1277

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322 1323

¹²⁷⁹ Our work in this paper has been motivated by three objectives that were earlier discussed in ¹²⁸⁰ Section 3: Reduce the dimension of the output to make search space feasible (O_1) , retain as much ¹²⁸¹ key information as possible despite missing Keywords and edge information (O_2) and capture the ¹²⁸² structural properties of the graph to the greatest extent to overcome the challenge of missing edges ¹²⁸³ (O_3) .

The results obtained from our experiments show that each of the objectives played a fundamental role in our proposed method. Methods that do not practice representation learning techniques, such as PCA, show no improvement by increasing the size of query keywords (n_q) . PCA, Conv-PCA and KS-PCA also experience more drop in performance when the ratio of the missing keyword (r_w) increases and the size of the graphs increases. On the other hand, our proposed method and other graph representation learning methods maintain consistent performance over all datasets. This is due to the integration of **objective 1** (O_1) in our design.

1291 Furthermore, ChebConv and ConvPCA methods perform significantly lower compared to our 1292 proposed approach on the video dataset, which has an extreme number of keywords. This shows 1293 that these methods are not storing keyword information efficiently. Moreover, the GCN and GAT 1294 methods perform poorly on the DBLP dataset. The DBLP dataset has a larger number of nodes with 1295 a relatively low number of keywords, which makes it sparse compared to the Video dataset. This 1296 shows that while GCN and GAT methods are robust against the density of keywords, they may not 1297 be able to capture key information efficiently in sparse graphs. Our proposed method demonstrates 1298 a stable performance despite keyword size and graph size thanks to addressing **objective 2** (O_2) .

1299 Moreover, when comparing the no missing edges scenario and 30% missing edges results, we 1300 notice a significant performance drop in a certain group of methods. A bold difference can be 1301 seen specifically in the Toy dataset, which has a large number of edges. GCN, GAT, ChebConv 1302 and BLINK+SAT are the methods with the most reduction. This means that these methods are not 1303 efficient in capturing the structural properties of the graphs, which was expressed in **objective 3**. 1304 Although missing edges affect the performance of our proposed method, this is shown to be less 1305 concerning in our experiments. This is due to the fact our model uses different semantics to capture 1306 graph structural characteristics to a greater extent as a result of addressing **objective 3** (O_3) . 1307

6 Concluding Remarks and Future Work

Our proposed method for searching over incomplete graphs is based on the idea of graph representations learning from multiple complementary perspectives. The effectiveness of our proposed approach is due to its reliance on multiple perspectives when learning graph representations, which makes it robust to *missing information*. This advantage helps in preserving graph structure and captures both the semantic and structural information of the graph to a great extent. To the best of our knowledge, our work is among the first that proposed a custom-tailored loss function to generate such representation in incomplete graphs. In our experiments, we compared our proposed method with various baselines and state-of-the-art approaches. We show through various experiments that our method outperforms the state of the art when missing information is present. We find that our approach shows superior performance compared to the other methods.

We propose three potential topics to study as future directions:

- (1) **Uncertain Graphs:** Real-world graphs often include a degree of uncertainty. Nodes and edges in such graphs may not always exist definitively; instead, they might be present with
 - ACM Trans. Intell. Syst. Technol., Vol. x, No. x, Article x. Publication date: x 2024.

x:27

1324a certain probability. This notion leads us to the concept of uncertain graphs, where each1325entity (node or edge) is associated with a probability denoting its likelihood of existence.1326As future work, we can study techniques that must go beyond capturing the structural and1327semantic properties of nodes and edges, incorporating the probabilistic information that1328defines the likelihood of their existence.

- (2) Graph Completion: Focusing on the idea of leveraging advanced methodologies for the
 graph completion task, this concept revolves around the principle of utilizing predictive
 modeling to infer and reconstruct missing nodes and edges, thereby approximating a more
 complete structure of the graph. The trained model can then be used to predict missing
 elements in incomplete graphs by identifying structural gaps or inconsistencies and filling
 them in with the most probable nodes or connections. This allows for a broader exploration
 of the graph during keyword searches.
- (3) Multi-view Optimization: One potential limitation lies in the use of multi-view enhance ments. While they are commonly employed to enrich feature representations, redundant
 information across different views may lead to the learning of duplicate feature representations [46]. As a future work can explore adaptive view selection mechanisms that
 dynamically weight the contribution of different views based on their unique information
 content.

1343 References

1342

- [1] Alireza Abbasi, Liaquat Hossain, and Rolf T. Wigand. 2015. Evolutionary Dynamics of Complex Networks: Theory,
 Methods and Applications. *CoRR* abs/1503.06652 (2015). arXiv:1503.06652 http://arxiv.org/abs/1503.06652
- [2] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 2000. Error and attack tolerance of complex networks.
 nature 406, 6794 (2000), 378–382.

[3] R.E. Bellman. 2003. Dynamic Programming. Dover Publications. https://books.google.ca/books?id=fyVtp3EMxasC

- Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. 2013. Generalized Denoising Auto-Encoders as Generative Models. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, Christopher
 J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (Eds.). 899–907. https://proceedings.neurips. cc/paper/2013/hash/559cb990c9dffd8675f6bc2186971dc2-Abstract.html
- [352 CC paper/2013/flash/35/CC 99/CC 401403/3100/21009/10/2/Abstract.html
 [53 Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S. Sudarshan. 2002. Keyword Searching and Browsing in Databases using BANKS. In *Proceedings of the 18th International Conference on Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002*, Rakesh Agrawal and Klaus R. Dittrich (Eds.). IEEE Computer Society, 431–440. https://doi.org/10.1109/ICDE.2002.994756
- [6] Ranran Bian, Yun Sing Koh, Gillian Dobbie, and Anna Divoli. 2019. Network Embedding and Change Modeling in
 Dynamic Heterogeneous Networks. In *Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019*, Benjamin Piwowarski, Max Chevalier,
 Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer (Eds.). ACM, 861–864. https://doi.org/10.1145/3331184.
 3331273
- [7] Alex Bigelow, Katy Williams, and Katherine E. Isaacs. 2021. Guidelines For Pursuing and Revealing Data Abstractions.
 IEEE Trans. Vis. Comput. Graph. 27, 2 (2021), 1503–1513. https://doi.org/10.1109/TVCG.2020.3030355
- [8] Jean Bourgain. 1985. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of Mathematics 52, 1 (1985), 46–52.
 [6] De Lipschitz en De
- [9] Daqing Chen. 2015. Online Retail. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5BW33.
- [10] Min Chen, Shiwen Mao, and Yunhao Liu. 2014. Big data: A survey. *Mobile networks and applications* 19 (2014), 171–209.
 https://doi.org/10.1007/s11036-013-0489-0
- 1366[11]Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W. Tsang. 2022. Learning on Attribute-1367Missing Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 44, 2 (2022), 740–757. https://doi.org/10.1109/TPAMI.2020.3032189
- [12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, 3rd Edition. MIT Press. http://mitpress.mit.edu/books/introduction-algorithms
- [13] Bhavana Bharat Dalvi, Meghana Kshirsagar, and S. Sudarshan. 2008. Keyword search on external memory data graphs.
 Proc. VLDB Endow. 1, 1 (2008), 1189–1204. https://doi.org/10.14778/1453856.1453982
- 1372

ACM Trans. Intell. Syst. Technol., Vol. x, No. x, Article x. Publication date: x 2024.

- [14] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional Neural Networks on Graphs with
- 1374Fast Localized Spectral Filtering. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural1375Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, Daniel D. Lee, Masashi Sugiyama, Ulrike
von Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). 3837–3845. https://proceedings.neurips.cc/paper/2016/hash/
04df4d434d481c5bb723be1b6df1ee65-Abstract.html
- [1377 [15] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table understanding through representation
 learning. ACM SIGMOD Record 51, 1 (2022), 33–40.
- [16] Xin Luna Dong. 2019. Building a broad knowledge graph for products. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 25–25.
- [17] Tlamelo Emmanuel, Thabiso M. Maupong, Dimane Mpoeleng, Thabo Semong, Banyatsang Mphago, and Oteng Tabona.
 2021. A survey on missing data in machine learning. *J. Big Data* 8, 1 (2021), 140. https://doi.org/10.1186/s40537-021-00516-9
- [18] Chao Gao and Jiming Liu. 2011. Modeling and predicting the dynamics of mobile virus spread affected by human
 behavior. In 12th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WOWMOM
 2011, Lucca, Italy, 20-24 June, 2011. IEEE Computer Society, 1–9. https://doi.org/10.1109/WOWMOM.2011.5986383
- [19] Jan J. Gerbrands. 1981. On the relationships between SVD, KLT and PCA. Pattern Recognit. 14, 1-6 (1981), 375–381. https://doi.org/10.1016/0031-3203(81)90082-0
- [20] Gang Gou and Rada Chirkova. 2008. Efficient algorithms for exact ranked twig-pattern matching over graphs. In
 Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC,
 Canada, June 10-12, 2008, Jason Tsong-Li Wang (Ed.). ACM, 581–594. https://doi.org/10.1145/1376616.1376676
- [21] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 1024–1034. https://proceedings.neurips.cc/paper/2017/ hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
- [22] Yu Hao, Xin Cao, Yufan Sheng, Yixiang Fang, and Wei Wang. 2021. KS-GNN: Keywords Search over Incomplete
 Graphs via Graphs Neural Network. Advances in Neural Information Processing Systems 34 (2021).
- [23] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. 2007. BLINKS: ranked keyword searches on graphs. In *Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12-14, 2007*, Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou (Eds.). ACM, 305–316. https://doi.org/10.1145/1247480.1247516
- [24] Ningyuan Teresa Huang and Soledad Villar. 2021. A Short Tutorial on The Weisfeiler-Lehman Test And Its Variants.
 In *IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021, Toronto, ON, Canada, June* 6-11, 2021. IEEE, 8533–8537. https://doi.org/10.1109/ICASSP39728.2021.9413523
- [25] Cuiying Huo, Di Jin, Yawen Li, Dongxiao He, Yu-Bin Yang, and Lingfei Wu. 2023. T2-GNN: Graph Neural Networks for Graphs with Incomplete Features and Structure via Teacher-Student Distillation. In *Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023,* Brian Williams, Yiling Chen, and Jennifer Neville (Eds.). AAAI Press, 4339–4346. https://doi.org/10.1609/ AAAI.V37I4.25553
- [26] Mehdi Kargar, Lukasz Golab, Divesh Srivastava, Jaroslaw Szlichta, and Morteza Zihayat. 2022. Effective Keyword Search Over Weighted Graphs. *IEEE Trans. Knowl. Data Eng.* 34, 2 (2022), 601–616. https://doi.org/10.1109/TKDE.2020.2985376
- [27] Mehdi Kargar, Lukasz Golab, and Jaroslaw Szlichta. 2016. eGraphSearch: Effective Keyword Search in Graphs. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016, Snehasis Mukhopadhyay, ChengXiang Zhai, Elisa Bertino, Fabio Crestani, Javed Mostafa, Jie Tang, Luo Si, Xiaofang Zhou, Yi Chang, Yunyao Li, and Parikshit Sondhi (Eds.). ACM, 2461–2464. https://doi.org/10.1145/2983323.2983333
- [28] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1312.6114
- 1414
 [29] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In 5th

 1415
 International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

 1415
 Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl
- [30] Wangchao Le, Feifei Li, Anastasios Kementsietsidis, and Songyun Duan. 2014. Scalable Keyword Search on Large RDF Data. *IEEE Trans. Knowl. Data Eng.* 26, 11 (2014), 2774–2788. https://doi.org/10.1109/TKDE.2014.2302294
- 1418[31] Nathan Linial, Eran London, and Yuri Rabinovich. 1995. The Geometry of Graphs and Some of its Algorithmic1419Applications. Comb. 15, 2 (1995), 215–245. https://doi.org/10.1007/BF01200757
- 1420

1373

- [32] Yixin Liu, Kaize Ding, Jianling Wang, Vincent C. S. Lee, Huan Liu, and Shirui Pan. 2023. Learning Strong Graph
 Neural Networks with Weak Information. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023, Ambuj K. Singh, Yizhou Sun, Leman Akoglu,* Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.). ACM, 1559–1571. https://doi.org/
 10.1145/3580305.3599410
- [33] Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles in Ego Networks. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger (Eds.). 548–556. https://proceedings.neurips.cc/ paper/2012/hash/7a614fd06c325499f1680b9896beedeb-Abstract.html
- [34] Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. 2022. Simple unsupervised graph representation
 learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, Vol. 36. 7797–7805.
- 1432[35]Felix Naumann, Johann Christoph Freytag, and Ulf Leser. 2004. Completeness of integrated information sources. Inf.1433Syst. 29, 7 (2004), 583–615. https://doi.org/10.1016/J.IS.2003.12.005
- [36] Hoang Nguyen, Radin Hamidi Rad, and Ebrahim Bagheri. 2022. PyDHNet: A Python Library for Dynamic Heterogeneous Network Representation Learning and Evaluation. In *Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, October 17-21, 2022*, Mohammad Al Hasan and Li Xiong (Eds.). ACM, 4936–4940. https://doi.org/10.1145/3511808.3557181
- 1437[37]Hoang Nguyen, Radin Hamidi Rad, Fattane Zarrinkalam, and Ebrahim Bagheri. 2023. DyHNet: Learning dynamic1438heterogeneous network representations. Inf. Sci. 646 (2023), 119371. https://doi.org/10.1016/J.INS.2023.119371
- [38] Jianmo Ni, Jiacheng Li, and Julian J. McAuley. 2019. Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019*, Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics, 188–197. https://doi.org/10.18653/V1/D19-1018
- [39] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning Convolutional Neural Networks for
 Graphs. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA,
 June 19-24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger
 (Eds.). JMLR.org, 2014–2023. http://proceedings.mlr.press/v48/niepert16.html
- [40] Radin Hamidi Rad, Silviu Cucerzan, Nirupama Chandrasekaran, and Michael Gamon. 2024. Interactive Topic Tagging in Community Question Answering Platforms. In Advances in Information Retrieval - 46th European Conference on Information Retrieval, ECIR 2024, Glasgow, UK, March 24-28, 2024, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 14610), Nazli Goharian, Nicola Tonellotto, Yulan He, Aldo Lipani, Graham McDonald, Craig Macdonald, and Iadh Ounis (Eds.). Springer, 195–209. https://doi.org/10.1007/978-3-031-56063-7_13
- [41] Radin Hamidi Rad, Aabid Mitha, Hossein Fani, Mehdi Kargar, Jaroslaw Szlichta, and Ebrahim Bagheri. 2021. PyTFL: A
 Python-based Neural Team Formation Toolkit. In *CIKM '21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 5, 2021*, Gianluca Demartini, Guido Zuccon,
 J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, 4716–4720. https://doi.org/10.1145/3459637.3481992
- [42] Radin Hamidi Rad, Hoang Nguyen, Feras N. Al-Obeidat, Ebrahim Bagheri, Mehdi Kargar, Divesh Srivastava, Jaroslaw Szlichta, and Fattane Zarrinkalam. 2023. Learning heterogeneous subgraph representations for team discovery. *Inf. Retr. J.* 26, 1 (2023), 8. https://doi.org/10.1007/S10791-023-09421-6
- [43] Nils Reimers and Iryna Gurevych. 2021. The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, August 1-6, 2021, Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for Computational Linguistics, 605–611. https://doi.org/10.18653/V1/2021.ACL-SHORT.77
- [44] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with Interactive Graph Analytics and Visualization. In *AAAI*. https://networkrepository.com
- [462 [45] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A unified embedding for face recognition and clustering. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,* 2015. IEEE Computer Society, 815–823. https://doi.org/10.1109/CVPR.2015.7298682
- [46] Mingchao Shang, Cheng Liang, Jiawei Luo, and Huaxiang Zhang. 2023. Incomplete multi-view clustering by simultaneously learning robust representations and optimal graph structures. *Inf. Sci.* 640 (2023), 119038. https: //doi.org/10.1016/J.INS.2023.119038
- [467] [47] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt. 2011.
 [468] Weisfeiler-Lehman Graph Kernels. J. Mach. Learn. Res. 12 (2011), 2539–2561. http://dl.acm.org/citation.cfm?id=2078187
- 1469 1470
- ACM Trans. Intell. Syst. Technol., Vol. x, No. x, Article x. Publication date: x 2024.

- [471 [48] Qi Song, Yinghui Wu, Peng Lin, Luna Xin Dong, and Hui Sun. 2018. Mining summaries for knowledge graph search.
 [472 *IEEE Transactions on Knowledge and Data Engineering* 30, 10 (2018), 1887–1900.
- [49] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. ArnetMiner: extraction and mining of academic social networks. In *Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008,* Ying Li, Bing Liu, and Sunita Sarawagi (Eds.). ACM, 990–998. https://doi.org/10.1145/1401890.1402008
- Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. 2009. Top-k Exploration of Query Candidates
 for Efficient Keyword Search on Graph-Shaped (RDF) Data. In *Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29 2009 April 2 2009, Shanghai, China,* Yannis E. Ioannidis, Dik Lun Lee, and
 Raymond T. Ng (Eds.). IEEE Computer Society, 405–416. https://doi.org/10.1109/ICDE.2009.119
- [51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
- [52] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=r]XMpikCZ
- [53] Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and Pedro A. Szekely. 2021. Retrieving Complex Tables with
 Multi-Granular Graph Representation Learning. In *SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021*, Fernando Diaz, Chirag Shah, Torsten
 Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.). ACM, 1472–1482. https://doi.org/10.1145/3404835.3462909
- [1489
 [54] Kilian Q. Weinberger and Lawrence K. Saul. 2009. Distance Metric Learning for Large Margin Nearest Neighbor Classification. J. Mach. Learn. Res. 10 (2009), 207–244. https://dl.acm.org/citation.cfm?id=1577078
- [491 [55] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking for academic search via knowledge
 [492 graph embedding. In *Proceedings of the 26th international conference on world wide web.* 1271–1279.
- [56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural Networks?. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=ryGs6iA5Km
- [495 [57] Dejian Yang, Senzhang Wang, Chaozhuo Li, Xiaoming Zhang, and Zhoujun Li. 2017. From Properties to Links: Deep Network Embedding on Incomplete Graphs. In *CIKM*. ACM, 367–376.
- 1497
 [58] Jianye Yang, Wu Yao, and Wenjie Zhang. 2021. Keyword Search on Large Graphs: A Survey. Data Sci. Eng. 6, 2 (2021),

 1498
 142–162. https://doi.org/10.1007/S41019-021-00154-4
- [59] Dayu Yuan and Prasenjit Mitra. 2013. Lindex: a lattice-based index for graph databases. VLDB J. 22, 2 (2013), 229–252. https://doi.org/10.1007/S00778-012-0284-8
- [60] Haopeng Zhang and Jiawei Zhang. 2020. Text Graph Transformer for Document Classification. In *Proceedings of the* 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020,
 Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, 8322–8327.
 https://doi.org/10.18653/V1/2020.EMNLP-MAIN.668
- [61] Jiawei Zhang. 2020. Segmented Graph-Bert for Graph Instance Modeling. CoRR abs/2002.03283 (2020). arXiv:2002.03283
 https://arxiv.org/abs/2002.03283
- [62] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-Bert: Only Attention is Needed for Learning
 Graph Representations. *CoRR* abs/2001.05140 (2020). arXiv:2001.05140 https://arxiv.org/abs/2001.05140
- [63] Yan Zhang and Mingli Jing. 2023. Keyword Search of Incomplete Graph Based on Kernel Principal Component Analysis. In 2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). IEEE, 447–450.
 [50] Keyword Search of Incomplete Graph Based on Kernel Principal Component Analysis. In 2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). IEEE, 447–450.
- [64] Bin Zhou and Jian Pei. 2008. Preserving Privacy in Social Networks Against Neighborhood Attacks. In *Proceedings of the* 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico, Gustavo Alonso, José A.
 Blakeley, and Arbee L. P. Chen (Eds.). IEEE Computer Society, 506–515. https://doi.org/10.1109/ICDE.2008.4497459
- [65] Jingya Zhou, Ling Liu, Wenqi Wei, and Jianxi Fan. 2022. Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding. ACM Computing Surveys (CSUR) 55, 2 (2022), 1–35.
- 1514
- 1515
- 1516
- 1510
- 1517
- 1519