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The task of searching over large keyword graphs aims to identify a subgraph where the nodes collectively
cover the input query keywords. Although finding an exact solution to this problem is NP-hard, we address
it by proposing a novel graph neural network representation learning technique specifically tailored for
graphs with missing information. We propose a novel keyword graph representation learning method that
incorporates complementary aspects of graphs: global, local, adjusted, and feature semantics. Considering
these multiple aspects, our approach remains robust and resilient to missing information. We adopt and fine-
tune a transformer-based model to aggregate the various features of a graph to generate rich representations,
recognizing the pivotal role of keywords in this task. We show through experiments on real-world data that
our method outperforms the state-of-the-art approaches and is particularly robust in the face of missing
values, underscoring its ability to effectively handle incomplete graphs.
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1 Introduction
With the increasing popularity of graphical structures for information representation, such as
social networks, and knowledge graphs, the ability to perform effective graph search is becoming
increasingly important. Keyword search over graphs enables the identification of a subgraph that
covers the input keywords. Researchers have shown that this problem is NP-Hard [26]. Conse-
quently, many tractable yet non-deterministic solutions for this problem have been developed to
address this challenge. Conventional methods employ greedy or approximation approaches to find
subgraph solutions for this problem, such as utilizing proximity ranking [5] and approximation
search [26]. More recent approaches have incorporated graph embedding techniques, such as graph
convolutional neural networks [29] and graph attention networks [52] to generate embedding
vectors to approximate graph search [16, 41, 42, 48, 55].
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These approaches do not however account for missing or incomplete information with a graph.
An incomplete graph represents a set of nodes where some of their attributes and/or relationships
between them are missing or unknown. This indicates that the dataset or the knowledge about
the nodes and their relationships are only partially known. An abstract example of an incomplete
graph and its comparison with the equivalent complete version of it can be seen in Figure 1.
This incompleteness can result from various factors, including data collection limitations, privacy
concerns, technical errors, or the inherent dynamic nature of the relationships being modelled [63].
Consequently, analyzing and interpreting incomplete graphs require special consideration.

(a) Graph 𝐺 (b) Graph 𝐺 with missing values

Fig. 1. A comparison between a graph without any missing values (a) and a graph with missing values (b).
Incomplete graphs can be missing edges, nodes or attributes.

While many existing methods assume that graphs are fully observable and complete, in real-
world applications, graphs often suffer from missing values, rendering them incomplete. For
instance, researchers have extensively applied graph representation learning methods to tabular
data [15, 53]. However, when translating tabular data into graphical structures, different forms of
missing information, commonly referred to as missing values can manifest as missing edges, nodes
or attributes [17].
Thus, the study of graphs with missing values is of critical importance [11, 57]. Some of the

(non-comprehensive) reasons for graph incompleteness can be enumerated as follows: (1) Technical
errors: Occur due to software bugs, hardware failures, or network disruptions, leading to missing
nodes or edges [2]. (2) Information confidentiality: Results in intentional data omissions to protect
privacy, such as anonymized or hidden relationships in social networks [64]. (3) Data source
complexity: Arises from challenges in integrating heterogeneous sources with different formats
and inconsistencies, often leading to missing information [35, 40]. (4) The dynamic nature of
data: Fast-changing systems, such as social networks and financial markets, make it difficult to
maintain an up-to-date graph [18, 36, 37]. (5) Resource constraints: Such as computational limitations,
storage capacity, or restricted data access, can prevent comprehensive data collection, leading to
partial graphs [10]. (6) Intentional abstraction: This is sometimes employed to simplify graphs for
specific analyses, omitting less relevant details [7]. (7) System evolution: Leads to outdated graphs
when networks change over time but are not continuously updated [1]. These factors collectively
contribute to the incompleteness of graph representations across various domains.
In the context of methods that facilitate graph search, particularly the cutting-edge techniques

that employ graph representation learning [14, 29, 52], the presence of missing information poses
significant limitations. This is primarily because the majority, if not all, of these methods operate
under the assumption that the underlying graphical structure is complete. Consequently, when
dealing with an incomplete graph, the reliability of graph metapaths or message-passing techniques
used for learning representations may be compromised. These methods are not designed to handle
missing information and, therefore, lack robustness when confronted with such scenarios. As a
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result, the performance of state-of-the-art neural methods on incomplete graphs falls short of the
desired levels [22].
Our research is motivated by the belief that a robust method for handling missing information

should encompass multiple complementary aspects of the graph during the process of learning
representations. Our approach emphasizes the importance of considering various aspects, including
local, global, and adjusted contexts of nodes, along with the semantic content of nodes, in order to
develop a robust graph representation learning method for incomplete graphs. By incorporating
these different contextual factors, our approach enables the generation of robust and reliable
representations using available subsets of data. The method effectively addresses the challenges
posed by incomplete information, even in scenarios where only limited information is available for
certain subgraphs.

Themain contributions of our work are as follows:

• We propose a transformer-based architecture specifically designed for keyword search over
incomplete graphs—a problem setting that remains underexplored compared to traditional
graph completion or classification tasks. Our method is designed to operate effectively even
when critical structural or semantic information is missing.
• Our approach exhibits robustness in the face of incomplete graph structures by capturing
both local (micro), global (macro) and adjusted contexts of subgraphs, as well as node
semantics. Thus, our model can generate reliable representations even when significant
keywords or edges are missing from the graph.
– Global Semantics: By using anchor nodes, our proposed approach captures the broader

context of each node within the entire graph. This helps differentiate nodes that might
appear similar locally but are situated differently globally.

– Local Semantics: Utilizing the Weisfeiler-Lehman algorithm, our proposed approach
captures the structural context of nodes within their immediate neighborhoods. This
provides a detailed local view of the graph’s structure.

– Adjusted Semantics: A k-hop strategy helps in balancing the local and global contexts,
creating a robust representation that considers both immediate neighbors and more
distant nodes.

– Feature Embedding: We propose to adopt an encoding method to transform sparse
keyword occurrences into dense, low-dimensional vectors, capturing the interaction
between keywords and preserving as much information as possible.

• Through extensive experiments over real-world data, we demonstrate that our novel method
outperforms the current state-of-the-art techniques in keyword search over incomplete
graphs. Our model showcases a more robust performance, even in cases where substantial
information is missing. This can be attributed to its ability to leverage a range of comple-
mentary features for learning the graph representation, even in the presence of missing
information.

The structure of this paper is as follows: Section 2 presents an extensive discussion of the related
work and how we differ from them. Section 3 provides a clear definition of the problem and
principles to search in incomplete graphs. Section 4 presents the proposed method, including model
architecture and training. Section 5 presents our extensive experiments. Finally, Section 6 concludes
this paper.

2 Related Work
The domain of incomplete graph search, particularly in the context of keyword search, has gained
significant attention in recent years. Several methodologies have been proposed to handle missing
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information in graphs, spanning from traditional graph search algorithms to machine learning-
based techniques. In this section, we categorize and analyze the key approaches in the literature,
highlighting their strengths and limitations.
Traditional Graph Search Approaches. Traditional graph search algorithms are primarily designed
for complete graphs with well-defined structures [23, 59]. These algorithms assume full visibility
of all graph components, which makes them inefficient and inaccurate when faced with missing
information. Themain challenge in incomplete graphs lies in either inferring themissing elements or
developing robust search strategies that can operate despite incomplete data. One notable example
is BANKS (Browsing ANd Keyword Searching) [5], which models relational databases as graphs,
where tuples represent nodes, and relationships form edges. It uses a proximity-based ranking
system to enable schema-free keyword searches. Despite being widely adopted, its effectiveness
relies heavily on the underlying database schema. Highly interconnected or complex schemas may
reduce its efficiency.
Probabilistic Models for Incomplete Graph Search. Probabilistic models address the uncertainty in
incomplete graphs by estimating the likelihood of missing connections or attributes. BLINK [23]
(Bayesian-information and Linkage-disequilibrium method) optimizes keyword searches by leverag-
ing advanced indexing and querying strategies. While these models improve search accuracy, they
come with high computational costs and require complex implementations to maintain indexing
structures efficiently.
Dimensionality Reduction Techniques. Dimensionality reduction techniques help manage large-scale,
high-dimensional graph data. Principal Component Analysis (PCA) and Kernel PCA (KPCA) [19, 63]
simplify the feature space, improving search accuracy. KPCA outperforms PCA by capturing non-
linear relationships, making it more effective for complex incomplete graphs. However, these
approaches still struggle with missing data, leading to unstable performance in highly incomplete
graphs.
Machine Learning-Based Methods. Graph Neural Networks (GNNs) have emerged as powerful tools
for handling incomplete graphs. These models learn latent representations of nodes and predict
missing edges to improve keyword search. Graph Convolutional Networks (GCN) [29] use local
node attributes and immediate neighbors to handle missing data but suffer from the oversmoothing
problem, where nodes become indistinguishable after multiple layers. A variant, ChebConv [14],
mitigates oversmoothing using Chebyshev polynomial expansion, but deeper architectures may
still be affected. Graph Attention Networks (GAT) [52] introduce attention mechanisms to prioritize
the most relevant neighbor nodes. This approach enhances feature aggregation and model inter-
pretability, but it is computationally expensive, particularly for large-scale graphs. GraphSAGE [21]
extends GNNs by generating node embeddings that incorporate both structural and attribute infor-
mation. It enables inductive learning for unseen nodes, making it scalable. However, performance
is highly dependent on the aggregation function and the size of sampled neighborhoods. Recently,
T2-GNN [25] was proposed as a general framework to enhance the robustness of GNNs on in-
complete graphs using a teacher-student distillation mechanism. Unlike prior methods, T2-GNN
separately models feature and structure completion through independent teacher models, ensuring
that missing features do not negatively impact structure learning and vice versa. A dual-distillation
mechanism is then employed to transfer knowledge from the teacher models to the student GNN,
improving its ability to learn representations despite missing information. However, T2-GNN is
inherently a supervised method, relying on labeled data for effective knowledge transfer in its
teacher-student distillation framework. This dependence on labeled data can limit its applicability
in real-world scenarios where annotations are scarce or expensive to obtain.
Hybrid Models for Incomplete Graph Search. Hybrid models combine multiple methodologies to
overcome the limitations of individual approaches. The Structure-Attribute Transformer (SAT) [11]
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was among the first to propose a hybrid approach. It integrates transformers with graph neural
networks to handle missing data by jointly considering structural and attribute information. This
model enhances data imputation techniques in graph analysis but may introduce noise, negatively
impacting search performance. Later, D2PT [32] was introduced as a dual-channel GNN designed to
improve information propagation in incomplete graphs. Unlike conventional GNNs, D2PT employs
a diffused propagation then transformation (DPT) backbone that enhances long-range message
passing while maintaining efficiency. Additionally, it constructs a global graph based on semantic
similarities, enabling information propagation even for stray nodes that would otherwise remain
disconnected. To align these two learning processes, D2PT utilizes a contrastive prototype alignment
mechanism, ensuring effective knowledge transfer between the original and global graphs. However,
D2PT is not specifically designed for search-based tasks on real-world datasets, where labels are
not always available or well-structured, potentially limiting its adaptability to large-scale retrieval
problems. Recently, KS-GNN [22] employs message-passing and feature aggregation for more
accurate keyword searches in incomplete graphs. It integrates a three-term loss function: (1)
Reconstruction loss (similar to encoder-decoder architectures), (2) Subgraph keyword-based node
similarity, and (3) Keyword frequency regularization. Despite its effectiveness, message-passing
mechanisms struggle with missing edges, making KS-GNN less stable for highly incomplete graphs.

Table 1. Comparison of methods for incomplete graph search.

Method Handles
Missing Data Scalability Supports

Keyword Search
Learns Node

Representations
Structural &

Attribute Integration
Unsupervised

Learning
Robust to

High Incompleteness

BANKS [5] ✗ ✓ ✓ ✗ ✗ ✓ ✗

BLINK [23] ✓ ✗ ✓ ✗ ✗ ✓ ✗

PCA [19] ✗ ✓ ✗ ✗ ✗ ✓ ✗

KPCA [63] ✗ ✓ ✗ ✗ ✗ ✓ ✗

GCN [29] ✗ ✓ ✗ ✓ ✗ ✓ ✗

GAT [52] ✗ ✓ ✗ ✓ ✓ ✓ ✗

GraphSAGE [21] ✗ ✓ ✗ ✓ ✓ ✓ ✗

SAT [11] ✗ ✗ ✓ ✓ ✓ ✓ ✗

D2PT [32] ✓ ✓ ✗ ✓ ✓ ✗ ✗

T2-GNN [25] ✓ ✗ ✗ ✓ ✓ ✗ ✗

KS-GNN [22] ✓ ✓ ✓ ✓ ✗ ✓ ✗

Proposed Method ✓ ✓ ✓ ✓ ✓ ✓ ✓

Comparison of Methods. Table 1 summarizes the capabilities of different methods for incomplete
graph search. The table highlights key characteristics such as scalability, structural and attribute
integration, and robustness to highly incomplete graphs. Notably, while some traditional and
probabilistic methods provide efficient search capabilities, they lack resilience in sparse graphs.
Machine learning-based approaches, particularly hybrid models, demonstrate improved robustness
but often require high computational resources.

3 Problem Definition
The task of keyword search in graphs is focused on finding a set of nodes from within the larger
graph such that they collectively cover the set of keywords provided by the user in the form of a
query. For instance, when searching an academic graph for a query such as graph neural networks
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Fig. 2. A case study of keyword search in an incomplete graph. The selected nodes collectively cover the
query keywords, but missing edges and attributes introduce challenges that affect structural connectivity
and semantic completeness.

for protein structures, the objective will be to find and retrieve a set of nodes (e.g., papers) that
contain the query keywords. In this paper, we are aiming to address special case of this task where
the underline graph is incomplete. In other words, some of the graph attributes or edges may be
missing.
To illustrate the challenges of keyword search in incomplete graphs, we present a case study.

Consider a user query: "How can transparency and explainable AI enhance transfer learning in robot
navigation with Markov chains?". As shown in Figure 2, the incomplete graph may suffer from
missing edges and attributes. The objective is to select a group of nodes that ideally cover all the
required keywords; however, missing information introduces additional challenges. Some keywords
may be absent from the dataset and need to be inferred based on semantic relationships. Similarly,
missing edges can disrupt the structural connectivity of the graph, potentially weakening important
relationships between nodes. This case study highlights the need for robust methods to handle
missing information while ensuring effective keyword search in incomplete graphs.

Let us define this task as follows. Given a set of keywords as the input query, we let the query be:

𝑞 =

(
𝑤1,𝑤2, . . . ,𝑤𝑛𝑞

)
(1)

where (𝑤1,𝑤2, . . . ,𝑤𝑛𝑞 ) denotes keywords in query 𝑞 with 𝑛𝑞 being size of query keywords. Subse-
quently, the set of keywords for the 𝑖𝑡ℎ query is denoted as𝑊𝑞𝑖 and defined as follows:

𝑊𝑞𝑖 =

(
𝑤

𝑞𝑖
1 ,𝑤

𝑞𝑖
2 , . . . ,𝑤

𝑞𝑖
𝑛𝑞

)
(2)

Furthermore, we denote the main graph being searched as 𝐺 (𝑉 , 𝐸,𝑊 ), where 𝑉 is the set of nodes,
𝐸 is the set of edges connecting the nodes, and𝑊 is the set of keywords. For each 𝑣 ∈ 𝑉 , there is
the set of associated keywords denoted as𝑊𝑣 and defined as follows:

𝑊𝑣 =
(
𝑤 𝑣

1 ,𝑤
𝑣
2 , . . . ,𝑤

𝑣
𝑛𝑣

)
(3)

where 𝑛𝑣 is the size of node keywords. Based on the mentioned definitions for the query as the input
and graph as the data, we can now define the task of keyword search: the objective of keyword
search on graph 𝐺 is to find a subgraph 𝐺 ′ (𝑉 ′, 𝐸′,𝑊 ′) where 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸 and keywords
associated with 𝑉 ′ can collectively cover all the keywords in the query 𝑞𝑖 , i.e.,𝑊𝑞𝑖 ⊆𝑊 ′ [23].
The desired output of the keywords search task is to find the most efficient subgraph that not

only covers the required keywords but also minimizes pre-defined costs. Thus, we can define the
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desired output by properly defining the scoring function that is needed to retrieve the subgraph.
The widely adapted scoring function, based on [13, 20, 22, 23, 30, 50], is defined as:

𝑠𝑐𝑜𝑟𝑒 (𝑣, 𝑞𝑖 ) =
𝑛𝑞∑︁
𝑗=1

distmin

(
𝑣,𝑤

𝑞𝑖
𝑗

)
(4)

where 𝑑𝑖𝑠𝑡min

(
𝑣,𝑤

𝑞𝑖
𝑗

)
represents the path length between node 𝑣 to the nearest node containing

keyword𝑤𝑞𝑖
𝑗
, which is the 𝑗𝑡ℎ keyword in 𝑞𝑖 ’s keyword set.

In other words, the keyword search objective is to find the subgraph𝐺 ′ (𝑉 ′, 𝐸′,𝑊 ′) whose nodes
have minimum cumulative distance from nodes that host the query keywords. The keyword search
problem is defined as follows:

∀𝑣 ∉ 𝑉 ′, 𝑠𝑐𝑜𝑟𝑒 (𝑣 ′, 𝑞) ≥ max ({𝑠𝑐𝑜𝑟𝑒 (𝑣𝑖 , 𝑞) | 𝑣𝑖 ∈ 𝑉 ′}) (5)

Given our focus on incomplete graphs, we need to specifically take incomplete graph charac-
teristics into account. Incompleteness in a graph can occur in the form of missing keywords and
edges. Hence, a desirable method should satsify the following objectives:

Objective 1: Reduce the dimension of the output to make search feasible
While modern graph embedding techniques can effectively manage high-dimensional data, reduc-
ing output dimensionality remains a valuable strategy for enhancing search performance. High-
dimensional spaces can still pose challenges such as increased computational cost and reduced
algorithmic efficiency due to the “curse of dimensionality” [3, 43]. In our approach, dimensionality
reduction serves to simplify the search space, improving efficiency and robustness, and reduc-
ing computational overhead. For example, in a scientific collaboration graph such as DBLP [49],
nodes represent researchers, and edges represent co-authorships between these researchers. This
graph is inherently high-dimensional due to the vast number of potential connections (edges) and
attributes (e.g., keywords, publication venues, research topics) associated with each researcher.
Current practical techniques such as KS-GNN/KS-PCA [22] and Graph Neural Networks-based
methods [6, 14, 21, 29, 52] use dimensionality reduction as an instrument in this regard, enabling the
extraction of meaningful low-dimensional features from high-dimensional data, thereby preserving
the essential characteristics of the graph while making the search process more manageable.

Objective 2: Retain as much key information as possible despite missing keywords and
edge information
The loss of keywords and edge information can severely impact the ability to perform accurate and
comprehensive keyword search on graphs. For instance, consider an incomplete graph representing
a product recommendation system, where nodes are products, and edges indicate that two products
are often bought together e.g. an online retail dataset [9]. Due to incomplete data, some edges
(product relationships) and keywords (product descriptions or tags) might be missing. To retain key
information despite these missing elements, one could employ machine learning models to predict
missing edges based on existing connections and shared attributes among products. For example, if
product A is often bought with products B and C, and product B is often bought with product D,
but the direct link between A and D is missing, the system could infer this relationship based on
the shared key information. This approach helps preserve the integrity of the recommendation
graph, ensuring that users receive relevant suggestions even in the face of incomplete data.

Consequently, it is crucial to devise strategies that minimize the effect of these losses by retaining
as much relevant information as possible. This objective focuses on leveraging the remaining data to
infer missing information or to highlight connections and patterns that are still discernible despite
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the incompleteness. Methods that enhance the robustness of search algorithms against missing data,
such as incorporating encoding-decoding mechanisms, e.g., denoising autoencoders [4], utilizing
probabilistic models to predict missing connections [28] are good examples of methods that address
this objective.

Objective 3: Capture the structural properties of the graph to overcome missing edges
The structural integrity of a graph plays a pivotal role in determining the relevance and context of
search results. Missing edges can disrupt the connectivity and overall structure of the graph, leading
to incomplete or inaccurate search outcomes. Therefore, preserving the structural properties of
the graph is paramount. This involves identifying and utilizing alternative paths or relationships
within the graph that can compensate for the missing edges. For instance, in a social network such
as Facebook and Twitter [33], if two individuals share many mutual connections but are not directly
connected in the graph due to missing edges, a graph neural network method (e.g. GCN [29],
GAT [52]) could predict the likelihood of a direct connection based on the observed structural
patterns. This approach helps maintain the social graph integrity, enabling accurate analysis
of community structures, influence spread, and social cohesion despite incomplete information.
Additionally, leveraging graph neural networks or other advanced techniques to infer missing
structural information can help maintain the integrity of the graph’s topology, ensuring that the
search algorithm can still navigate the graph effectively and yield relevant results despite the
missing connections.

4 Methodology
In this section, we present our approach for address the three objectives (Objectives 1-3). In order
to address objectives 𝑂1, 𝑂2 and 𝑂3, we developed our proposed approach around three principles
(𝑃1, 𝑃2 and 𝑃3), which directly map onto the problem objectives, thus 𝑃1 addresses 𝑂1, 𝑃2 addresses
𝑂2 and 𝑃3 addresses 𝑂3 as follows:

Principle 1: Complexity of subgraph identification
The problem of keyword search in graphs has been shown to be NP-hard [26]. Hence, search in
incomplete graphs, as super-sets of complete graphs, is an NP-hard problem. Therefore, we utilize
the graph representation learning technique to estimate the relevance of graph elements. This
complies with objective𝑂1, which discusses the “curse of dimensionality”. To address P1, we adopt a
graph representation learning strategy to estimate the relevance of keywords to subgraphs through
soft-matching, which is inexact yet tractable. This addresses objective 𝑂1, by reducing the output
dimension and introducing a more efficient search space.

Principle 2: Addressing missing information
Most, if not all, real-world graphs suffer from missing information. As such, our proposed method
should be able to preserve key information from the graph because of its importance for the sake of
searching to find correct target nodes. In addition, our proposed method should be able to capture
a range of different complementary information from the graph. Because of missing edges, the
proposed method must be able to capture the graph structure and maximally use that to share
information with the neighbourhood nodes for better connectivity and richer embedding vectors.
Also, due to missing keywords, the proposed method should be able to capture information about
keywords based on other available information besides the limited set of observable keywords that
are available in the graph. This can be achieved by considering other pertinent node attributes, e.g.,
importance and co-occurrence probability. This principle addresses objective𝑂2, trying to retain as
much key information as possible.
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Fig. 3. The overall architecture of our proposed approach. The architecure comprises a transformer-based
neural model that integrates global, local, and adjusted semantics for robust representation learning. Using
anchor nodes, Weisfeiler-Lehman algorithm and k-hop message passing techniques to capture global, local,
and adjusted semantics, respectively. The semantics is used as positional encoding along with feature
embeddings to train a transformer architecture, enabling an efficient keyword-based subgraph search over
incomplete graphs.

Principle 3: Navigating missing edges
A common challenge in incomplete graphs is the absence of certain edges, which may disrupt
the ability to accurately represent the true connections within the graph. This absence not only
obscures the graph’s underlying structure but also hampers the effective retrieval of relevant
subgraphs based on keyword search. To confront this issue head-on, our approach should involve
leveraging predictive modelling to infer missing edges based on existing patterns of connectivity
and node attributes within the graph. By predicting these missing edges, we aim to reconstruct a
more complete picture of the graph topology, thereby enhancing the integrity and utility of the
keyword search process. This proactive strategy specifically addresses objective 𝑂3, ensuring that
the proposed method remains robust and effective even in the face of incomplete connectivity data.

To satisfy these three principles, we propose a neural architecture for learning representations for
an incomplete graph that captures the global, local, and adjusted semantics of the graph. To address
these challenges and meet principles, our proposed method utilizes unsupervised learning through
a transformer-based neural architecture for generating rich embedding vectors that are suitable for
searching over incomplete graphs. The architecture of our proposed approach is shown in Figure 3.
We have chosen a transformer architecture for the proposed method for multiple reasons. First, the
keyword search task requires identifying nodes that collectively cover a given set of keywords. In a
Transformer-based model, we can represent node features as a sequence of tokens, similar to how
words are processed in natural language tasks. This tokenized representation allows the model
to learn contextual relationships between node attributes, improving the accuracy of keyword
matching. Second, unlike GNNs, which rely on predefined structural positions, Transformers can
use semantic embeddings as positional information. This allows the model to understand the
relationships between nodes based on their feature similarities rather than their adjacency in the
graph. As a result, even when graph structure is incomplete, the model can still organize and retrieve
relevant nodes effectively. Additionally, Transformers offer scalability advantages. Self-attention
mechanisms allow parallel processing of nodes, making the approach computationally efficient for
large-scale graphs. Unlike deep GNNs, which suffer from over-smoothing when stacking multiple
layers, Transformers maintain distinct feature representations even in deep architectures, ensuring
better discrimination between nodes.
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In what follows, we will explain the representation learning process in subsection 4.1. We will
explain how each of the architecture blocks relates to our defined principles. Then we will discuss
the search mechanism based on the generated embedding vectors in subsection 4.2.

4.1 Indexing
Using representation vectors in the latent space helps acquire higher performance by several
means. First, the common raw graph representations are sparse naturally, thus, it is hard to train
graph neural models on them. Furthermore, using a transformer-based neural network generates
contextualized embedding of nodes. This is especially important when searching over graphs
with missing values because contextualization generates more specific and informative embedding
vectors. Moreover, low-dimension embedded vectors increase the computation speeds during both
the training and inference phases. Lastly, while it is possible to merge different pieces of information
into one vector by concatenation, training an encoder on a mixture of that information yields a
drastically better representation that can improve the downstream searching task performance.
This is in response to our first principle (𝑃1). In response to the second and third principles (𝑃2
and 𝑃3) we propose four representations to be captured in a graph. These embedding vectors
create a multi-aspect process of a graph to retain as much key information as possible (𝑃2) and
understand graph topology even with edges missing (𝑃3). In this subsection, we precisely define
these representations, namely Global Semantics (GS), Adjusted Semantics (AS), Local Semantics
(LS) and Feature Embedding (FE).

Global Semantics. This semantic is designed to be utilized as a representation of the target
node compared to the entire graph. The goal is to reach an embedding vector that can be used to
distinguish two nodes with similar neighbourhood characteristics but in different parts of a graph.
To achieve this, we adopt the concept of anchor nodes for determining the global semantics of each
node in the graph [65]. It has been shown that positioning nodes within the context of a particular
set of anchor nodes can help capture and embody the broader context of the graph structure within
node representations [34]. That is because even if two nodes reside in different parts of the graph
with a similar neighbourhood, their semantic embeddings still will be different because of their
position with respect to anchor nodes.
Anchor nodes become especially useful in incomplete graphs since missing edges can increase

the likelihood of graph node representations losing their discriminative power. According to the
Bourgain Theorem [8], selecting the proper set of anchor nodes can drastically affect the quality of
representations learnt for graph nodes. Linial et al. [31] have demonstrated a practical approach
for generating representations using a random set of anchor nodes. Based on the concept of anchor
nodes, we define the Global Semantics (GS) of a node as follows:

GS(𝑣𝑖 ) =
(
𝑑 (𝑣𝑖 , 𝑆1)

𝑘
,
𝑑 (𝑣𝑖 , 𝑆2)

𝑘
, . . . ,

𝑑
(
𝑣𝑖 , 𝑆 𝑗

)
𝑘

)
(6)

where 𝑆 𝑗 ⊂ 𝑉 represents a set of anchor nodes selected based on the approach proposed by
Linial et al. [31], and 𝑘 is the number of anchor sets. The 𝑑 (𝑣𝑖 , 𝑆 𝑗 ) is a distance metric for which we
adopt the shortest-length path between node 𝑣𝑖 and anchor node 𝑆 𝑗 . The distance can be defined as
follows:

𝑑
(
𝑣𝑖 , 𝑆 𝑗

)
= min

𝑢∈𝑆 𝑗

𝑑 (𝑣,𝑢) (7)

Local Semantics. In order to learn the local semantics of each node within its neighbourhood,
we utilize the Weisfeiler-Lehman (WL) algorithm [39, 47] which is widely used for distinguishing
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a pair of non-isomorphic graphs 𝐺,𝐺 ′. The Weisfeiler-Lehman (WL) algorithm maintains a state
for each node, which it progressively refines by aggregating the states of the node’s neighbours.
Often these states are represented by colours for better intuition. This iterative process results in an
embedding for the graph, where each node’s final state is represented in the form of an embedding
that captures the structural context of the node within the entire graph [24].

Therefore, the WL algorithm can represent a node’s position in its neighbourhood within a graph.
This positioning system offers a local view of the graph for each given node. We incorporate the
WL algorithm into a kernel function as suggested in prior research studies [60–62] and define an
embedding function to produce the local semantics. More specifically, we define the Local Semantics
(LS) of a node as follows:

LS(𝑣𝑖 ) =
[
sin

(
WL (𝑣𝑖 )

10000
2𝑙
𝑑ℎ

)
, cos

(
WL (𝑣𝑖 )

10000
2𝑙+1
𝑑ℎ

)] ⌊
𝑑ℎ
2

⌋
𝑙=0

(8)

where 𝑣𝑖 ∈ 𝑉 , 𝑑ℎ is the embedding dimension and 𝑙 is the context processed for generating
embeddings. In Equation 8,WL denotes the Weisfeiler-Lehman algorithm. The detailed steps of
theWL algorithm can be seen in Algorithm 1.

Algorithm 1:Weisfeiler-Lehman (WL) algorithm
Input: 𝐺 = (𝑉 , 𝐸,𝑊 )

1 𝑐0𝑣 ← hash (𝑊𝑣) for all 𝑣 ∈ 𝑉
2 repeat
3 𝑐ℓ𝑣 ← hash

(
𝑐ℓ−1𝑣 ,

{
𝑐ℓ−1𝑢 : 𝑢 ∈ N𝐺 (𝑣)

})
∀𝑣 ∈ 𝑉

4 until
(
𝑐ℓ𝑣

)
𝑣∈𝑉 =

(
𝑐ℓ−1𝑣

)
𝑣∈𝑉

5 return
{
𝑐ℓ𝑣 : 𝑣 ∈ 𝑉

}
In Algorithm 1, we consider graph 𝐺 = (𝑉 , 𝐸,𝑊 ), where 𝑉 is the set of vertices; 𝐸 ⊆ 𝑉 ×𝑉 is

the set of edges between vertices; and𝑊𝑉 is the set of node keywords: For all 𝑣 ∈ 𝑉 ,𝑊𝑣 ∈ R𝑑 . The
neighbors of a vertex 𝑣 is N𝐺 (𝑣) = {𝑢 : (𝑣,𝑢) ∈ 𝐸}. Each level of this iterative process is shown by
ℓ . Thus, we can formulate the colour of nodes in level ℓ by 𝑐ℓ𝑣 .
Lines 2-4 in Algorithm 1, represent an iterative process where the colours are updated so that

the colour of node ⊑ ∈ 𝑉 , becomes different from its neighbourhood N𝐺 (𝑣). This is done by using
an injective hash function ℎ𝑎𝑠ℎ [24]:

∀(𝑣,𝑢) ∈ 𝑉 : hash (𝑊𝑣) = hash (𝑊𝑢) ⇐⇒ 𝑊𝑣 =𝑊𝑢 (9)
Capturing local semantics is especially useful when facing missing edges. The local semantics and

global semantics can play a complementary role for each other and cover each other’s shortcomings
in different situations. There can be a graph where several nodes have highly similar global
semantics (GS). This is because, due to missing edges, the chance of having nodes with identical
distances to anchor nodes increases significantly. Therefore, the local semantics of nodes can help
distinguish nodes from each other.

Adjusted Semantics. The objective of the adjusted semantics is to learn a balanced representation
of a node that considers both immediate node neighbours as well as globally reachable nodes. This
semantic aspect acts as a complimentary feature to fill the gap between global and neighbourhood
positioning.
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For this purpose, we utilize a k-hop strategy to traverse the graph starting from the node of
interest, which will result in a sequence of k-visited nodes. This sequence can serve as a context
for the node of interest and hence can be used to learn representations for the node based on
this concept of Adjusted Semantics (AS). Therefore, the formulation of the adjusted semantic
representation contains a series of mentioned extracted contexts. To achieve this, we can use a
similar equation to global semantics Equation 6. The difference is that instead of anchor nodes,
k-hops will be used. Thus the 𝑆 𝑗 ⊂ 𝑉 represents the sequence of nodes traversed by the k-hop.

Feature Embedding. In the context of the keyword graph, each node is often associated with a
set of keywords. However, the number of keywords associated with each node is quite insignificant
compared to the total number of keywords in the entire graph, making keyword distribution quite
sparse. In addition, with missing keywords, the keyword distribution becomes even more sparse.
In order to produce feature representations, we utilize a tokenizer to transform the sparse

occurrence vector of keywords to a dense low-dimension feature embedding representation. This
captures the interaction between keywords and the co-occurrence of them.
Let𝑊𝑣𝑖 =

(
𝑤

𝑣𝑖
1 ,𝑤

𝑣𝑖
2 , . . . ,𝑤

𝑣𝑖
𝑛𝑣

)
represent the input sequence of words for node 𝑣𝑖 , where (𝑤 𝑣𝑖

𝑖
)

denotes the 𝑖𝑡ℎ word in the sequence, and 𝑛𝑣𝑖 is the length of the sequence for node 𝑣𝑖 .
Let 𝑇 represent the vocabulary of tokens, where each token 𝑡 𝑗 ∈ 𝑇 is associated with a unique

index 𝑗 such that 𝑗 ∈ {1, 2, . . . , |𝑇 |}, and |𝑇 | is the size of the vocabulary.
The tokenization process can be described by Θ function that maps the input word sequence𝑊𝑣𝑖

to a sequence of tokens {𝑡1, 𝑡2, . . . , 𝑡𝑛𝑣𝑖
}:

FE(𝑣𝑖 ) = Θ({𝑤 𝑣𝑖
1 ,𝑤

𝑣𝑖
2 , . . . ,𝑤

𝑣𝑖
𝑛𝑣
}) = {𝑡1, 𝑡2, . . . , 𝑡𝑛𝑣𝑖

} (10)

where each token 𝑡 is an element of the vocabulary 𝑇 .

4.1.1 Input Encoding. The four views on node semantics from the prior sections provide rich
information about graph nodes. We integrate the four different embedding vectors through an ag-
gregation function, referred to as AGGREGATE(.). We formulate the final representative embedding
vector for 𝑣𝑖 ∈ 𝑉 as follows:

𝑒𝑖𝑛𝑖 = AGGREGATE (GS(𝑣𝑖 ),LS(𝑣𝑖 ),AS(𝑣𝑖 ), FE(𝑣𝑖 )) (11)

The AGGREGATE(.) function plays a central role in fusing the diverse dimensions of node
semantics into a unified embedding vector. This aggregation enables a holistic representation of
each node’s characteristics, thereby facilitating stronger and deeper analyses and interpretations.
Xu et al. [56] argue that 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 (.) can be implemented through various strategies such as
element-wise max-pooling or vector summation.

The keyword search task relies heavily on matching query keywords with node attributes. Thus,
it is important to capture and retain as much keyword information as possible. By aggregating
embeddings to reflect the collective attribute strength, the summation strategy as the aggregation
method creates a broad feature profile for each node. This broad profile is advantageous in keyword
search, as it increases the likelihood of matching a wide range of query keywords, thereby com-
pensating for the information loss in incomplete graphs. This complies with our second principle
(𝑃2).

In addition, an incomplete graph may lack certain edges, leading to challenges in capturing the
full relational context of nodes. It is important to save information echoed by existing edges. The
summation strategy indirectly compensates for this by emphasizing the available nodal attributes
over relational data, thus maintaining a high level of search effectiveness even when the graph
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Algorithm 2: Unsupervised Fine-tuning of Transformer Model using Triplet Sampling
Input: 𝐺 = (𝑉 , 𝐸,𝑊 ), GS(), LS(), AS(), FE()
Output: Fine-tuned model T

1 Initialize transformer model T
2 foreach 𝑣𝑖 ∈ 𝑉 do
3 𝑒𝑖𝑛𝑖 = AGGREGATE (GS(𝑣𝑖 ),LS(𝑣𝑖 ),AS(𝑣𝑖 ), FE(𝑣𝑖 )) // Compute embedding 𝑒𝑖𝑛𝑖
4 𝜓 (𝑒𝑖𝑛𝑖 ) = T (𝑒𝑖𝑛𝑖 ) // Compute initial representation

5 end
6 repeat
7 foreach 𝑣𝑖 ∈ 𝑉 do

// step 1 in sampling mechanism

8 Select as positive sample 𝑒𝑖𝑛𝑖+ from the 1-hop neighbourhood
9 Select as negative sample 𝑒𝑖𝑛𝑖− if not in the 1-hop neighbourhood

// step 2 in sampling mechanism

10 if Hamming(𝑒𝑖𝑛𝑖 , 𝑒𝑖𝑛𝑖+ ) > Hamming(𝑒𝑖𝑛𝑖 , 𝑒𝑖𝑛𝑖− ) then

11 L = 𝑟𝑒𝑙𝑢 (
( [𝜓 (

𝑒𝑖𝑛𝑖
)
−𝜓

(
𝑒𝑖𝑛𝑖+

)2
2
−

𝜓 (
𝑒𝑖𝑛𝑖

)
−𝜓

(
𝑒𝑖𝑛𝑖−

)2
2

] )
// Calculate

triplet loss for 𝑖𝑡ℎ node

12 Update model T to minimize L
13 end
14 end
15 until convergence
16 foreach 𝑣𝑖 ∈ 𝑉 do

// sample-and-aggregate neighbor representations

17 AGGREGATEpool
𝑘

= max
({
𝜎

(
𝑊poolh𝑘𝑢𝑖 + b

)
,∀𝑢𝑖 ∈ N (𝑣)

})
18 end

structure is partially unknown. This addressed our third principle (𝑃3). Methods that eliminate part
of the information, such as pooling-based techniques, are not well-suited for our task.

Moreover, dimensionality is another factor to consider for aggregation. Hence, concatenation is
not a practical strategy since four embedding vectors need to be concatenated. This complies with
our first principle (𝑃1).

Altogether, considering our predefined principles and detailed analysis of available aggregation
strategies above, we have adapted the vector summation method for the AGGREGATE(.) function.
Its capacity to uniformly integrate available information, maximize the utility of partial data, and
maintain simplicity and efficiency in analysis makes it particularly apt for navigating the challenges
posed by incomplete graphs. This strategy ensures that despite the inherent data limitations, the
process of keyword search remains robust, comprehensive, and effective.

4.1.2 Training the Model. In this section, we discuss the training procedure. Our proposed
method uses a transformer-based model to generate node representation. Let’s represent the
generated representation for the 𝑖𝑡ℎ node with𝜓 (𝑒𝑖𝑛𝑖 ) and the transformer model with T . Therefore:

𝜓 (𝑒𝑖𝑛𝑖 ) = T (𝑒𝑖𝑛𝑖 ) (12)
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Given the nodes in the keyword graph are primarily associated with keywords, we adopt an
unsupervised learning technique to fine-tune the transformer model given the generated semantics
and feature embedding vectors. Using the triplet sampling technique [45, 54], each training record
has a negative and positive sample. Thus, the loss function tries to maximize the similarity between
the target node and the positive sample andminimize the negative sample. The positive and negative
samples need to be specifically defined for the keyword search problem. The ideal loss function
must take into effect both the semantics and keywords of nodes when comparing the similarity. We
have adopted a customized sampling mechanism for the triplet function to consider both semantics
and keyword similarity:

(1) To consider the semantics, we explore the 1-hop neighbourhood of the target node to find
a positive sample. This is because nodes with the most similar semantics to the target
node are its immediate neighbourhood. Thus, a positive sample must be selected from the
target node’s 1-hop neighbourhood. Likewise, the negative sample will be any node that
is not within the 1-hop neighbourhood of the target node and consequently has no edge
connecting to the target node. Positive samples are randomly selected from the target node’s
1-hop neighborhood. Similarly, negative samples are randomly selected from non-neighbors
within 1-hop from the target node.

(2) To consider the similarity of the keywords, we represent the keywords of each node with
one-hot encoding and calculate the Hamming similarity between the target node and its
positive and negative samples. Then, we only accept selected positive and negative samples
in step 1 if the Hamming similarity between the target node and positive sample is greater
than the target and negative sample.

Therefore, the loss function for fine-tuning the model can be formulated as:

L =
1
𝑁

𝑁∑︁
𝑖

𝑀𝑎𝑥

( [𝜓 (
𝑒𝑖𝑛𝑖

)
−𝜓

(
𝑒𝑖𝑛𝑖+

)2
2
−

𝜓 (
𝑒𝑖𝑛𝑖

)
−𝜓

(
𝑒𝑖𝑛𝑖−

)2
2

]
, 0

)
(13)

where 𝑒𝑖𝑛𝑖+ and 𝑒
𝑖𝑛
𝑖−

represent positive and negative samples, respectively. Here, 𝑁 is the total number
of samples. The loss function in Equation 13 maximizes the similarity between the target node and
positive sample and simultaneously minimizes the similarity between the target node and negative
sample.

After generating representation vectors for each of the nodes in the keyword graph, we utilize a
sample-and-aggregate strategy [21]:

AGGREGATE pool
𝑘

= max
({
𝜎

(
𝑊pool h𝑘𝑢𝑖 + b

)
,∀𝑢𝑖 ∈ N (𝑣)

})
(14)

where 𝜎 is a non-linear activation function,𝑊pool denotes the weight matrices, ℎ𝑘𝑤𝑖 is the aggre-
gated neighborhood vectors related to the 𝑘𝑡ℎ layer of the model and 𝑏 is the bias term. The set of
neighbour nodes for node 𝑣 is denoted by N(𝑣). The benefit of the sample-and-aggregate strategy
is that each node’s final representation vector is mixed with a set of samples of its neighbours’
representations. This will smooth the search space and propagate the information even further,
which is a crucial factor in graphs with missing values. The final node representation vectors are
used for searching over the keyword graph.

The procedure for fine-tuning the transformer model is detailed in Algorithm 2. This algorithm
outlines the steps involved in initializing the model and computing input embeddings (lines 1-5),
sampling positive and negative nodes (lines 8-10), computing loss value and updating the model
parameters based on it (lines 11-12). By iterating through all samples (line 7), the model learns to
distinguish between similar and dissimilar nodes, effectively improving its performance on the
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search task. We have used the 𝑟𝑒𝑙𝑢 () function (line 11) to implement the 𝑚𝑎𝑥 (𝑥, 0) in the loss
function. Lastly, a sample and aggregate technique will be applied to all nodes in the graphs (lines
16-18).

4.2 Search
During the search, the input query is given as a set of keywords. We denote 𝑖𝑡ℎ query with 𝑞𝑖
as defined in Equation 1. The pseudo-algorithm for search operation can be seen in Algorithm 3.
Since the query can be treated as a new node (line 1), its input embedding 𝑒𝑖𝑛𝑣𝑞𝑖 can be computed
using only its features, FE(𝑣𝑞𝑖 ) (line 2). This is because the query node will not have any semantic
embedding as it is not part of the graph. Next, the final representation for the input query node is
generated using the transformed model T (line 3). Lastly, we compute the similarity between all
the node representations and query nodes (lines 4-6) and return the 𝑡𝑜𝑝 − 𝑘 most similar nodes
(line 7).

Algorithm 3: Keyword Search
Input: 𝐺 = (𝑉 , 𝐸,𝑊 ), 𝑞𝑖 , 𝑘
Output: Top-𝑘 similar nodes to the input query 𝑞𝑖
// Search using query keywords

1 Represent query 𝑞𝑖 as new node 𝑣𝑞𝑖
// Use feature embedding to generate input embedding for 𝑣𝑞

2 𝑒𝑖𝑛𝑣𝑞𝑖
← FE(𝑣𝑞𝑖 )

// Generate representation using trained transformer-based model

3 𝜓 (𝑒𝑖𝑛𝑣𝑞𝑖 ) ← T (𝑒
𝑖𝑛
𝑣𝑞𝑖
)

4 for each node 𝑣𝑖 ∈ 𝑉 do
5 Compute similarity 𝑆 (𝜓 (𝑒𝑖𝑛𝑣𝑞𝑖 ),𝜓 (𝑒

𝑖𝑛
𝑣𝑖
)) between query node 𝑣𝑞𝑖 and node 𝑣𝑖

6 end
7 Return top-𝑘 nodes {𝑣1, 𝑣2, . . . , 𝑣𝑘 } with the highest similarity

4.3 Time Complexity Analysis
The problem of keyword search in graphs has been shown to be NP-hard [26, 27, 58]. Since
searching in incomplete graphs generalizes the problem of complete graph search, it remains
NP-hard. To address this challenge, the proposed approach leverages graph representation learning
to estimate the relevance of graph elements, thereby reducing the search space dimensionality.

Starting with semantics, Global Semantics require computing the shortest path length to anchor
nodes. Using Breadth-First Search (BFS) to determine the shortest path between two nodes results
in a time complexity of 𝑂 (𝑉 + 𝐸). In the worst case, where the graph is complete (𝐸 = 𝑉 2), this
simplifies to 𝑂 (𝑉 2) [12].

Adjusted Semantics utilize 𝑘-hop traversal. Since the number of hops is small, in a dense network,
the time complexity is dominated by𝑂 (𝑑𝑘 ), where 𝑑 is the average node degree and 𝑘 is the number
of hops [12]. Lastly, Local Semantics employ the Weisfeiler-Lehman (WL) graph coloring algorithm
with a time complexity of 𝑂 (ℎ𝐸), when using hashing-based algorithm. Where ℎ is the number of
iterations and 𝐸 is the number of edges [47]. Feature Embedding component employs a tokenizer
with a time complexity of 𝑂 (𝑛𝑞). Where 𝑛𝑞 is size of tokens.

Our proposed method incorporates a transformer-based model for graph representation learning.
The self-attention mechanism in transformers has a time complexity of:
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𝑂 (𝑛𝑞2) (15)

where 𝑛𝑞 represents the number of tokens [51].
Finally, a sample-and-aggregate mechanism is applied to generate final embeddings. For a single

node 𝑣 with its 𝑘-hop neighborhood, let:
• 𝑘 be the number of layers,
• 𝑆 be the sample size (number of neighbors sampled per node),
• 𝐹 be the feature dimension.

The time complexity of this process is:

𝑂 (𝑆𝑘 × 𝐹 ) (16)

The overall time complexity of the proposed method is:

𝑂 (proposed method) = 𝑂 (𝑉 2) +𝑂 (𝑑𝑘 ) +𝑂 (ℎ𝐸) +𝑂 (𝑛𝑞) +𝑂 (𝑛2𝑞) +𝑂 (𝑆𝑘 × 𝐹 ) (17)

4.3.1 Search Mechanism Complexity. The search mechanism involves embedding-based keyword
matching, reducing the brute-force complexity from:

𝑂 (𝑉 × 𝑛𝑞) (18)

The efficiency of the search is influenced by the number of query keywords (𝑛𝑞) and the number
of graph nodes (𝑉 ) that must be compared.

Complexity Dominance Considerations: The dominant complexity term depends on various
factors:
• In dense graphs (𝐸 = 𝑉 2), the term 𝑂 (𝑉 2) dominates.
• When using high-hop traversal (𝑘 is large), the exponential term 𝑂 (𝑑𝑘 ) can become a
bottleneck.
• If sampling neighborhoods (𝑆𝑘 ) is extensive, the complexity𝑂 (𝑆𝑘 × 𝐹 ) may grow signifi-
cantly.
• The transformer model scales quadratically with the number of tokens, meaning 𝑂 (𝑛2𝑞)
is crucial for large queries.

In typical scenarios where the number of hops (𝑘) and query tokens (𝑛𝑞) remain relatively small,
the term 𝑂 (𝑉 2) is the dominant factor in the time complexity from Equation 17. Therefore, it
provides a reasonable approximation for the overall time complexity in common use cases.

5 Experiments
5.1 Dataset
In our study of keyword search within incomplete graphs, we selected a set of diverse datasets
known for their broad application in graph neural network research. This selection mirrors the
state-of-the-art approach utilized by KS-GNN [22], ensuring consistency in evaluation criteria and
facilitating direct comparison of results. The datasets include:
• CiteSeer: A digital library focusing on literature in computer and information science,

known for its citation graph, which links documents through citations [44]. In this dataset,
nodes represent published papers, and the edges between the nodes indicate citation rela-
tionships. Each paper within the graph is associated with a set of keywords.
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• DBLP: This is a comprehensive bibliographic database covering major journals and proceed-
ings in the field of computer science, presenting a rich source of academic relationships [49].
DBLP is analyzed as a co-authorship graph where each node represents an author, and
edges signify co-authorship. Each author within the graph is associated with a set of key-
words. Keywords associated with each node are extracted from the abstracts of the authors’
published work.
• Amazon Toys: A subset of the Amazon co-purchase graph, where nodes represent products
(in this case, toys), and edges indicate frequently co-purchased items, highlighting consumer
behavior patterns [38].
• Amazon Video: Similar to the Amazon Toys dataset but focuses on movies, providing
insights into co-purchasing trends among movie products on Amazon [38].

Table 2. Stats of experimental datasets.

Datasets Nodes Edges Keys Avg Deg Closeness Cluster Cosine Neigh Sim Non-Neigh Sim N/N Ratio Avg Keys/Node
CiteSeer [44] 3,327 9,104 3,703 5.55 0.05 0.14 0.19 0.21 0.04 4.80 31.61
DBLP [49] 32,361 69,448 4,094 4.29 0.02 0.21 0.31 0.35 0.03 12.10 11.48
Amazon Video [38] 20,882 66,003 11,514 6.23 0.05 0.06 0.004 0.005 0.001 3.31 22.00
Amazon Toy [38] 20,682 224,603 4,114 20.78 0.10 0.40 0.10 0.11 0.002 57.16 3.01

These datasets were chosen due to their relevance in demonstrating the efficacy of chosen
baselines in processing incomplete information. The statistical characteristics of datasets are shown
in Table 2. The table reports the number of nodes and edges in each dataset, reflecting graph size
and connectivity. The keys column denotes the number of unique keywords associated with nodes,
which serve as search attributes. Average degree (Avg Deg) represents the mean number of edges
per node, indicating graph sparsity or density. Closeness centrality (Closeness) captures how easily
a node can reach others, while clustering coefficient (Cluster) measures the tendency of nodes to
form tightly connected groups.

To quantify feature similarity, we report mean cosine similarity (Cosine) between node feature
vectors, along with neighbor similarity (Neigh Sim) and non-neighbor similarity (Non-Neigh Sim),
which indicate the average similarity among connected and unconnected nodes, respectively. The
neighbor/non-neighbor similarity ratio (N/N Ratio) further highlights the extent to which connected
nodes share higher feature similarity than unconnected ones. Lastly, the average keys per node (Avg
Keys/Node) column represents the mean number of keywords assigned to each node, providing
insight into attribute density within the dataset.

As seen in Table 2, we have intentionally selected datasets that have differing graph characteristics.
For instance, the CiteSeer dataset, with 3,327 nodes and 9,104 edges, focuses on a more compact
graph structure yet contains a substantial number of keywords (3,703), represents a relatively
compact graph while maintaining a substantial number of keywords (3,703). This results in a
high average keys per node value of 31.61, indicating that each node carries a significant amount
of textual information, making it well-suited for evaluating search algorithms on feature-rich
networks. Additionally, CiteSeer exhibits a moderate neighbor/non-neighbor similarity ratio (N/N
Ratio) of 4.80, suggesting that connected nodes tend to have moderately higher semantic similarity
than unconnected ones. In contrast, while the DBLP dataset also focuses on academic publications,
it features the highest node count (32,361), along with 69,448 edges and 4,094 keywords, forming
a large yet relatively sparse network. The average degree (4.29) is lower compared to the other
datasets, reflecting a less connected structure. However, the neighbor similarity (0.35) remains
significantly higher than the non-neighbor similarity (0.03), leading to a strong N/N Ratio of 12.10.
Despite having a comparable number of keywords to CiteSeer, DBLP’s average keys per node
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(11.48) is considerably lower, implying that individual nodes contain fewer descriptive attributes.
This makes DBLP a suitable benchmark for analyzing search effectiveness in large-scale academic
graphs with sparse feature distributions.
We have also chosen two other datasets from a completely different domain, that is, electronic

commerce. The Amazon Video and Amazon Toy datasets highlight different aspects of graph
complexity. The Video dataset, with 20,882 nodes and 66,003 edges, has the highest number of
keywords (11,514), leading to a moderately high average keys per node of 22.00. However, it
has the lowest cosine similarity (0.004) and neighbor similarity (0.005), indicating that feature-
based relationships are weaker in this dataset, likely due to the diverse nature of video content.
Meanwhile, the Toy dataset, despite having a similar number of nodes (20,682), is significantly
more interconnected, with 224,603 edges and a much higher average degree (20.78). The clustering
coefficient (0.40) indicates strong local grouping tendencies, while its exceptionally high N/N Ratio
(57.16) suggests that connected nodes are far more semantically aligned than unconnected ones.
Interestingly, it has the lowest average keys per node (3.01), implying that while nodes in this
dataset are densely interconnected, they contain fewer distinguishing textual features.

These variations across datasets, spanning differences in graph size, connectivity, feature similar-
ity, and attribute density, provide a rich experimental ground for evaluating graph-based search and
learning algorithms. The inclusion of datasets with highly interconnected structures (Amazon Toy),
sparse academic graphs (DBLP), feature-dense but structurally moderate networks (CiteSeer), and
semantically diverse but weakly connected content (Amazon Video) ensures a thorough assessment
of our model’s performance across different real-world scenarios.

5.2 Experimental Setup
In our study, we evaluate our suggested approach against standard techniques for keyword search
tasks within two types of networks as suggested by [11, 22, 57]: (1) networks containing only
absent keywords, and (2) networks missing both keywords and connections. For each dataset, to
mimic real-world conditions and accurately adjust the levels of missing information, we modify
the original data in two phases:

(1) Concealing the keywords for a specified portion (marked as 𝑟𝑤) of randomly chosen nodes
in the network;

(2) Randomly hide a certain percentage (notated as 𝑟𝑒 ) of the network’s edges.

We denote that the random selection functions independently, uniformly and without any tie
to graph characteristics. Total number of words in a query 𝑞 as 𝑛𝑞 = |𝑞 | and randomly select 100
queries for testing for each 𝑛𝑞 value that ranges from 3 to 9, increasing by increments of 2 (i.e.
[3,5,7,9]). Therefore, the size of keywords in the results tables indicates the size of the query.

The ground truth is generated by the BLINK [23] method. Similar to KS-GNN [22], the original
graph is processed by BLINK and the top-K retrieved answers are used as the gold standard.
Furthermore, in each incomplete network, we create a validation set comprising 100 randomly

chosen queries with known correct answers.We adjust the parameters of themethods under compar-
ison using the grid search technique on the validation set. This approach allows for a comprehensive
comparison with baseline methods under varying conditions of information incompleteness.
To ensure the reliability and stability of our findings, each method in our study is executed

20 times. This repetition allows us to mitigate any variability caused by random factors in the
data or the algorithms. The final results we present are the averages of these runs, providing a
more accurate reflection of each method’s performance under the experimental conditions. This
approach helps in understanding the expected behaviour of these methods in real-world scenarios.
For each evaluation setup, the best results are indicated in bold
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5.3 Code
The implementation of our proposed method and other baselines along with the dataset is publicly
available on GitHub1.

5.4 Baselines
In this study, we introduce a novel approach to keyword search on incomplete graphs, benchmarking
against the contemporary state-of-the-art methodologies:
• KS-GNN [22]: A versatile method distinguished by its use of a three-term loss function and

an encoder-decoder mechanism, enhanced with aggregation for embedding vector creation.
This approach is adaptable, allowing for various graph representation learning techniques
to be applied, thereby tailoring the search process to the specific characteristics of the graph
data.
• D2PT [32] is a dual-channel GNN that enhances learning in graphs with weak information
by employing a diffused propagation then transformation (DPT) backbone. It utilizes a
diffusion-based propagation mechanism to compensate for weak connectivity and missing
information. Then, D2PT constructs an auxiliary global graph based on the nearest-neighbor
strategy to propagate information even for disconnected nodes. D2PT is fundamentally a
supervised approach, requiring labeled data for effective training. Therefore, we were only
able to evaluate on Citesser and DBLP datasets.
• GNN-Based Methods:

– T2-GNN [25] is a teacher-student distillation framework designed to improve robust-
ness on incomplete graphs. It employs two separate teacher models: one for feature
imputation and another for structure reconstruction, ensuring that missing information
does not interfere with learning. A dual-distillation mechanism then transfers this
knowledge to a student GNN. While T2-GNN achieves strong results on standard
benchmarks, it relies on a fully supervised setting with labeled training data. Thus, we
were only able to evaluate on Citesser and DBLP datasets.

– Graph Convolutional Networks (GCN) [29]: Leverages the spectral properties
of graphs to implement convolutional neural networks directly on graph-structured
data. This method is pivotal for capturing local node features and their topological
relationships, making it suitable for tasks that require an understanding of graph
structure.

– Graph Attention Networks (GAT) [52]: Introduces an attention mechanism into
the graph neural network framework, allowing nodes to weigh the importance of their
neighbours’ features dynamically. This adaptability enables the model to focus on the
most relevant parts of the graph for the task at hand.

– Chebyshev Convolution (ChebConv) [14]: Utilizes Chebyshev polynomials to
approximate the graph Laplacian’s spectral filter, enabling the model to learn graph
features over various scales. This method is efficient for large graphs where capturing
global graph properties is essential.

– GraphSAGE [21]: Employs a sampling-based approach to efficiently generate node
embeddings by aggregating features from a node’s local neighbourhood. This methodol-
ogy is designed to handle large graphs by learning a function that generates embeddings
by sampling and aggregating features from a node’s neighbourhood.

• BLINK+SAT [11, 23]: A two-stage process where the SAT model initially predicts missing
links/keywords, followed by the application of the BLINK method for keyword search. This

1GitHub code: https://github.com/radinhamidi/A-Robust-Neural-Approach-for-Searching-over-Incomplete-Graphs
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sequential approach aims to enhance the accuracy of keyword searches on incomplete
graphs by mitigating the impact of missing information.
• PCA-Based Methods:

– PCA (Principal Component Analysis) [19]: PCA is a statistical procedure that uses
an orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal com-
ponents. In the context of graph search, PCA can reduce the dimensionality of the
graph’s feature space, retaining those characteristics most significant for the search
while minimizing information loss. This process simplifies the graph’s complexity,
facilitating a more efficient search operation.

– Conv-PCA [22]: This method employs a convolutional graph neural network layer to
aggregate and refine node representations from the graph’s data, capturing both local
and global structural patterns effectively. After processing through this convolutional
layer, the refined node representations are then subjected to PCA for dimensionality
reduction. This sequence ensures that the intricate patterns discerned by the convo-
lutional layer are preserved, albeit in a reduced-dimensional space, enhancing the
keyword search’s efficiency and accuracy by focusing on the most impactful features.

– KS-PCA [22]: This approach represents a hybrid approach that merges the strengths
of KS-GNN’s graph neural network framework with PCA’s dimensionality reduction
capabilities. In this method, the data is processed by PCA transformation instead of KS-
GNN encoder-decoder architecture. This combination aims to harness PCA’s efficiency
in simplifying data representation and KS-GNN’s robustness in handling graph-based
data, especially in scenarios characterized by incomplete information.

This comparative list of baselines aims to underscore our proposed method’s robustness and
versatility in handling keyword searches on incomplete graphs. By evaluating against these diverse
methodologies, our goal is to highlight the superior performance and efficiency of our approach,
thereby making a significant contribution to the ongoing research in graph search algorithms.

5.5 Ablation Study
An ablation study was conducted to assess the individual and combined effects of the components
of our proposed method on its overall performance. We evaluated our proposed method and all
component combination variations under a challenging scenario, with half missing edges (𝑟𝑒 = 50%)
and half missing keywords (𝑟𝑤 = 50%). This setup allowed us to rigorously investigate the role and
impact of each component under conditions of significant data incompleteness. The results are
shown in Table 3, from which several key insights emerge:

(1) Single-component Efficacy: Performance of the single components depends on the dataset
characteristic. In a small dataset, i.e., CiteSeer,AS demonstrated slightly better performance
relative to its counterparts. However, this changes when the dataset’s size starts to grow.
This growth can be in terms of the number of nodes (i.e. DBLP), number of total keywords
(i.e. Amazon Video) or number of edges (i.e. Amazon Toy). It can be seen that GS and
LS components perform slightly better than AS. This can be justified by the fact that by
increasing the size of the graph, AS semantic becomes less efficient in representing either
the close neighbourhood or global position of a target node.

(2) Double-component Synergy: The combination of any two components invariably re-
sulted in performance enhancement beyond that achievable by the components in isolation.
Notably, not all the synergies contribute equally to the performance. CiteSeer and DBLP
benefit greatly from combinations GS + LS due to the need to capture both broad global
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Table 3. Performance results of the ablation Study for CiteSeer, DBLP, Amazon Toy and Video datasets.

Datasets
𝑟𝑒 50% Missing Edges
𝑟𝑤 50% Missing Keywords
𝑛𝑞 3 5 7 9

CiteSeer

AS 25.48 30.74 33.24 34.17
GS 25.27 30.41 32.95 33.83
LS 25.35 30.05 33.79 34.01
GS + AS 25.95 31.65 34.11 34.75
LS + AS 26.21 32.71 34.17 35.32
GS + LS 26.19 32.80 34.94 35.36
Proposed Method (All) 27.3 34.57 35.48 36.04

Video

AS 11.21 14.37 16.97 18.77
GS 11.43 14.89 17.08 19.58
LS 11.84 14.90 17.10 19.71
GS + AS 12.31 15.35 18.56 20.19
LS + AS 12.49 15.58 18.63 20.34
GS + LS 12.09 15.12 18.07 20.11
Proposed Method (All) 13.71 16.63 19.09 21.45

Toy

AS 17.39 23.42 24.74 25.19
GS 17.60 23.90 24.83 25.67
LS 17.95 23.98 24.89 25.79
GS + AS 18.07 24.07 25.41 26.14
LS + AS 18.31 24.44 25.39 26.85
GS + LS 18.60 24.82 25.58 26.92
Proposed Method (All) 19.9 25.54 27.03 28.34

DBLP

AS 16.06 23.20 27.59 28.33
GS 16.47 23.72 27.62 28.40
LS 16.19 23.93 27.48 28.67
GS + AS 18.38 24.37 28.69 29.14
LS + AS 17.84 24.02 28.13 29.01
GS + LS 18.29 24.49 28.72 29.21
Proposed Method (All) 18.86 25.02 29.33 30.65

relationships and detailed local structures, which is especially important in sparser graphs
like DBLP where the combination of the relationships between nodes is often either very
local or requires a broad, global perspective. Amazon Video and Amazon Toy tend to benefit
more from LS + AS combination, as these can better manage the dense local structures
and large number of keywords. This underscores the importance of component interaction
in optimizing performance.

(3) Integrated Performance: The holistic integration of all four components significantly
outperforms any individual or combined subset thereof, across various configurations and
scenarios. This demonstrates the synergistic effect of the components, each contributing
uniquely to the framework’s robustness and adaptability.

These observations not only highlight the strengths and limitations of the individual compo-
nents but also affirm the efficacy of the integrated approach in enhancing search performance in
incomplete graphs. Future work may explore further optimizations and the potential for additional
components to address identified weaknesses, thereby extending the methodology’s applicability
and effectiveness.

5.6 Comparison With Baselines
Starting with the first scenario where only keywords are missed, we make several observations
based on the result from Table 4:
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Table 4. Performance for our proposed method and baselines by Hits@100 (%) with Missing Keywords and
No Missing Edges. T2-GNN and D2PT employ supervised approaches and are evaluated on labeled datasets,
i.e., Citeseer and DBLP.

Datasets 𝑟𝑤 30% Missing Keywords 50% Missing Keywords 70% Missing Keywords
𝑛𝑞 3 5 7 9 3 5 7 9 3 5 7 9

CiteSeer

GCN 15.72 16.05 16.33 13.59 12.56 14.01 20.18 19.86 12.79 16.57 15.46 15.12
GAT 19.02 17.06 22.7 22.46 15.51 22.53 21.53 18.62 16.82 14.9 19.66 23.04
ChebConv 17.74 20.24 23.04 13.98 15.59 23.2 20.63 20.38 16.92 22.7 18.99 23.24
GraphSAGE 0.74 0.59 1.23 1.16 3.39 2.36 2.53 1.87 10.45 7.14 8.57 7.74
BLINK+SAT 8.81 7.23 5.65 4.42 9.14 5.97 5.47 4.88 9.82 8.34 8.75 5.49
PCA 11.2 8.42 7.05 6.05 9.87 7.33 6.8 5.66 8.4 6.83 6.07 5.46
Conv-PCA 11.56 11.11 9.08 10.32 8.14 10.05 10.76 9.25 12.69 11.06 10.83 7.3
KS-PCA 25.7 30.06 35.01 36.38 26.08 27.56 30.84 33.82 26.08 28.52 32.08 36
D2PT 4.54 5.35 5.57 4.84 3.05 6.17 4.82 6.59 5.93 4.46 5.01 5.37
T2-GNN 24.75 31.07 36.42 38.55 25.01 32.15 36.22 37.74 22.56 29.82 35.15 37.11
KS-GNN 29.52 36.37 37.92 39.00 30.07 36.41 38.85 39.00 27.08 37.48 37.66 36.02
Proposed Method 34.84 43.3 45.05 46.49 34.67 42.68 44.95 46.94 34.79 43.85 45.73 47.03

DBLP

GCN 2.75 5.27 3.05 8.04 7.27 2.44 7.17 7.6 5.86 3.85 9.12 11.31
GAT 4.41 4.77 10.09 2.35 5.93 5.22 10.74 3.68 5.26 12.97 8.72 9.63
ChebConv 4.56 9.41 5.68 8.96 6.4 4.17 8.5 8.68 7.54 11.03 8.63 17.36
GraphSAGE 0.42 0.49 0.36 0.82 0.29 0.43 0.53 0.05 0.07 0.01 0.01 0.00
BLINK+SAT 3.26 6.09 4.01 6.65 3.49 1.66 5.42 3.95 4.25 2.42 3.12 4.24
PCA 3.78 2.57 2.25 2.38 3.06 2.55 2.21 2.15 2.97 2.51 2.02 1.88
Conv-PCA 9.00 13.24 13.29 16.87 5.93 6.56 7.64 10.62 7.00 10.52 10.03 15.68
KS-PCA 15.28 21.41 25.61 31.64 14.98 20.73 23.21 31.72 12.49 19.49 21.23 28.63
D2PT 5.72 5.83 6.22 5.64 5.11 5.98 5.61 5.91 5.03 4.89 5.55 5.28
T2-GNN 15.42 23.85 27.31 30.67 15.88 23.14 27.18 30.03 14.75 22.78 25.79 30.12
KS-GNN 16.21 24.94 29.55 33.51 16.52 22.73 26.85 30.69 15.57 24.15 27.12 29.06
Proposed Method 23.11 32.29 39.38 40.54 24.01 33.46 38.01 42.13 23.33 32.46 39.16 40.86

Video

GCN 13.66 16.06 19.56 25.28 16.14 19.46 19.99 23.85 6.49 6.79 11.31 12.06
GAT 10.47 13.4 9.15 11.35 11.29 12.16 14.5 19.12 8.84 12.26 13.46 13.84
ChebConv 4.45 4.3 4.57 8.49 8.19 12.91 8.4 7.05 5.77 5.96 9.44 13.92
GraphSAGE 0.49 0.30 0.06 0.03 0.44 0.14 0.00 0.05 0.34 0.35 0.21 0.16
BLINK+SAT 10.21 9.86 10.99 14.87 8.55 6.92 8.63 5.82 1.18 1.15 4.38 3.35
PCA 1.54 0.91 0.55 0.61 1.71 0.72 0.71 0.57 1.66 0.95 0.66 0.55
Conv-PCA 1.81 2.46 1.58 2.38 2.43 1.49 1.66 2.54 2.42 2.37 2.80 3.37
KS-PCA 10.19 12.23 16.15 21.37 11.26 15.62 19.51 23.87 10.66 15.57 19.17 25.36
KS-GNN 21.43 23.36 22.92 26.79 22.54 22.57 30.41 33.41 21.01 16.48 22.01 28.47
Proposed Method 23.33 30.13 34.89 38.71 22.76 29.56 34.27 38.11 21.6 27.71 32.73 36.18

Toy

GCN 18.97 21.27 19.13 21.44 18.47 20.26 19.07 22.34 18.03 19.40 18.91 20.73
GAT 20.84 22.41 22.6 19.65 21.39 27.43 29.82 31.09 19.16 20.87 21.36 21.80
ChebConv 15.5 18.08 22.63 12.0 14.94 21.01 24.27 19.85 16.3 17.48 19.97 12.35
GraphSAGE 0.74 0.88 5.11 4.21 4.24 12.49 6.50 6.10 1.45 4.39 6.71 1.09
BLINK+SAT 6.47 8.17 8.12 10.54 6.79 9.59 10.99 11.93 6.44 8.56 11.55 8.15
PCA 1.15 0.68 0.63 0.51 1.01 0.69 0.51 0.44 0.67 0.47 0.44 0.30
Conv-PCA 21.34 21.99 23.76 25.40 19.17 19.72 20.21 25.22 16.99 21.61 23.95 24.90
KS-PCA 27.23 27.73 31.58 33.79 25.78 28.94 31.04 32.82 18.35 22.03 25.50 26.25
KS-GNN 28.56 29.85 29.55 34.28 24.65 29.16 31.27 33.25 21.78 27.41 25.55 30.17
Proposed Method 31.82 40.5 43.87 45.31 32.19 41.41 43.49 45.18 24.09 36.31 40.75 41.92

(1) Our proposed method has been able to show consistently better performance compared to
the baselines on all query sizes and for a different rate of missing keywords. Even when
compared to KS-GNN, the state-of-the-art baseline for keyword search on incomplete graphs.
We observe a consistent and significant improvement under various conditions.

(2) It can be seen that a change in the size of keywords or the missing rate can cause a change
in performance for some methods while performance remains in the same range for the rest.
More specifically, GCN, GAT, ChebConv, PCA, T2-GNN and KS-GNN are the methods that
suffer performance drop by increasing the missing keyword ratio. On the other hand, the
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Table 5. Performance for our proposed method and baselines by Hits@100 (%) with Missing Keywords and
30% Missing Edges. T2-GNN and D2PT employ supervised approaches and are evaluated on labeled datasets,
i.e., Citeseer and DBLP.

Datasets 𝑟𝑤 30% Missing Keywords 50% Missing Keywords 70% Missing Keywords
𝑛𝑞 3 5 7 9 3 5 7 9 3 5 7 9

CiteSeer

GCN 19.00 17.86 21.19 22.44 13.7 15.18 15.82 11.46 11.27 19.34 22.43 21.33
GAT 10.58 8.88 9.9 12.44 12.2 18.52 14.36 21.24 12.96 15.98 14.83 12.41
ChebConv 18.33 28.27 21.06 17.54 17.89 16.54 28.33 26.67 18.99 22.42 29.54 28.77
GraphSAGE 1.25 1.03 0.75 1.03 3.26 2.45 3.34 1.62 9.44 7.86 7.59 5.45
BLINK+SAT 9.19 8.14 5.68 3.71 8.26 6.79 6.04 8.57 7.88 8.33 7.69 8.3
PCA 11.2 8.42 7.05 6.05 9.87 7.33 6.8 5.66 8.4 6.83 6.07 5.46
Conv-PCA 11.6 10.97 9.05 10.56 9.77 10.61 12.73 9.31 12.92 11.83 12.25 8.45
KS-PCA 26.08 30.06 32.26 34.65 23.8 26.45 29.11 31.81 26.06 26.57 31.42 34.53
D2PT 4.07 3.48 5.78 3.04 5.34 3.45 5.47 2.88 2.93 1.76 2.86 4.73
T2-GNN 24.79 31.16 34.29 38.61 23.83 30.69 33.72 36.98 22.35 28.52 32.86 35.17
KS-GNN 28.96 35.75 39.44 39.4 26.48 34.92 36.31 37.3 24.2 27.84 28.19 33.41
Proposed Method 32.79 41.72 42.45 43.63 33.28 40.74 41.59 42.48 33.17 41.72 41.72 43.16

DBLP

GCN 4.85 6.71 5.89 3.62 2.91 10.47 9.53 8.5 2.21 2.79 1.41 4.56
GAT 3.27 3.74 7.37 7.11 3.71 4.49 5.55 8.04 5.63 7.73 8.34 7.63
ChebConv 5.51 8.51 12.55 4.24 7.66 12.24 11.94 13.09 6.3 6.44 10.21 14.2
GraphSAGE 0.51 0.20 0.42 0.34 0.67 0.25 0.40 0.90 0.40 0.05 0.04 0.02
BLINK+SAT 4.78 3.45 6.74 4.58 3.94 3.66 5.05 3.97 2.96 2.75 2.83 7.29
PCA 3.78 2.57 2.25 2.38 3.06 2.55 2.21 2.15 2.97 2.51 2.02 1.88
Conv-PCA 8.35 11.8 12.51 14.51 5.25 6.77 7.03 9.91 6.46 9.59 9.47 14.33
KS-PCA 15.05 19.99 22.61 28.57 13.68 19.19 21.59 28.96 11.67 17.37 18.38 24.51
D2PT 4.18 5.63 6.05 5.72 4.51 5.03 5.67 5.96 3.32 4.08 4.41 4.82
T2-GNN 14.83 19.95 22.25 27.72 12.21 18.78 21.35 25.90 10.90 16.20 18.89 24.13
KS-GNN 15.91 20.49 25.09 29.04 15.79 19.86 22.15 29.71 12.07 17.18 19.23 24.19
Proposed Method 22.29 29.88 35.22 37.36 19.22 25.86 29.46 30.90 19.79 26.36 29.65 31.81

Video

GCN 2.83 2.95 4.5 4.69 1.62 2.8 4.14 2.94 2.19 2.19 3.01 3.04
GAT 3.01 2.13 3.01 2.52 2.51 3.99 3.76 3.84 4.27 3.0 4.31 3.64
ChebConv 3.35 4.08 4.85 4.76 2.65 3.03 4.46 4.54 1.96 2.55 5.67 2.9
GraphSAGE 0.09 0.11 0.02 0.00 0.26 0.05 0.00 0.04 1.65 1.65 2.22 1.29
BLINK+SAT 1.67 1.85 2.48 1.44 0.08 0.99 4.96 2.97 2.19 1.77 0.78 1.21
PCA 1.54 0.91 0.55 0.61 1.71 0.72 0.71 0.57 1.66 0.95 0.66 0.55
Conv-PCA 1.05 1.59 0.83 2.01 1.43 0.81 0.87 1.23 1.25 1.25 1.31 1.38
KS-PCA 3.82 4.13 4.88 7.13 3.96 4.52 5.33 6.11 3.64 4.58 5.17 6.55
KS-GNN 8.08 8.34 12.88 11.82 6.84 7.68 4.18 11.12 6.37 10.31 13.92 10.07
Proposed Method 15.31 18.74 21.8 24.95 14.74 18.98 22.09 25.03 13.87 17.17 20.02 22.39

Toy

GCN 2.64 2.37 1.78 2.99 2.45 2.55 2.04 2.93 2.18 2.21 2.11 2.30
GAT 2.22 1.45 2.77 0.92 1.01 0.87 1.11 0.64 1.16 0.93 0.74 0.88
ChebConv 6.93 6.15 11.69 7.82 7.25 8.25 9.03 8.91 3.09 3.83 4.46 5.17
GraphSAGE 0.04 0.02 0.01 0.00 0.28 0.00 0.01 0.02 0.02 0.18 0.29 0.23
BLINK+SAT 3.69 3.03 4.85 5.66 2.56 1.34 1.86 5.46 1.76 1.39 4.73 4.45
PCA 1.15 0.68 0.63 0.51 1.01 0.69 0.51 0.44 0.67 0.47 0.44 0.30
Conv-PCA 11.64 10.46 11.23 12.29 9.31 9.00 9.08 11.61 6.74 8.87 8.99 9.56
KS-PCA 13.80 13.03 13.55 15.67 11.35 11.03 11.09 13.02 6.84 8.37 9.50 10.43
KS-GNN 13.82 13.28 14.38 15.22 12.51 12.54 12.68 12.59 9.41 8.99 12.83 11.15
Proposed Method 22.72 28.62 30.26 31.13 22.09 28.57 30.19 31.85 17.32 22.96 23.49 24.03

rest of the methods, GraphSAGE, BLINK+SAT, Conv-PCA, KS-PCA, D2PT and our proposed
method, show minor or no performance drop when the missing keyword ratio increases.
This can be interpreted as a result of a robust learning technique that properly captures the
structural and semantical characteristics of graphs.

(3) While the performance for the mentioned group remains stable, the overall performance
varies across methods. For example, the GraphSAGE method shows a significantly poor
performance compared to the rest. This is because GraphSAGE only utilizes the message
passing and max-pooling operator to gather information from neighbour nodes. This causes
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the model to be unable to distinguish the source of each unique keyword. Smoothing
the neighbourhood information combined with missing values makes the representation
generated by GraphSAGE almost non-functional for the purpose of keyword search in
incomplete graphs. Furthermore, we observe that the D2PT method also performs poorly
in keyword search overall. This is because the learned representations may not directly
optimize for keyword retrieval. Moreover, over-propagation in diffusion-based propagation
mechanism can lead to over-smoothing, where node representations become too similar
across the graph.

(4) In the PCA-based group of methods, we can see that PCA and KS-PCA suffer a performance
drop compared to Conv-PCA when increasing the missing keyword ratio. This is because
PCA generates embedding per node, and loss of information directly affects the performance.
On the contrary, although the Conv-PCA does not perform well, it remains robust against
missing information. This is because Conv-PCA uses a graph convolutional neural layer to
aggregate and refine node representations from the graph’s data, capturing both local and
global structural patterns effectively. In addition, Conv-PCA uses a decoder unit; therefore,
the reconstruction loss is also taken into account.

(5) GCN, GAT, and ChebConv models are showing weak performance overall. These models
use graph neural networks along with different techniques to generate representations.
GCN uses a convolutional layer to learn the node representations that incorporate infor-
mation from their neighbourhoods. ChebConv is based on the Chebyshev Spectral Graph
Convolution framework, which utilizes Chebyshev polynomials of the Laplacian matrix
to efficiently compute graph convolutions. GAT dynamically determines the importance
of each neighbour’s features through a self-attention mechanism. While each of these
models uses a unique approach to capture graph information, they all fail to achieve high
performance when it comes to incomplete graphs. This shows that missing information in
graphs needs a special mechanism to focus on the structure and features of nodes in the
graph. Our proposed method uses a multi-aspect graph representation method as a solution
for this.

(6) BLINK+SAT uses SAT [11], a GNN-based graph completion model, to reconstruct a graph
without missing information and then uses BLINK [23] to index the graph and process key-
word search. The BLINK+SAT performance is not significant because the graph completion
process is a sensitive and unreliable task. The model also loses more performance when the
missing information ratio increases. This is because graph completion tasks become more
and more challenging when the number of missing information increases.

(7) We also observe that baselines that adopt a decoder in their architecture, i.e. KS-GNN, KS-
PCA, Conv-PCA and our proposed method, are achieving higher performance in comparison
to those without a decoder. This shows that decoders, in general, help models achieve better
performance by adding reconstruction loss to their training loss function. To better assess
this fact, the Conv-PCA performance should be compared to the ordinary PCA method.

(8) The proposed method shows consistent good performance when the size of the input query
increases. This shows that the method can learn additional contextual information from
the presence of additional keywords in the query. This pattern is also observed for the
KS-GNN, KS-PCA and Conv-PCA methods; however, the degree of improvement and the
performance measures are lower than our proposed approach.

Moving to the second scenario, where graph experiences both missing keywords and missing
edges, we make several observations based on the result from Table 5:
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(1) The overall performance for the majority of the methods drops by introducing the missing
edge challenge to the problem. GCN, GAT, ChenConv, GraphSage, BLINK+SAT, PCA and
ConvPCA are all subject to this pattern. This shows that the mentioned methods are not
robust against missing edges, and the structural properties of the graph are not captured
efficiently for search in incomplete graphs. While this was expected, we observe that for
GCN and ChebConv methods, the pattern is the opposite for CiteSeer dataset particularly.
This can be due to CiteSeer being a relatively small graph, and alteration cannot hurt the
structure significantly.

(2) BLINK+SAT shows an exceptionally reduced performance when facing missing edges.
BLINK+SAT uses a graph completion technique for missing information recovery. This
proves that this technique may not be a good solution for search in incomplete graphs.

(3) For our proposed method and the baselines, including KS-GNN, the state-of-the-art model,
the missing edges impact differently on each dataset. Our proposed method is more robust
on CiteSeer and DBLP datasets. While it outperforms the other methods on the Toy and
Video dataset, the performance is more impacted by the missing edge. It can be concluded
that graph attributes, such as the number of nodes, edges and keywords, can contribute to
the model performance and tolerance against missing values.

(4) We can conclude that our proposed method performs better than all baselines, even for cases
when both missing keywords and edges exist. It can be seen that despite the missing values
in both edges and keywords, our proposed method consistently outperformed others. This is
because the proposed method crafts graph representations from four different perspectives,
providing complementary information to deal with missing values.

5.7 Sensitivity Analysis
This sensitivity analysis investigates the impact of keyword size on the performance of our proposed
search method, focusing on its responsiveness and robustness to keyword size variations. We
examine the behaviour of our model with query keyword sizes of 𝑛𝑞 = {3, 5, 7, 9}. The analysis aims
to demonstrate the extent to which keyword size influences the efficacy of our proposed method.
The results can be seen in Figure 4. All other setup parameters remain the same during the study.
We studied performance with several rates of missing keywords (𝑟𝑤) and edges (𝑟𝑒 ) to ensure that
observed performance trends could be attributed solely to changes in keyword size.
The results reveal distinct trends in the performance of our proposed search method as the

keyword size increases. Notably, our method exhibited a better Hit@k score compared to smaller
keyword sizes (3 and 5) across all four datasets. This indicates a positive correlation between
keyword size and search performance. Our model maintained a competitive edge as the keyword
size increased to 7 and 9, suggesting its robustness in capturing relevant information even with
a larger set of keywords, however the rate of performance increase slowed down and near to
flat in Citeseer and DBLP datasets. This shows that having a large number of unique keywords
(i.e. Amazon Video dataset) or a large number of edges (i.e. Amazon Toy dataset) plays a role in
determining the ideal minimum number of keywords per node.

Our proposed method’s notable performance with smaller keyword sizes can be attributed to its
sophisticated mechanism for handling missing information, allowing for more precise and relevant
search results. As keyword size expands, the complexity of the search increases, yet our method
demonstrates commendable adaptability and effectiveness. This demonstrates that the method is
capable of capturing a greater range of semantics as the information density of the graph increases.

Overall, our method shows to be robust to missing keywords from the graph. It can be observed in
Figure 4 that the performance of the method at different conditions for 𝑛𝑞 = 9 remains comparable
regardless of the percentage of missing keywords. However, according to Tables 4 and 5, this is not
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applicable to the best baseline KS-GNN method. This is due to our proposed method’s enhanced
ability to capture more structural information from the graph, surpassing that of KS-GNN.

5.8 Discussion on Satisfying Design Objectives
Our work in this paper has been motivated by three objectives that were earlier discussed in
Section 3: Reduce the dimension of the output to make search space feasible (𝑂1), retain as much
key information as possible despite missing Keywords and edge information (𝑂2) and capture the
structural properties of the graph to the greatest extent to overcome the challenge of missing edges
(𝑂3).

The results obtained from our experiments show that each of the objectives played a fundamental
role in our proposed method. Methods that do not practice representation learning techniques,
such as PCA, show no improvement by increasing the size of query keywords (𝑛𝑞). PCA, Conv-PCA
and KS-PCA also experience more drop in performance when the ratio of the missing keyword
(𝑟𝑤) increases and the size of the graphs increases. On the other hand, our proposed method and
other graph representation learning methods maintain consistent performance over all datasets.
This is due to the integration of objective 1 (𝑂1) in our design.

Furthermore, ChebConv and ConvPCA methods perform significantly lower compared to our
proposed approach on the video dataset, which has an extreme number of keywords. This shows
that these methods are not storing keyword information efficiently. Moreover, the GCN and GAT
methods perform poorly on the DBLP dataset. The DBLP dataset has a larger number of nodes with
a relatively low number of keywords, which makes it sparse compared to the Video dataset. This
shows that while GCN and GAT methods are robust against the density of keywords, they may not
be able to capture key information efficiently in sparse graphs. Our proposed method demonstrates
a stable performance despite keyword size and graph size thanks to addressing objective 2 (𝑂2).
Moreover, when comparing the no missing edges scenario and 30% missing edges results, we

notice a significant performance drop in a certain group of methods. A bold difference can be
seen specifically in the Toy dataset, which has a large number of edges. GCN, GAT, ChebConv
and BLINK+SAT are the methods with the most reduction. This means that these methods are not
efficient in capturing the structural properties of the graphs, which was expressed in objective 3.
Although missing edges affect the performance of our proposed method, this is shown to be less
concerning in our experiments. This is due to the fact our model uses different semantics to capture
graph structural characteristics to a greater extent as a result of addressing objective 3 (𝑂3).

6 Concluding Remarks and Future Work
Our proposed method for searching over incomplete graphs is based on the idea of graph repre-
sentations learning from multiple complementary perspectives. The effectiveness of our proposed
approach is due to its reliance on multiple perspectives when learning graph representations, which
makes it robust to missing information. This advantage helps in preserving graph structure and cap-
tures both the semantic and structural information of the graph to a great extent. To the best of our
knowledge, our work is among the first that proposed a custom-tailored loss function to generate
such representation in incomplete graphs. In our experiments, we compared our proposed method
with various baselines and state-of-the-art approaches. We show through various experiments that
our method outperforms the state of the art when missing information is present. We find that our
approach shows superior performance compared to the other methods.

We propose three potential topics to study as future directions:

(1) Uncertain Graphs: Real-world graphs often include a degree of uncertainty. Nodes and
edges in such graphs may not always exist definitively; instead, they might be present with
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a certain probability. This notion leads us to the concept of uncertain graphs, where each
entity (node or edge) is associated with a probability denoting its likelihood of existence.
As future work, we can study techniques that must go beyond capturing the structural and
semantic properties of nodes and edges, incorporating the probabilistic information that
defines the likelihood of their existence.

(2) Graph Completion: Focusing on the idea of leveraging advanced methodologies for the
graph completion task, this concept revolves around the principle of utilizing predictive
modeling to infer and reconstruct missing nodes and edges, thereby approximating a more
complete structure of the graph. The trained model can then be used to predict missing
elements in incomplete graphs by identifying structural gaps or inconsistencies and filling
them in with the most probable nodes or connections. This allows for a broader exploration
of the graph during keyword searches.

(3) Multi-view Optimization: One potential limitation lies in the use of multi-view enhance-
ments. While they are commonly employed to enrich feature representations, redundant
information across different views may lead to the learning of duplicate feature repre-
sentations [46]. As a future work can explore adaptive view selection mechanisms that
dynamically weight the contribution of different views based on their unique information
content.
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