
Mining variable fragments from process event logs

Asef Pourmasoumi1 & Mohsen Kahani1 & Ebrahim Bagheri2

Springer Science+Business Media New York 2016

Abstract Many peer-organizations are now using process-
aware information systems for managing their organizational
processes. Most of these peer-organizations have shared pro-
cesses, which include many commonalities and some degrees
of variability. Analyzing and mining the commonalities of
these processes can have many benefits from the reusability
point of view. In this paper, we propose an approach for
extracting common process fragments from a collection of
event logs. To this end, we first analyze the process fragment
literature from a theoretical point of view, based on which we
present a new process fragment definition, called morpholog-
ical fragments to support composability and flexibility. Then
we propose a novel algorithm for extracting such morpholog-
ical fragments directly from process event logs. This algo-
rithm is capable of eliciting common fragments from a family
of processes that may not have been executed within the same
application/organization. We also propose supporting algo-
rithms for detecting and categorizing morphological frag-
ments for the purpose of reusability. Our empirical studies
show that our approach is able to support reusability and flex-
ibility in process fragment identification.

Keywords Process fragments . Morphological fragments .

Event logs .Crossorganizationalmining .Reusable fragments

1 Introduction

Many organizations have replaced their traditional processes,
which would be executed and monitored manually, with the
so-called Process Aware Information Systems (PAIS) (van der
Aalst 2009). Business Process Management (BPM) technolo-
gy lies at the core of PAIS and promotes effectiveness and
efficiency of business processes (Dumas et al. 2013). In the
relative short evolution lifetime of BPM technology, the num-
ber of already deployed process models within organizations
has grown exponentially (Weske 2012).

With the growth of the deployment of business process
models, new challenges have emerged. One of the challenges
of interest to our work in this paper is the co-existence of
multiple variants of the same business process or its fragments
within the same or different peer organizations (Milani et al.
2013). For example, in municipalities, many processes are
driven by legislation, e.g., the process for determining and
calculating property sales tax rates is in most cases highly
regulated. As such, regulated processes would have very high
resemblance to each other even if executed and deployed in
different departments or organizations. However, while legis-
lation is establishing the important fundamentals, some degree
of freedom is often given to the executing units regarding the
concrete implementation of such processes. Therefore, differ-
ent departments could in practice be implementing similar
processes that have been only slightly modified based on local
requirements and preferences (Larosa et al. 2013a).

Given this fact that it is possible to find notable similarity
between the process fragments within similar organizations,
consolidating families of process variants can assist organiza-
tions in improving their operations and to design more effi-
cient process models. By detecting similar fragments, it would
be possible to create repositories of process fragments that can
facilitate reusability (Uba et al. 2011). Reusability has many

* Mohsen Kahani
kahani@um.ac.ir

1 Web Technology Laboratory, Ferdowsi University of Mashhad,
Mashhad, Iran

2 Department of Electrical and Computer Engineering, Ryerson
University, Toronto, ON, Canada

Inf Syst Front
DOI 10.1007/s10796-016-9662-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-016-9662-x&domain=pdf

benefits for organizations (especially large-scale organiza-
tions). During the design phase, organizations can use process
fragmentation approaches for extracting common fragments
from the repository of process models. Reusing these extract-
ed process fragments can decrease design for new process
models and significantly accelerate the design process.

Many existing work identify process fragments and vari-
abilities through comparison of structural similarities of busi-
ness process models (Larosa et al. 2013b; Valenca et al. 2013).
In (Milani et al. 2015), authors review the state of the art on
approaches that manage variability in process models. In our
work, we will focus on the challenging problem of identifying
process fragments when the business process models are not
available by only analyzing process event logs. This is mainly
driven by the fact that the process models that are initially
designed are often different from the ones that are actually
being executed due to the gradual changes that are made on
the models during execution (TFPM – ieee task force on pro-
cess mining 2012). The advantage of directly using event logs
is that we can identify and handle exceptions and rare patterns
in process execution, which would otherwise be harder to
identify by only looking at the business process model itself
(Pourmasoumi 2015).

The main objective of our work is to identify flexible and
composable process fragments from process event logs. In
other words, we would like to identify fragments from process
event logs such that they can be used within the process of
automated customization or personalization of business pro-
cesses. The major challenge with our endeavour is the need to
strike a balance between composability and flexibility. There
are two classes of work in the literature: i) those that identify
similar fragments that have some degree of resemblance to
each other (similar fragments) and ii) those that identify and
extract exact fragment matches that can be used interchange-
ably (exact fragments). The identification of similar fragments
allows for the development of variants of the same business
process with some flexibility; while the exact fragments en-
hance composability and automated process composition. Our
objective is to define a specific form of process fragments that
allows for both composability and flexibility.

To this end, we first identify and review various well-
known definitions within the process fragment domain. To
the best of our knowledge, most of the existing process frag-
ment definitions have only considered the practical implica-
tions of their work and little, if any, have performed substantial
theoretical analysis (Mancioppi and Danylevych 2012). In this
paper, we investigate the use of ontological theories for the
theoretical analysis of process fragment definitions. An onto-
logical theory defines necessary constructs for describing pro-
cesses and structures of the world in general (Pourmasoumi
et al. 2015a). Ontological theories have been used to evaluate
modeling languages in terms of the correspondence of onto-
logical concepts and modeling constructs. Bunge’s ontology

is a widely used ontological theory that has been used in
particular to evaluate conceptual modeling languages such
as BPMN and workflow nets (Jan et al. 2006; Evermann
and Wand 2005). Bunge’s ontology has also been used for
representing process models. In (Soffer et al. 2010), a generic
model, called GPM, is derived from Bunge’s ontology for
semantically describing process models. GPM gives a formal
abstract view of a process model in terms of state transitions
that occur rather than using common notions such as control
flows and activities (Soffer et al. 2010). In the other words,
GPM can be viewed as a mapping between process models
and the real world. GPM also has been used in several appli-
cations. For example, in (Ghattas and Soffer 2009), the au-
thors propose a generic model based on GPM to describe the
inter-organization shared processes without forgoing privacy
and autonomy of each organization. Since GPM is an onto-
logical representation of real world process models, we pre-
sume that it is appropriate for analyzing the fragments of pro-
cesses models that represent real world domains. Our theoret-
ical analysis of existing process fragment definitions will be
based on GPM.

Based on the theoretical analysis of the process fragment
literature, we propose a new process fragment definition,
called morphological fragments that support composability
and flexibility as defined later in the paper. We propose a
novel algorithm for extracting such morphological fragments
from process event logs. We also further propose supporting
algorithms for detecting and categorizing morphological frag-
ments for the purpose of reusability.

In this paper, we provide the following concrete
contributions:

– In our previous works, we proposed a formal definition
for process fragmentat ion that supports both
composability and flexibility, called morphological
fragments (Pourmasoumi et al. 2015a, 2014). In this pa-
per, we propose an algorithm that enables the extraction
of such morphological fragments with a manageable time
complexity. Additionally, in the current paper, we prove
that our numerical representation for extracting common
fragments is unique for each morphological candidate
(Lemma1).

– Most fragment detection methods are limited to finding
exact common fragments. In this paper, we extend our
earlier work and define a degree of variation, called de-
gree of morphologicality, which considers howmuch two
fragments have structural similarity. We present a cluster-
ing algorithm for eliciting fragments, which have the
same degree of morphologicality.

– In our earlier work, we evaluated our proposed approach
with a simple case study. In this paper, we comprehen-
sively evaluate our improved fragments extraction algo-
rithm and also the approach proposed for extracting

Inf Syst Front

morphological fragments with varying degree of
morphologicality. We have used the standard BIT 2009
collections and also used the tools proposed in
(Pourmasoumi et al. 2015b) for generating test data. In
order to evaluate the results, the refactoring gainmeasure
as proposed in (Uba et al. 2011) is used.

The rest of this paper is organized as follows. Section 2
reviews the related works and Section 3 presents a running
example. Section 4 establishes the basic terminology and def-
initions that are adopted in this work. In Section 5, we analyze
the various fragment definition. In Section 6, we described the
proposed approach for extracting process fragments. Section 7
outlines our evaluation plan. In Section 8 some discussions on
the proposed approach is presented and Section 9 concludes
the paper.

2 Related work

Process fragmentation is referred to the act of categorizing
process model elements such as activities, data flows, and
control flows into groups (Mancioppi and Danylevych
2012). The created groups are known as process fragments.
Process fragmentation is the basis for techniques supporting
reusability, parallel execution, management and analysis of
process models (Tan and Fan 2007). It is also known as pro-
cess decomposition or process modularization (Reijers et al.
2011). Many process fragmentation approaches have been
proposed in the past. A survey of fragmentation algorithms
can be found in (Mancioppi and Danylevych 2012). In
(Mancioppi and Danylevych 2012), a classification frame-
work investigates the characteristics of fragmentation tech-
niques for process models and the properties of the resulting
process fragments. The classification criteria presented in
(Mancioppi and Danylevych 2012) provides (1) a basis for
classifying existing fragmentation techniques, and (2) a
“check-list” of what authors should consider in their fragmen-
tation approaches.

Reijers et al. (2011) propose three types of criteria for frag-
mentation namely: a) the block-structuredness of the sub-
process, b) the connectedness of nodes in the sub-process,
and c) the similarity of the labels of the nodes in the sub-
process. A process is called block-structured if it has a single
entry and a single exit (SESE) (Leemans et al. 2014). There
are multiple representations for block-structured process
models, such as BPEL (Andrews et al. 2003) and refined
process structure tree (Vanhatalo et al. 2009). In (Uba et al.
2011), Uba et al. propose an indexing structure (RPSDAG) for
identifying exact SESE fragment clones that can be refactored
into shared sub-processes. The RPSDAG index combines a
method for decomposing (the refined process structure tree
decomposition) process models into fragments with a method

for generating a unique string from a labeled graph. In this
approach, first, the processes are converted into a structure
tree. Then, the common sub-graphs are detected and the re-
pository is built. The structural restriction of this approach is
that the input processes should be block structured.

In terms of connectedness, a collection of nodes (activities)
is considered to be connected if the nodes in the collection are
more strongly connected by arcs to each other than to nodes
outside this collection (Reijers et al. 2011). Graph analysis
techniques can be used for extracting connected nodes
(Schumm et al. 2010). The third fragmentation criterion from
(Reijers et al. 2011) builds on the idea that activities that have
more similar labels can be considered to have a higher prob-
ability of belonging to a fragment than activities that have very
different labels. Several approaches have been proposed in the
literature based on this criterion. Most of them use natural
language processing techniques for eliciting label similarity
(Smirnov et al. 2010). In (Dijkman et al. 2013), several met-
rics for determining similarity of two labels such as edit dis-
tance or semantic similarity has been investigated.

In (Rosa et al. 2015), an approach for extracting approxi-
mate clones in repositories of business process models is pro-
posed. In this approach, using process similarity methods,
clones of similar sub-processes are identified. This approach
has wide applicability in the real world because it identifies
clones with some degree of variability while many of the other
clone detection techniques are only limited to finding exact
clones. Similarly, Gao et al. (2014) extract common sub-
processes using process similarity methods. They use frag-
mentation and clustering techniques for fragmenting input
processes. Then they merge the extracted fragments of each
cluster into a master fragment. Although Gao et al. eventually
consider a collection of process models as input, but their
proposed fragmentation approach only considers one process
model at a time instead of working with the whole collection
simultaneously.

There are also some approaches that propose the use of
existing methods from other domains for process fragmenta-
tion. For example, in (Ivanovic et al. 2010), a fragment iden-
tification approach based on sharing analysis is presented.
Sharing analysis is a static analysis technique that interprets
a program by mapping sets of variable values into abstract
domains, together with data operations. The authors have used
Horn clauses designed to adequately enforce sharing between
inputs and outputs of workflow activities. A limitation of this
approach might be that describing data objects does not influ-
ence sharing analysis, and consequently, the obtained frag-
ments would be the same as when data objects are not taken
into consideration. The work presented in (Zemni et al. 2012)
is another approach that analyses process fragmentation from
another unique point of view. In this work, the authors propose
an approach based on Formal Concept Analysis (FAC) for
generating privacy-aware reusable process figments. Since

Inf Syst Front

each business process model may contain personal data, pri-
vacy concernsmight be raised during process fragments reuse.
FCA is a mathematical formalism, which is usually used to
check the affinities between objects (Ganter and Wille 1999).
The authors first translate a process model into the FCA
Formal Context where objects are activities and data objects
are attributes. Then they incorporate privacy constraints in
FCA logic. The focus of this paper is on process models, not
event logs and is therefore different from the focus of our
paper.

The idea of process fragmentation has also been considered
from the perspective of process distr ibution and
parallelization. The main idea here is to identify process frag-
ments that can either be executed in parallel or in a distributed
fashion. The authors in (Tan and Fan 2007) address this chal-
lenge and dynamically separate an integrated workflowmodel
into smaller partitions at runtime and allocate them to different
servers to be executed. Similarly, in (Atluri et al. 2007), a
decentralized workflow model, known as self-describing
workflows is introduced. The self-describing workflow allows
each execution unit to receive a self-describing workflow.
Then, the execution agents execute their tasks and forward it
to the next agent. This approach does not consider any restric-
tions on the model structure. The process fragmentation is
done by the combination of the reachable successive
activities.

To the best of our knowledge, most of the existing frag-
mentation methods as discussed above and reviewed in
(Mancioppi and Danylevych 2012), are based on the process
model structure and not on event logs. Our focus is on iden-
tifying process fragments from process event logs for two
main reasons: 1) during their lifetime formal business process-
es can become stale and outdated (TFPM – ieee task force on
process mining 2012); therefore, would not be representing
the actual processes that are being executed in practice. 2) In
each process model there might be several exception points
that might only rarely occur. These exceptions cannot be eas-
ily detected from process models; however, they can be ob-
served within event logs (van der Aalst 2011, 2012). For these
practical reasons, our focus in this paper will be to identify
process fragments from event logs.

3 A running example

In this paper, we employ a running example from a “purchas-
ing order” process for better explaining the various aspects of
the paper. Figure 1 presents the structure of the purchasing
order process. Figure 1a shows the flow of this process model.
It starts by “filling request form” and ends with “send materi-
al” or “request rejection” activities. After the “filling request
form” activity, the request will be checked and if it is con-
firmed then two actions can be done simultaneously: the stock

will be checked and the financial calculation will be done. If
the requested material exists in stock, then the user account
will be checked and payment will be processed. Afterwards,
the receipt will be printed and sent along with the material to
the customer. This process is a simplified purchasing order
process and is used just for the purpose of demonstrating the
details of our work and does not necessarily show the com-
plexity of the real world process models.

4 Preliminaries

4.1 Bunge’s ontology

As a foundation for our work, we are interested in the theoret-
ical analysis of the various aspects of different process frag-
ment definitions through Bunge’s ontology. Bunge, well
adopted in information systems research (Wand and Weber
1995), which models the world, as a world of systems
(Bunge 1977). In Bunge’s ontological model, the “world is
made up of substantial things which possess properties” (van
der Aalst 2012). Since Bunge’s ontology provides concepts
for representing real world phenomena, it seems appropriate
to be used for analyzing process models in real software sys-
tems (Bunge 1977).

Bunge’s ontological model contains four essential con-
cepts: thing, property, state and event. Table 1 provides an
overview of its fundamental ontological constructs (Wand
and Weber 1995). Things are elementary units and can be
specific instances of person, building, car, and book. A
“property” of a thing can be any intrinsic or mutual (meaning-
ful only in the context of two or more things) feature of it such
as height, color, weight, and shape. A “state” is the vector that
contains the values of all property functions of a thing. A
“state law” makes a restriction on the values of the thing’s
properties to a subset that is considered lawful. The set of
things states that conform to the state laws of the thing are
called the “lawful state space”. An “event” occurs when a
change in the state of a thing can be seen. The set of all
possible events of a thing is called its “event space”. A set of
things that possess a common property is termed a “class”.
Wand et al. have extended Bunge’s ontology with 28 (real-
world) constructs (Wand and Weber 1995). The fundamental
Bunge’s ontological constructs for our running example are
shown in Fig. 1b.

4.2 Generic process model (GPM)

The Generic Process Model (GPM) provides process specifi-
cation semantics based on ontological constructs (Soffer et al.
2010). GPM is considered to be a framework for reasoning
about process models according to their real-world meaning
based on Bunge’s ontology. GPM has already been used for

Inf Syst Front

various purposes such as analyzing the validity of process
models, describing the conception of goals in business pro-
cesses, and for interpreting control flow elements (Soffer et al.
2010).

GPM focuses on the notion of domain through the use of
Bunge’s ontology concepts. A domain is represented by a set
of state variables. The state of the domain can change for two
reasons: first, due to the internal events, which occur within
the domain and second by external events, which are stimu-
lated from outside the domain (Soffer et al. 2010). A state that
changes due to actions in the domain is called “unstable state”
and a state that only changes due to the actions of the domain’s
environment is called “stable state” (Soffer et al. 2010). A

complete definition of GPM can be found in (Soffer et al.
2010).

In (Soffer and Yehezkel 2011), a process model is defined
based on GPM as follows:

Definition 1 (Soffer and Yehezkel 2011): a process model is a
tuple <I ,G , L , E> where,

I: is a subset of unstable states of the domain (initial states),
G: is a subset of stable state (goal set),
L: is the set of state transitions,
E: is a set of relevant external events.
One of the advantages of this definition is that GPM ex-

plicitly addresses the goal of a process and checks the validity
of a process design against its defined goal (Soffer and
Yehezkel 2011). In this paper, we will use GPM for theoreti-
cally analyzing process fragments.

4.3 Process fragment definitions

In order to perform our theoretical analysis, we first systemat-
ically review some of the well-known process fragment defini-
tions from the literature and discuss their pros and cons within
the context of Bunge’s ontology and GPM. By identifying the
strengths and weaknesses of different process fragment defini-
tions, we attempt to propose a definition that would cover the
pros of the existing definitions and address their cons.

In order to identify themain work in process fragmentation,
we first started by focusing on the main survey papers in this
domain (Mancioppi and Danylevych 2012) (Reijers and
Mendling 2008). We then gathered additional papers by
searching for the keywords mentioned in these survey papers

(a) An example of purchasing process model.

Lawful Event Space State SpaceProperties
(attributes)Things

Request{

(Filled Confirmed), (Filled Filled),

(Confirmed Audited), (Confirmed

Stock Checked), (Stock Checked

Rejected), (Stock Checked Manager

Confirmation), (Audited Manager

Confirmation)},
Account-Status{(A B), (B C), (C

B), (B A)}

Request-Status(Filled,
Confirmed, Rejected,
Audited, Manager

Confirmed)
Material-Status
(Available, Not Exist)

Account-Status(A, B, C,
D)

Request(ID, Date, Materials)
Stock(ID, Materials, No),

Material(ID, Name, Price),
Employee(ID, Name, Grade),
Applicant(Code, Requests),
Account(ID, Credit,

ApplicantID)

Specific instances of
 Request,

 Stock,
 Material,
 Employee,
 Applicant,

 Account

(b) Ontological representation of mentioned purchasing process.

Fig. 1 An example of purchasing process

Table 1 Fundamental ontological constructs in the Bunge-Wand-
Weber representational model (Larosa et al. 2013a)

Fundamental
Onto-logical
Construct

Description

Thing The basic unit in the Bunge’s ontological model
is thing and can be in two types: simple and
compound. A compound thing is made up
of other things.

Property Each property can be described using a function
(called attribute function) that maps the thing into
some values. Things can have several properties.

State The state of a thing is a vector of values for each
property functions of that thing.

Transformation A mapping from a domain containing states into
a co-domain containing states is called
transformation.

Inf Syst Front

on reliable databases including CiteSeerX, ScienceDirect,
ACM Portal, SpringerLink and IEEEXplore. We then extract-
ed and classified these papers based on their fragment defini-
tion and then selected only those papers that had been cited
more than 10 times according to Google Scholar. The result is
shown in Table 2.

In order to analyze these definitions and identify their pros
and cons, we required some comparative criteria. In
(Mancioppi and Danylevych 2012), several classification
criteria for process fragmentation techniques are provided.
These criteria provide a foundation for the classification of pro-
cess fragmentation algorithms and can be useful for the evalu-
ation of these techniques. For example, some of the criteria state
why is the process model fragmented, how is the fragmentation
performed, who performs the fragmentation, when is the frag-
mentation performed in the process model lifecycle, among
others. Most of these criteria are independent of the fragment
definition and are with respect to different aspects of the frag-
mentation algorithms. Therefore the criteria introduced in
(Mancioppi and Danylevych 2012) cannot be directly applied
in our classification, which focuses primarily on fragment def-
initions and not the algorithms.

Therefore, we consider three criteria, structural restrictions
for input/output process models, ambiguity and determinism.
We do not claim that these criteria are complete, but they can
highlight some of the main weaknesses of the fragment defi-
nitions. These criteria are presented as research questions in
the following:

Q1: Does the fragment definition impose any structural re-
strictions on the input process model or the output
fragments?

Some definitions consider limitations on the input or output
processes. For example, some require the process fragment to
have no cycles or that all transitions be reachable from the start
node.

Q2: Does the fragment definition have any elements of am-
biguity or leave room for different interpretations?

Given some of the definitions do not have a theoretical repre-
sentation and are written in natural language, there might be
room for different interpretations of the definitions. For exam-
ple, some definitions just state that the portions of process
models that are suitable for reusability are fragments. Such
definitions have ambiguity and therefore, could result in dif-
ferent interpretations.

Q3: Is the definition precise and deterministic?

This criterion specifies whether the definition will always
guarantee the extraction of the exact same process fragments

for the same input process model or not. This criterion is
different from ambiguity. In the case of determinism, an im-
plementation of a non-deterministic definition can be viewed
as being not a function and for the same input, could produce
different outputs. So, a definition might not be ambiguous but
be non-deterministic.

In Table 3, the results of the evaluation of existing process
fragment definitions based on the three criteria are shown.1 As
seen, most of the definitions are non-deterministic and have
no structural restrictions. For example, the definition in Group
1 has no ambiguity and is clear, but is non-deterministic, be-
cause in this definition any part of a process can be considered
as a fragment and for the same input process, different frag-
ments can be produced. Group 2 has a more precise definition
and places structural restriction on process inputs and requires
them to be connected. This definition is clear and has no
ambiguity. Since it uses precise label similarity, it is determin-
istic. The definition in Group 3 does not place a clear struc-
tural restriction on the input process and the definition is not
clear which parts of the input process can be considered to be
fragments. The definition in Group 4 states that fragments
should be connected have no cycles, and have at least one
activity and a single control flow linking up two distinct ac-
tivities. This definition is unambiguous but is non-
deterministic because it does not work as a function. The
definition in Group 5 is unambiguous and has no structural
restriction but again it is non-deterministic, since for the same
input process different process fragments can be generated.

The definitions in Groups 6 and 7 are descriptive and con-
tain ambiguity. Finally, in the definition of Group 8, a frag-
ment is a connected graph (structural restriction) that has a
start and end node and at least one activity and is not neces-
sarily directly executable. So, this definition has no ambiguity.
It is non-deterministic because with the same process we can
have lots of fragments that have start and end nodes and be
also connected.

We further analyzed the various fragment definitions and
identified the top six features that they had in common as
shown in Table 4. These features represent the characteristics
of the process fragments that are described by the definitions.
Feature F1 is the most widely seen feature for fragments. This
feature implies that each fragment must have a single input
and single output. Features F2 and F6 are concerned with the
concept of connectivity. A node belongs to a fragment if it has
a connection with at least one node within that fragment.
Feature F3 has a semantics point of view. It implies that the
nodes that have more similar labels have a higher probability
of belonging to the same fragments (Reijers et al. 2011).

1 The evaluation was conducted by investigating the coverage of the
criteria for each definition. In the cases that there were uncertainties for
the coverage, they have been discussed between the authors to reach
conclusions about the coverage.

Inf Syst Front

Natural language processing (NLP) tools can be used for de-
tecting the similarity of the labels of the nodes in the frag-
ments. Feature F4 creates a structural limitation on the frag-
ments that they should not contain cycles. Feature F5 implies
that in each fragment at least one action needs to be done.

In Table 5, we show each feature against each definition
group. In other words, Table 5 shows for each definition
group, what the features of their fragments are. In this table,
the rows show each definition group’s id (from Table 3) and
the columns show the features (from Table 4). From this table,
it can be understood that Features F1 and F2 are the most
frequent features for process fragments within the literature.

Now, we exploit the features of Table 4 in order to provide
a formal definition for a process fragment as follow:

Definition 2 A process fragment F is a directed graph de-
scribed as F(A,G, R, s, e) where:

1) R ⊑ (A ×G) ∪ (G × A) ∪ (G ×G),
2) |A| ≥ 1,

3) ∀ t ∈ (A ∪G) ∃ v0 = s , v1 , v2 , … , vk = t ((vi − 1, vk) ∈ R,
1 ≤ i ≤ k),

4) if ∋ n1 , n2 (n1 = s, n2 = s) then n1 = n2,
5) if ∋ n1 , n2 (n1 = e, n2 = e) then n1 = n2,
6) ∄t ∈ (A ∪G) ((vt, vi) and (vk, vt) ∈ R) and ((vj, vj + 1) ∈ R,

i ≤ j < k)

In Definition 2, A is the set of activities, G represents
gateways, R is the set of control flow relations, s is single
input and e is single output nodes. In this formalism, |A| ≥ 1
(line 2) ensures feature F5 and the expression in line 3
enforces F2 and F6. Two if-clauses in this formalism (lines
4 and 5) together represent F1 and the later expression is
equal to F4. In this definition we did not include feature F3.
The reason is that label similarity is based on the assump-
tion that process names are always selected meaningfully
and consistently (Reijers et al. 2011). For small processes or
cross-organizational processes, this assumption is not nec-
essarily always true.

Table 3 Analyzing various definitions of process fragments based on
three criteria: structural restriction, ambiguity, and determinism

Group Structural Restriction Ambiguity Non-Determinism

G1 – – ■
G2 ■ – –

G3 – ■ ■
G4 ■ – ■
G5 – – ■
G6 – ■ ■
G7 – ■ ■
G8 ■ – ■

Table 2 A review of process fragment definitions

Group References Description

G1 (Leymann 1996; Basu and Blanning 2003;
Vanhatalo et al. 2007, 2008)

Components with single input and single output control flow arc (SESE).

G2 (Reijers et al. 2011) SESE components which have connected nodes and their nodes have high label similarity.

G3 (Seidita et al. 2010) A portion of design process adequately created and structured for being reused during the
composition and enactment of new design processes.

G4 (Eberle et al. 2009; Seidita et al. 2011; Zemni
et al. 2012; Assy et al. 2013)

A connected portion of a process intended for reuse and contains no cycles and a single control
flow linking up two distinct activities. It is made of at least one activity and several controls.

G5 (Tan and Fan 2007) A partition of a workflow model, and consists of a source transition, all the transitions are
reachable from the source transition, and all the linking places of these transitions.

G6 (Hens et al. 2014; Khalaf et al. 2008) A logically different, smaller model part of input process model which extracted with the
intention to distributing over different execution and controlling partners.

G7 (Mancioppi and Danylevych 2012) A part of process models that contain process’s elements such as activities, data flows, and
controls.

G8 (Schumm et al. 2010) A connected graphwith significantly relaxed completeness and consistency criteria compared to
an executable process graph which contains a process start or end node and at least one
activity and is not necessarily directly executable.

Table 4 All features extracted from various definitions of process
fragments

F# Features

F1 Process fragment has single input and single output control
flow arc (SESE)

F2 Process fragment must be connected.

F3 Fragment’s node must have label similarity.

F4 Process fragment should contain no cycles.

F5 It is made of at least one activity and, of several control
(dangling or not) and data flows.

F6 All the transitions must be reachable from the source
transition and all the linking places of these transitions.

Inf Syst Front

5 Analyzing process fragments using Bunge’s
ontology

In Definition 2, we included the most prominent unambiguous
features identified in the definition groups for process frag-
ments. This definition is unambiguous in that it does not con-
tain any ambiguous feature, has no structural limitation on the
input and output and is deterministic. Nevertheless, it would
be quite difficult to employ it for identifying process similarity
or multi-process analysis. This is due to the following reason:
in Definition 2, two fragments within two process variants are
shared, if and only if they are identical (Pourmaoumi et al.
2014). For example, in Fig. 2, fragments 1, 2, 3 and 4 are
not identical (Based on all of the definitions in Table2).
Based on Definition 2, since the R set of these four fragments
are not identical, they cannot be captured as common frag-
ments between two process models. Therefore, in these defi-
nitions, common fragments are either complete matches or not
a match at all.

In the example shown in Fig. 2, all fragments try to check a
“purchasing request”; however, each achieves this in a differ-
ent way. All fragments start with “filling a request” activity
and end with “management confirmation” activity. As seen in
Fig. 2, activities “financial calculation” and “stock checking”
can be placed in different relations to each other. This differ-
ence can be probably due to various branch managers’

choices. In practice, these fragments are performing a similar
task and would be considered to be very similar fragments that
only have minor structural variances.

In the next section, we will theoretically define the notion
of process fragments using GPM and derive a new conceptual
definition for a process fragment that would address the above
issue, among others.

5.1 Process fragments based on GPM

Using Bunge’s ontology, it can be inferred that there is a
mapping between information systems and concepts in the
real world. The concepts (domain) in the real world are made
of sub-concepts (sub-domain). The structures and processes of
the real world can be represented by constructs in the ontolog-
ical models. So, we can define sub-processes or fragments of a
process model based on its ontological mapping in the real
world. In (Soffer et al. 2010), a sub-domain is defined based
on GPM as follows:

Definition 3 (sub-domain) (Soffer et al. 2010): A sub-domain
is part of the domain described by a subset of the set of domain
state variables.

It must be noted that using this definition, there might be
many ways to divide a domain into sub-domains and not all of
them will be meaningful. In the real world, partitioning of a
domain into independent sub-domains is possible.
Partitioning of a domain into independently-behaving sub-do-
mains is the result of different actors existing in the domain. In
(Soffer et al. 2010), an independent sub-domain is defined as
follows:

Definition 4 (independent sub-domain) (Soffer et al. 2010): A
sub-domain will be called independently behaving (or
independent) in a given state (of the sub-domain) if the law
projection on the sub-domain is a function for this state.

In this case, the law projection is a function that depends
only on the sub-domain’s state variables. In the other words,
the meaning of Definition 4 is that each sub-domain behaves

Table 5 Extracted features against the various definitions

Definition Group ID F1 F2 F3 F4 F5 F6

G1 ■ – – – – –

G2 ■ ■ ■ – – –

G3 – – – – – –

G4 – ■ – ■ ■ –

G5 ■ – – – – ■
G6 – – – – – –

G7 – – – – – –

G8 ■ ■ – – ■ –

c) Fragment 3 d) Fragment 4

a) Fragment 1 b) Fragment 2

Fig. 2 Four fragments of purchasing process with different structures which operationally are identical

Inf Syst Front

independently and ends on a stable state of the sub-domain.
This stability can lead to the stability of the whole domain in
the goal states or other states (Soffer et al. 2010). So, in this
definition the stable states (initial and goal states) of the sub-
domain are important. We useDefinition 4 for creating a map-
ping between sub-domains in the real world and process frag-
ments in information systems. So we can define process frag-
ments based on GPM as follows:

Definition 5 (process fragment): A subset of a process model
is called a process fragment if it starts and ends with stable
states and there exists at least one transformation inside it.

Now, using GPM-based definition of a process fragment
(Definition 5), we can develop a model for process fragments
that does not necessarily require a complete and exact match
for finding similar fragments. As we will show, this allows us
to assess the similarity of two process fragments beyond a
binary match or no-match. In the next section, the new notion
for process fragments, building on Definitions 2 and 5, is
introduced.

5.2 Morphological fragments

In Definition 5, a process fragment is defined based on GPM.
The main focus of this definition is on the stable states of frag-
ments as a point of separability. Unstable states inside the sub-
domain are responsible for the behavior of the sub-domain. It
can be understood that two fragments f1 and f2 have equal
behavior if they have equal stable states (I1 = I2 and G1 = G2)
and also have equal transformation sets (In (Soffer et al. 2010)
transformation set of a process is equal to its activities set). The
order of transformation sets is equal to the way in which pro-
cesses execute. In the other words, with equal stable states and
transformation sets, different transformation orders (law) for
two fragments show that the fragments do similar tasks in dif-
ferent ways. In other words, they represent the same behavior
but not necessarily the same structure. Now, we can define
somemeasures for extracting common fragments from a family
of process variants based on this observation.

Definition 6 Two fragments f1 A f 1 ;Gf 1 ;Rf 1 ; s f 1 ; e f 1
� �

and
f2 Af 2 ;Gf 2 ;Rf 2 ; s f 2 ; e f 2
� �

are behaviorally similar, called
morphological fragments, iff:

s f 1 ¼ s f 2 & e f 1 ¼ e f 2 & Af 1 ¼ Af 2

In this definition, the start and end points are equal to the
stable states in the Definition 5 and the relation between inter-
nal nodes is ignored given the above explanation. The reason
is that two fragments that have equal start/end points and have
equal activities sets, and performing similar tasks, could be
considered to be very similar fragments that only have struc-
tural variances hence, the term morphological fragment. For

example in Fig. 2, there are four fragments that check the
purchasing request of a customer in different ways. These
differences can affect the efficiency and effectiveness of the
whole process. So detecting these fragments as common frag-
ments among a family of process variants can increase the
reusability and lead to added value for organizations. All of
these four fragments have equal start/end points and their in-
ternal activities are identical. So they are morphologically
identical. The different relationships among internal activities
show the different ways of performing the same task.

Definition 6 allows the identification of process fragments
that are behaviorally similar but not structurally identical. It is
now possible to define the degree of morphological similarity
based on the degree of the transformation spaces similarity of
the fragments. But before that, first we use the definitions
mentioned in (Asadi et al. 2012) for a set of general similarity
patterns between two sets of phenomena (By phenomena we
refer to any possible observation that can be made about the
domain or part of it). Assume A = {a1, a2, ... , an} is a set of
phenomena belonging to domain D1 and B = {b1, b2, ... , bm}
is a set of phenomena belonging to domainD2. We can see one
of the following situations with respect to similarity between
these two sets:

Definition 7 (Equivalent Set of Phenomena) (Asadi et al.
2012): Phenomenon A1 is equivalent to A2 (denoted as
A1 ≡ A2), if and only if there is a unique mapping between
elements in A1 and elements in A2.

Definition 8 (Similar Sets of Phenomena) (Asadi et al. 2012):
Phenomenon A1 is similar to A2 with respect to p (denoted as

A1 ≡ A2) if and only if there is a subset of A1 (i.e., A
0
1⊂ A1) and

of A2 (i.e., A
0
2⊂ A2) which are equivalent A

0
1≡A

0
2. p is the equiv-

alent subset i.e. p ¼ A
0
1 ¼ A

0
2 .

Definition 9 (Completely Dissimilar Set of Phenomena)
(Asadi et al. 2012): Phenomenon A1 is completely dissimilar
to A2 (denoted as A1 ≠ A2) if and only if there are no subsets of
A1 (i.e.,A

0
1⊂ A1) and of A2 (i.e., A

0
2⊂ A2) that are equivalent.

Based on Definitions 7–9, we can define the following
similarity patterns between two different sets of phenomena:

& Full similarity double side: when the sets A1 and A2 are
equivalent (i.e., A1 ≡ A2).

& Full similarity one side: when the sets A1 and A2 are

similar (i.e., A1 ≅ p A2) and when we have either A
0
1⊂ A1

and A
0
1≡ A2 or A

0
2 ⊂ A2 and A

0
2≡A1.

& Partial similarity: when the sets A1 and A2 are similar (i.e.,
A1 ≅ p A2) and there is no subset of one set that is equiv-
alent to the other set.

& Complete Dissimilarity: when two sets are completely
disjoint.

Inf Syst Front

All of the above similarity patterns can occur between any
two sets in the real world. In the case of partial similarity we
can define the amount of similarity as:

Sp A1;A2ð Þ ¼ A1\ A2

A1∪ A2
ð1Þ

The value Sp is a positive value between 0 and 1 where
values of Sp closer to 1 represent higher similarity between A1

and A2.
In Table 6, we show all of the similarity patterns that can

happen between the two subsets of processes based on funda-
mental ontological constructs. We just show stable state space
and transformation space constructs based on GPM, because we
intend to analyze behavioral similarities between process frag-
ments and structural similarity is not our concern in this paper.

In Table 6, the first row is equivalent to our definition for
morphological fragments. It shows that two fragments are
behaviorally identical if their stable state space and transfor-
mation sets are equivalent (have full similarity double side
pattern). In other words, the order of events does not matter.
The only important point is that their internal event space
(transformation set) is equivalent and they have equal start
and end nodes (stable state space). So, the first row of
highlighted part of Table 6 describes full similarity. Also, we
can define some degree of similarity between morphological
process fragments. If T1 and T2 be transformation sets of
process fragments F1 and F2 respectively, then we can define
the degree of similarity between two process fragments by:

Dm T1; T 2ð Þ ¼ 2�

���T 1\ T2

������T1

���þ ���T2

��� ð2Þ

The two fragments F1 and F2 are fully similar if their de-
gree of the similarity, called degree of morphologicality in this
paper, is equal to 1;Dm(T1, T2) = 1. The reasons for why we do
not consider the other parts of Table 6 as morphological frag-
ments are discussed in Section 8.1.

Figure 3 shows four structurally different fragments that
deal with the purchasing process. All fragments start and
end with the same activities “filling request form” and “de-
partment manager confirmation”, respectively. Regardless of
their order or composition, the set of internal activities of all
these fragments are identical. However, the order and relation-
ships of them are different. All of them check the validity of
the purchase request and check the existence of the goods in
stock, each in their own way. These differences can be due to
various reasons and can affect efficiency and performance of
the process. For example, one manager may decide that
checking the stock and doing the financial calculations should
be done in parallel and another might decide that it should be
done sequentially. Undoubtedly this decision will affect vari-
ous execution characteristics of the process, e.g. time to com-
pletion. By identifying similar morphological fragments, one
can determine various quantifiable measures for these frag-
ments and use them for the purpose of process improve-
ment. For instance, given two fragments that start and end
with the same activities, one can decide to replace one mor-
phological fragment with another similar morphological
fragment in the hopes to reduce the time to completion.
As well, other criteria such as complexity, and cost can be
used for optimizing processes through morphological frag-
ments. It should be noted that existing definitions of pro-
cess fragments as given in Table 2 do not support for this
important point pertaining to composability, which is sup-
ported by morphological fragments.

Table 6 Similarity patterns
between two sub-processes Stable State Transformation Space Class Name

Full Similarity-Double Side Full Similarity-Double Side Full Similarity-Double side among Process

Full Similarity-One Side Partial Similarity among Process
Partial Similarity

Dissimilarity Complete Dis-similarity among process

Full Similarity-One Side Full Similarity-Double Side Complete Dissimilarity among process
Full Similarity-One Side

Partial Similarity

Dissimilarity

Partial Similarity Full Similarity-Double Side Complete Dissimilarity among process
Full Similarity-One Side

Partial Similarity

Dissimilarity

Dissimilarity Full Similarity-Double Side Complete Dissimilarity among process
Full Similarity-One Side

Partial Similarity

Dissimilarity

Inf Syst Front

6 Extracting morphological fragments

Now that an unambiguous and deterministic definition for
morphological fragments have been proposed, we present an
algorithmic approach for mining such morphological frag-
ments in a process family from a collection of event logs. As
mentioned in the related works section, most of the existing
fragmentation algorithms are based on the structure of the
process models and not based on event logs. We are interested
in identifying fragments directly from a collection of event
logs. Our goal is twofold. First, we are interested in reducing
the detection error rate, i.e., the number of misidentified frag-
ments. In each process model, there might be some exception-
al or rare parts. Working with event logs directly can identify
exceptional/rare activities and based on the occurrence fre-
quency of such activities, we can place less importance on
the less likely activity sequences. Second, we would like to
improve the fragmentation identification speed of the algo-
rithm. Given intermediate node structures is not important in
the morphological fragment definition, if fragments could be
directly extracted from unstructured event logs, there is no
need to consider activity relationships and therefore it can
significantly speed up the extraction process.

We divide our proposed algorithm into three main phases:
i) preprocessing; ii) generating successive L-grams2 from each
set of event logs and iii) finding common L-grams between
different organizations’ event logs. In the next section, a de-
tailed description of these phases is given.

6.1 Preprocessing

Each process variant may contain millions of event traces,
most of which are similar. We denote the finite non-empty
set of traces of a process variant of organization i as TSi. In
this paper, we assume that process related data is available. In
(Li et al. 2015), the authors have proposed an intelligent ap-
proach for extracting this data. Utilizing all of the redundant
records in all steps of extracting common fragments is not
efficient. Therefore, as the first step, we extract distinct traces
and calculate their occurrence frequency. Having the occur-
rence frequency of each trace, one can easily filter out noise or
rare patterns. We refer to the occurrence frequency of trace t as

2 This is the same as the concept of n-grams in computational linguistics
but we use the term L-grams as we reserve variable n to represent the
number of traces in an event log.

a) System S1

b) System S2

c) System S3

d) System S4

Fig. 3 Four similar fragments
corresponding to purchasing
systems

Inf Syst Front

local frequency, and denote it by LFi
t. The higher the local

frequency of a trace is, the more important it would be and
similarly the lower the local frequency of a trace, the more
probable it would be that it is noise or just a rare pattern.

Now, if an activity is observed more than once within a
trace, then there might be a loop inside that process model
(Wen et al. 2007). So, loops can be detected by observing
repetitive activities inside traces. After detecting loop regions,
we detach each repetition and create a new trace using that
part. In Fig. 4.a, an example process model, which is selected
from the IBM BIT3 dataset is shown. This example process
model contains a loop. In Fig. 4.b a part of related event logs
of this process after performing the first phase of preprocess-
ing is shown. The occurrence frequency of each trace is sep-
arated by colon. Figure 4.c shows the final extracted event
logs set after executing the preprocessing step. As seen in
the figure, this set contains four different executions of the
example process model (Fig. 4.a). So, we successfully re-
duced thousands of records within the event log into four
traces.

Giving a finite set of traces TSi, the preprocessing phase
will produce a much smaller set of traces, which we refer to
as TSip.

6.2 Generating L-grams from each set of event logs

For the sake of simplicity and without loss of generality, we
explain the method with an example. Imagine there are four
organizations each of which executes the purchase order pro-
cess. Each organization has its own event log dataset. This is
shown in Fig. 5. For instance, we assume that all of the orga-
nizations have operationally identical fragments, but each per-
forms it in slightly different ways. The corresponding frag-
ment of each traces set is shown below them in the fig. We
will first execute the preprocessing steps on TSi (1 ≤ i ≤ 4).
Then using the obtained TSip 1≤ i≤4ð Þ ; we generate all L-

grams (2 ≤ L ≤ | | tmax| |) for each TS
i
p. Here, we consider the

minimum size of 2 for L (we consider minimum size of 2 for
each fragment) and the maximum value equal to the length of
longest trace (tmax). We take a window of size L around all
event traces and generate all possible L-grams. This is shown
in Fig. 6. In this figure, three traces of O1 for “purchasing
process” are shown: EHABCDFG, HEABCDFG and
HEABCDGF. Here, A is “filling request form”, B is “financial
calculation”, C is “stock checking” andD is about “payment”.
Red numbers are numerical values, which have been mapped
to each 4-g. Other characters E, F, G and H represent other
activities such as “print receipt” or “send receipt to finance”.
Taking a window of 4 (L = 4) around EHABCDFG, we can
generate five 4-grams: EHAB, HABC, ABCD, BCDF and

CDFG. In a similar vein, we can generate five 4-grams for
HEABCDFG: HEAB, EABC, ABCD, BCDF and CDFG.
Likewise, five 4-grams for HEABCDGF: HEAB, EABC,
ABCD, BCDF and CDFG. All of the 4-g for the four organi-
zations’ event logs are shown in Fig. 6. It should be noted that
since the relations between the intermediate activities do not
matter in our morphological fragment definition, we do not
need to calculate 4-combinations or 4-permutations in our
work. With this approach we are able to generate L-grams
with any size L.

6.3 Detecting common L-grams between organizations’
event logs

After generating all L-grams (2 ≤ L ≤ | | tmax| |), we will now
need to detect shared L-grams between process variants that
respect the properties outlined in Definition 2. We present a
fast and accurate method for identifying such common L-
grams. For the sake of simplicity, we will follow the previous
running example. Assume that there are 8 activities in all
process variants named: A, B, C, D, E, F, G and H. We map
each activity to a numerical representation, which is a power
of 10 as shown in Table 7. Now, we assign each trace t to a
numerical value using the following formula:

value tð Þ ¼ ε� AI þ
X
j≠I ; j≠O

Aj

 !
þ κ� AO ð3Þ

where AI is the numerical representation of the first activity of
the trace and AO is the numerical representation of the last
activity and Aj(j ≠ I, j ≠O) is the numerical representation of
other activities in the trace.

Lemma 1 Using Eq. 1, we are able to develop a unique nu-
merical representation for each L-gram.

Proof According to Eq. 3, there are two constants ε and κ
which distinguish the start and end of an L-gram. Since the
other parts of the L-gram (all activities except start and end)
have a constant coefficient of 1, the two constants ε and κ
which can be any distinct numbers between 2 and 9 distin-
guish the start and end of L-gram. On the other hand, accord-
ing to the definition of morphological fragments, the presence
of the exact set of intermediate activities is required but their
order can be ignored. Therefore, the second term of Eq. 3
ensures that the same set of activities are present in the mor-
phological fragment while the first and last terms of the equa-
tion ensure that the start and end of the morphological frag-
ments are identical.

According to Definition 2, ABCD and ACBD traces,
which can be considered operationally similar, will have the
same value. The reason is that each activity regardless of its
position in the trace has a unique value (a power of 10). We3 BIT-Process Library-Release 2009

Inf Syst Front

have added two different coefficients for the first and last
activities. The important point is that the coefficients should
make a difference between the first and last positions and the
other positions in a trace. An example of mapping traces to
numerical values is shown in Table 8 by assuming ε is 2 and κ
is 3. The two constants ε and κ can be any value as long as
they distinguish between the first and last positions and the
rest of the positions and they should not be a power of 10. As
shown in Table 8, ABCD and ACBD traces have equal nu-
merical values. DBCA has a different value compared to
ABCD because their first and last activities are different.

Algorithm 1 shows our proposed approach for extracting
morphological fragments from multiple event logs. Lines 1 to
4 are preprocessing steps. In line 1 and 2, redundant traces are
detected and removed. For this purpose, at first we calculate
local frequency LFi

t of each trace t in its own process variant

event logs i. The traces that have LFi
t < β would be consid-

ered as noise and would be removed. In line 3 and 4 loops are
handled. Line 5 generates all L-grams (3 ≤ L ≤ |t|) for each
trace t. Line 6 generates a value for each L-gram according
to Eq. 3. In line 7, we calculate the global frequency of each
trace among all variants’ event logs. Finally, in line 8 we

b) Part of event logs after preforming first phase of preprocessing

c) Final trace set which extracted after performing preprocessing

a) An example process model

Fig. 4 An example of performing preprocessing steps

EHABCDFGABCD
HEABCDFG

HEABCDGFABCD
EHABCDGFABCD
EHABCDGFABCD

HEABCDFG
EHABCDFGABCD
HEABCDGFABCD

…

TS1

a) Organization O

1

1

ACBDGF
HACBDGF
HACBDF
HACBDF
HACBDF

HACBDGF
ACBDGF
HACBDF

…

b) Organization

TS2

c) OO
2

EHACDFG
HEABDFG
HEABDGF
HEABDFG
HEABDFG
HEABDGF
EHACDFG
EHABDFG

…

Organization O
3

TS3

EHACBDFG
HABCDFG

HEABCDGF
HEABDGF
HABCDFG
HABCDFG
HABCDFG

HEABCDGF

d) Organization O

T

…

4

TS4Fig. 5 Event logs from four
different organizations

Inf Syst Front

return all L-grams that have global frequency of higher than 1
as morphological fragments. The higher the global frequency
of the extracted morphological fragments are, the more reus-
able they will be.
Algorithm 1. Proposed Algorithm for Extracting
Morphological Fragments

Input: A collection of event logs TSi.
Output: Set of morphological fragments.

1 For dataset i, extract distinct traces t and calculate their occurrence
frequency LFi

t.

2 In each dataset i, delete traces t where LFi
t < β.

3 Detect loop regions by observing repetitive activities inside traces.

4 For each dataset i, create TSip by detaching each repetition area and

create a new trace by using that part.

6 For each trace t in TSip, generate all L-grams LG
i
t where 3 ≤ L ≤ ∣t∣.

7 For each L-gram L in LGi
L, generate a value using Eq. 3: value

(L) = ε × A1 + Σj = I,I = I Aj + k × AO.
9 For each L-grams calculate its global frequency GFL among all LG

j
L

that have the same value.

11 Return all L which GFL > 1.

At some point in time, a process might have multiple over-
lapping fragments, each of which might be shared with other
processes. For example, consider two traces “ABCDEF” and

“ABCHBCD”. With a quick glance, one can find a common
fragment “ABC” between these two traces. By taking a closer
look, one can also see that there is another common fragment,
“BCD”, which will not be identified if “ABC” is immediately
extracted as a common fragment. Since in our approach we first
generate all possible L-grams for each trace, using the global
frequency of each candidate fragment, we can select the candi-
date that has the higher global frequency. So in this example,
between “ABC” and “BCD”, we can select the candidate,
which has the higher commonality with the other processes.

6.4 Extracting common fragments with flexible degree
of morphologicality

Given the flexibility of the morphological fragment definition,
the identification of such fragments can lead to insights for
organizations that cannot be otherwise obtained if a strict frag-
ment definition is employed. Under real world scenarios, the
number of exact fragments that can be mined across different

13002001
11300002
21130000
02110300
00210130

EHABCDFG
HEABCDFG
HEABCDGF

…

a) Organization O1

EHAB
HABC
ABCD
BCDF
CDFG

EHAB
HABC
ABCD
BCDF
CDFG

HEAB
EABC
ABCD
BCDF
CDFG

13002001
11300002
21130000
02110300
00210130

13001002
11302000
21130000
02110300
00210130

ACBDGF
HACBDGF
HACBDF

…

ACBD
CBDG
BDGF

HACB
ACBD
CBDG
BDGF

HACB
ACBD
CBDF

21130000
01210030
02010310

13100002
21130000
01210030
02010310

13100002
21130000
01210300b) Organization O

2

EHACBDFG
HABCDFG

HEABCDGF
…

13002001
11300002
21130000
02110300
00210130

EHAB
HABC
ABCD
BCDF
CDFG

11300002
21130000
02110300
00210130

HABC
ABCD
BCDF
CDFG

13001002
11302000
21130000
02110300
00210310

HEAB
EABC
ABCD
BCDG
CDGF

d) Organization O
4

EHABCDFG
HEACBDFG
HEACBDGF

…

c) Organization O
3

EHAB
HABC
ABCD
BCDF
CDFG

13002001
11300002
21130000
02110300
00210130

HEAC
EACB
ACBD
CBDF
BDFG

10302001
13102000
21130000
01210300
02010130

HEAC
EACB
ACBD
CBDG
BDGF

10302001
13102000
21130000
01210030
02010310

Fig. 6 Generating 4-g for traces
existing in organization event
logs set for purchasing process. In
this example, A is Bfilling request
form^, B is Bfinancial
calculation^, C is Bstock
checking^ and D is about
Bpayment^. Red numbers are
numerical value which have been
mapped to each 4-g. Other
characters E, F,G andH represent
other activities such as Bprint
receipt^ or Bsend receipt to
finance^

Table 7 Mapping of activities to a unique value as a power of 10

Activity A B C D E F G H

Value 107 106 105 104 103 102 101 100

Inf Syst Front

organizations may not be numerous; therefore, one can use the
degree of morphologicality (α in Eq. 2) in order to relax the
requirements to some extent. Two fragments fi and fj are mor-
phologically identical if Dm(fi, fj) is equal to 1. Likewise, two
fragments are completely dissimilar if Dm(fi, fj) = 0.
Otherwise, there is a degree of morphological similarity where
degrees closer to 1 represent higher similarity between the
identified fragments.

In order to identify morphological fragments that have the
same degree of morphologicality, we need to extend our pro-
posed method in Algorithm 1 to support for some degree of
variation. To this end and in order to identify morphological
fragments that have a certain degree of morphologicality, we
need to measure the similarity between the identified frag-
ments and cluster the fragments into groups of similar frag-
ments. Clustering techniques are generally divided into three
types: partitional, hierarchical and overlapping (so-called non-
exclusive, alternative clustering or multi-view clustering)
(Hruschka et al. 2009). In partitional clustering, each object
belongs to exactly one cluster. Hierarchical clustering is a
nested sequence of partitional clustering in which each object
that belongs to a child cluster also belongs to the parent clus-
ter. Overlapping techniques can be soft where each object can
belong to more than one cluster or fuzzy in which each object
may belong to one or more clusters with different degrees of
membership (Hruschka et al. 2009).

Regardless of the type of the clustering algorithm, the main
goal of clustering is to maximize the homogeneity within each
cluster and the heterogeneity amongst clusters (Hruschka et al.
2009). Therefore, most of the clustering algorithms are based
on the distances of data objects. In our case, we should addi-
tionally consider the structural similarity (degree of
morphologicality) of process fragments. Therefore, it is not
possible to employ an existing clustering technique for our
purpose. This is primarily due to the fact that the clustering
method that we require needs to consider fragment similarity
as well as structural constraints when building the fragment
clusters. For example, consider a scenario where we are inter-
ested in identifying all the morphological fragments that have
a degree of morphologicality of more than 90 % from the
processes in Fig. 7. In this example, Fragment 2 does not
include one activity of Fragment 1 (request confirmation).
So, the degree of morphologicality of f1and f2 is: Dm(f1, f2) =
2 × 5/(5 + 6) = 0.909 and they can form a cluster. Likewise,

Fragments 1 and 3 have a high degree of morphologicality
because their degree of morphologicality is Dm(f1, f3) =
2 × (5/5 + 6) = 0.909 and hence can constitute a cluster.
However, Fragments 2 and 3 have a lower degree of
morphologicality since they have two differences on activities
request confirmation and activity ask for payment and their
degree is Dm(f2, f3) = 2 × 3/(5 + 5) = 0.6. Therefore f2 and f3
cannot be placed together with Fragment 1 in the same cluster
with the equal degree of morphologicality. This example
shows that the degree of morphologicality is not a transitive
relation and therefore the adoption of traditional clustering
techniques that assume inherent transitivity of the distance
function is not applicable in our work.
Algorithm 2. Proposed Clustering Algorithm for Fragment
Extraction

Input: Set of all L-grams L*.
Output: Set of clusetrs C* that contain fragments with same degree of

morphologicality.

1 For each L-grams gi, gj ∈ L* calculate their degree of morphologicality
Dm(gi, gj).

2 Create a cluster Ci for each L-gram gi ∈ L*.

3 For each gi ∈ L* and Ck ∈ C* if ∀gj ∈ ∁k ,Dm(gi, gj) >α then create a
new cluster Cnew and add gi and Ck to Cnew

4 Resolve cluster Ci in Cj when Ci ⊆ Cj.

5 Remove clusters Ci which ∣Ci∣ ≤ 1 (clusters which contain just one
fragment).

The following definition provides the characteristics of our
desirable clustering technique:

Definition 10A set of L-gramsC is a cluster of fragments with
the degree of morphologicality α iff:

∀gi; g j ∈ L
*;Dm gi; g j

� �
≥α

In order to develop a clustering technique that has the char-
acteristics of Definition 10, we have proposed Algorithm 2 for
clustering the common morphological fragments, which have
a degree of morphologicality of higher than α. In the first step
(Line 1), we create one cluster for each L-gram gi. Once the
clusters are created for each L-gram, we calculate the pairwise
degree of morphologicalityDm(gi, gj) of all pairs of L-grams gi
and gj (Line 2). Once the pairwise degrees of morphologicality
are calculated, our objective is to merge those clusters that
have degrees more than α. For each gi ∈ L*and each cluster
Ck ∈ C* if the degree of morphologicality of giwith all of
existing L-grams in Ck is more than α, then we create a new
cluster Cnew and add gi and Ck to Cnew (Line 3). Finally, we
identify and remove those clusters which are complete subsets
of other clusters (Lines 4 and 5). The result clusters set C*,
contains clusters which have morphological fragments with a
degree of morphologicality of more than α.

Table 8 An example of mapping traces to numerical values

Trace Mapping Calculation Numerical Value

ABEG 2 × 107 + 106 + 103 + 3 × 101 21,001,030

ABCD 2 × 107 + 106 + 105 + 3 × 104 21,130,000

ACBD 2 × 107 + 105 + 106 + 3 × 101 21,130,000

DBCA 2 × 104 + 106 + 105 + 3 × 107 31,120,000

Inf Syst Front

7 Evaluation

7.1 Dataset

We evaluated our proposed algorithm using two sets of
datasets: two collections of the IBM BIT process library
(Fahland et al. 2011), namely collections A and B3, as well
as process logs that were generated with the process variant
generator tool (Pourmasoumi et al. 2015b). There are 5 col-
lections A, B1, B2, B3 and C in the IBM BIT library. In
(Fahland et al. 2011), these collections were analyzed and it
was concluded that collections B1 and B2 are earlier versions
of B3, and collection C is a mix of models from different
sources and as such it does not contain any clones. Based on
the conclusions reported in (Fahland et al. 2011) and as sug-
gested in that paper, we selected A and B3 from the IBM BIT
process library. According to (Fahland et al. 2011) and also
our own analysis, the BIT collection A contains 269 models
ranging from 5 to 47 nodes and collection B3 contains 247
models with 5 to 42 nodes.

In addition to the IBM BIT collection, we also used syn-
thesized process logs. In (Pourmasoumi et al. 2015b), we pro-
posed an approach and its supporting toolset for generating
process variants, called it PVG. A screen shot of the process
variant generator tool is shown in Fig. 8. Based on the tech-
nique and tool, a collection of process variants can be random-
ly created according to a probabilistic distribution and based
on a user-defined variation rate parameter. The tool is provid-
ed within the PLG toolset (Burattin and Sperduti 2010). PLG
generates random process models using context-free gram-
mars by employing 5 basic workflow patterns: single activity,
loop, sequence, XOR split-join and AND split-join.
Moreover, the user can select from three probability distribu-
tion functions: Uniform, Gaussian and Beta, which will be

used for generating the number of branches for AND/XOR
split-join patterns. After generating a random process model,
PLG is capable of generating its execution logs by traversing
the generated process graph.

The synthetic dataset consists of 500 process variants and
5000 event logs are generated for each process variant. We
generated these variants for 10 randomly generated process
models (50 variants for each process model). The randomly
generated input process models have different sizes. The over-
all specification of the whole 500 variants is shown in Table 9.
For the process variant generation, we set the variation rate to
30 %.

7.2 Experiments

7.2.1 Refactoring gain

For evaluating the proposed approach, we use the criteri-
on proposed in (Uba et al. 2011). As previously men-
tioned, one of the major applications of process fragmen-
tation is reusability. In order to evaluate the usefulness of
fragmentation approaches for reusability, the refactoring
gain measure as proposed in (Uba et al. 2011) is used.
The refactoring gain of a process fragment is the reduc-
tion in the number of nodes obtained by embedding that
fragment into a separate sub-process, and replacing every
occurrence of the fragment with a task that invokes this
sub-process.

Definition 11 (Uba et al. 2011). Let S be the size of a fragment,
and N the number of occurrences of this fragment. Since all
occurrences of a fragment are replaced by a single occurrence
plus N sub-process invocations, the refactoring gain is defined
as Gf = S ×N − S −N.

a)

b)

c)

Fig. 7 Sample fragments that show a transitive morphological similarity between fragments does not exist

Inf Syst Front

In this definition, the number of existing activities in a
process fragment trace is considered as its size S. Based on
Definition 11, we calculate the refactoring gain of the extract-
ed fragments in each data collections. In our experiments, we
only consider L-grams with length greater than 2 as candidate
fragments. The reason is that fragments with a length of 2 can
be easily modeled by a business modeler and do not add too
much value in terms of reuse (Uba et al. 2011).

Table 10 summarizes the statistics of the extracted frag-
ments for each data collection. This table shows the minimum,
maximum and average size of the detected fragments. It also
shows the minimum, maximum and average occurrence of the
extracted fragments. Based on these results, it can be seen that
a significant number of common fragments is elicited. The
average occurrence of common fragments in the collection
A is 3.05 and the maximum is 10. In collection B, these mea-
sures are 3.91 and 21. The largest fragment detected in collec-
tion A has a size of 14 activities and in collection B the largest
fragment has a size of 8 activities. The result of running ex-
periments on the dataset generated using the PVG tool is also
shown on the third row of Table 10. The average occurrence of
common fragments is 4.35, the maximum occurrence is 25
and the largest detected fragment has a size of 17 activities.

The refactoring gain of each data collection is shown in
Table 11. The total refactoring gain is the sum of the
refactoring gains of non-trivial fragments (size ≥3) in the col-
lection (Uba et al. 2011). We have also shown the maximum,
minimum and average refactoring gain of extracted fragments
in Table 11.

The total refactoring gain of the extracted fragments from
the process variants generated by PVG tool (Pourmasoumi
et al. 2015b) is more than the refactoring gain of fragments
extracted from the other data sets. This is due to the fact that
the process variants generated by the PVG tool are limited to a
specific deviation rate (In our experiments they are limited to a
variation rate of 30 %) from the main input process models.
However, the other data sets cover a wider range of deviation.
For example, collection A of IBM BIT dataset contains vari-
ations with size 3 to sizes of 34 activities.

For comparing our proposed approach with other works, the
most similar work, which is comparable, is (Uba et al. 2011). In
this work, the authors proposed a clone detection approach and
evaluated their work on BITA and B3 collections. The authors
used refactoring gain measure for evaluating their work.
However, their proposed approach is on process models, not
event logs. They report that they were able to find 57 fragments
in collection A with their first proposed approach with a
refactoring gain of 195 (4.3 % compared to 9.8 % by our meth-
od) and 174 with their second approach with a refactoring gain
of 384 (8.4 % compared to 9.8 % by our method). They also
extracted 19 fragments with refactoring gain of 208 (6.5 %
compared to 7.1 % by our method) from collection B3 using
their first approach and 49 fragments with refactoring gain of
259 (6.6 % compared to 7.1 % by our method) from collection
B3 using their second approach. In the absence of comparable
methods that work specifically on event traces and given the
fact that our method works on event traces, we believe that the
refactoring gain metric could be considered an acceptable

Fig. 8 A screen shot of process variant generator tool

Table 9 Statistics of used dataset

Dataset Collection Name #Process Variants #Log Traces Activities Gateways

Min Max Avg Min Max Avg

IBM BIT Collection A 269 100,00 3 34 12.01 0 13 3.07

IBM BIT Collection B3 247 5000 3 32 8.92 0 11 2.21

Data Generated By PVG tool 500 5000 10 40 13.04 0 15 3.12

Inf Syst Front

comparison metric with methods that work with process
models. This is because the refactoring gain metric is based
on the ‘percentage’ of size reduction as explained earlier. So,
in comparison to the approach proposed in (Uba et al. 2011), it
can be seen that there is an increase in the refactoring gain of the
extracted fragments by our proposed work. Table 12 shows
16 % and 7.5 % improvement in refactoring gain of collection
A and B3, respectively.

7.2.2 Impact of rate of morphologicality

In Section 6.4, we introduced the degree of morphologicality for
increasing flexibility.We also proposed a clustering algorithm for
extracting clusters of common fragments with the same degree of
morphologicality. In this section, we intend to evaluate the effect
of the degree of morphologicality on the flexibility of the pro-
posed fragmentation approach. To this end, we extract clusters
which have degree ofmorphologicalityα= 85%. The reason that
we consider α = 85% is that we want to evaluate the effect of the
minimum changes in morphological fragments. So, based on the
average rounded size of fragments which is equal to 4 activities
according to (Uba et al. 2011), if wemiss at most one activity, the
degree of similarity would be 2 × 3/(3 + 4) = 85.7%.

Table 12 shows the refactoring gain of the extracted clus-
ters with degree of morphologicality of greater than 85 %. In
this experiment, for calculating the refactoring gain metric, we
need to calculate the center of each cluster. Within each clus-
ter, we consider the fragment, which has the highest similarity
with the other fragments in that cluster as center of the cluster.
The refactoring gain metric is calculated as follows:

Definition 12 The refactoring gain of a cluster of fragments is
the reduction in the number of nodes obtained by embedding

all fragments inside the cluster into a separate sub-process,
and replacing every occurrence of each fragment inside the
cluster with a task that invokes this sub-process. The
refactoring gain can be calculated by:

Gf ¼
XK
j¼1

XM
i¼1

f j
i

�� ��� N j
i

� �
−N j

i

 !
− f j

c

�� �� ð4Þ

In this equation, j f j
i j is the size of fragment fi within

cluster j, N j
i is the occurrence frequency of fragment i, j f j

cj
is the size of centric fragment of cluster j and K is the number
of clusters.

Table 12 shows the number of extracted clusters. Collection
A contains 108, B3 contains 92 and the dataset generated using
PVG has 226 clusters. As explained previously, these clusters
might have overlapping fragments. For example two clusters
may contain a fragment F1. So, for calculating the ‘true’
refactoring gain, we consider F1 only once in our computations.
We exclude shared fragments from our calculation after
extracting clusters and consider the presence of shared frag-
ments only in one cluster. Table 13 shows the size of each
cluster in terms of the number of fragments. The average size
for A, B3 and PVG dataset is 2.7, 2.32 and 3.01 respectively.

According to Table 12 the refactoring gain of collections A,
B3 and PVG dataset shows a significant increase of 13%, 16%
and 18 %, respectively. The experimental results in Tables 12
and 13 show that with a little flexibility allowed through the
degree of morphologicality, it is possible to extract a consider-
ably higher number of common fragments with slight varia-
tions. These variations might be for negligible reasons such as
different design styles of different designers. However, we do
not contend that all extracted fragments within a cluster can be

Table 10 Statistics of the extracted fragments

Dataset Collection Name Size # Occurrence

min max avg min max avg

IBM BIT Collection A 3 14 3.01 2 10 3.05

IBM BIT Collection B3 3 8 2.97 2 21 3.91

Dataset Generated Using PVG tool 3 17 3.9 2 25 4.35

Table 11 Refactoring gain of each collection

Dataset Collection Name #Fragments Refactoring Gain

total max avg std

IBM BIT Collection A 185 9.8 % 13 2.9 3.2

IBM BIT Collection B3 130 7.1 % 28 5.7 9.2

Dataset Generated Using
PVG tool

410 12.4 % 39 3.94 4.01

Table 12 Refactoring gain of each collections with degree of
morphologicality of 85 %

Dataset Collection Name #Clusters Total Refactoring
Gain of Clusters

IBM BIT Collection A 108 11.04 %

IBM BIT Collection B3 92 8.3 %

Dataset Generated Using PVG tool 226 14.6 %

Table 13 Statist ics of extracted clusters with degree of
morphologicality of 85 %

Dataset Collection Name Size of Clusters in Terms of
Number of Fragments

min max avg

IBM BIT Collection A 2 5 2.7

IBM BIT Collection B3 2 4 2.32

Dataset Generated Using PVG tool 2 7 3.01

Inf Syst Front

used interchangeably in reuse applications and there is need for
an expert review for a complete compliance check.

8 Discussions

In this section, we will discuss the underlying reasons why we
do not consider the other parts of Table 6 as morphological
fragments and only focus on full similarity-double side of stable
states. We then provide a formal analysis of the computational
complexity of the proposed approach in Section 8.2. We will
show that the time complexity of our proposed approach
is O(n2), where n is the number of traces.

8.1 Stable states of morphological fragments

There are three reasons why we only consider the first row of
Table 6 and not the other three rows in our morphological
fragment definition:

& First, the primary goal of eliciting morphological frag-
ments is business process improvement and/or reusability.
For this purpose, the most important property of morpho-
logical fragments is composability. Therefore, having the
same input and output activities for morphological frag-
ments can significantly facilitate replacement and compo-
sition of process fragments.

& Morphological fragments do not necessarily guarantee full
goal compatibility but rather they point to sub-processes
that are likely to be related to similar goals/objectives. It
should be noted that we would relax attention to accuracy
and full compatibility for the sake of finding more poten-
tial matches.

& In many cases, if there is partial similarity between two
fragments, it is possible by taking a window of smaller
size on the main process, to reach to full similarity-
double side. For example, imagine that we have two frag-
ments: F1 = < A, B, C, F, E,D,G,H > and F2 = <M,H,
C,D, E, F,G, A >. These fragments are not morphological
fragments because their stable states are not equals.
However, if we take a window of smaller size on these
fragments, these morphological fragments can be achieved:

F
0
1 ¼< C; F;E;D;G > and F

0
2 ¼< C;D;E; F;G > :

8.2 Computational complexity analysis

The proposed approach has a very lightweight implementa-
tion, has polynomial time complexity and converges to a glob-
al solution. In this section, the time complexity of the pro-
posed approach for the main parts of the algorithm is ex-
plained. This time complexity is determined independent of
the implementation technique.

8.2.1 Time complexity of preprocessing

Assume that we have S organizations, each of which contains
on average N traces of event logs, |TSi|AVG =N, 1 ≤ i ≤ S. In the
first phase of the preprocessing step (Section 6.1), we calcu-
late the local frequency of traces and remove the duplicates.
The time complexity of this step is O(SN2). The next phase in
preprocessing step is detecting loops. The time complexity of
detecting loop for each trace t with length l = |t| is O(l2). Since
after performing the first phase of the preprocessing step the
number of traces reduce significantly and can be considered as
a constant Np; therefore, the time complexity of detecting all
loops for all organizations event logs would be O(SNpl

2).
Given that Nc and l are finite and Np ≪N , l ≪N, so the time
complexity of preprocessing step is O(SN2).

8.2.2 Time complexity of generating L-grams

We can calculate the number of created L-grams as follows:

#L−gram ¼
XS
i¼1

X
j¼1

NpXl

k¼1

l−k þ 1ð Þ

#L−gram ¼ S � Np �
Xl

k¼1

l−k þ 1ð Þ

#L−gram ¼ S � Np � l2 þ l

2

� �
ð5Þ

As seen in Eq. (5), the time complexity of generating L-
grams is O(SNpl

2).

8.2.3 Time complexity of detecting common L-grams

The time complexity for calculating numerical values corre-
sponding to each trace is a small constant C. Hence, the time
complexity for calculating numerical value of all traces is
equal to the number of them. Likewise, the time complexity
for detecting common fragments is in the order of the number
of traces. Therefore, the time complexity of detecting common
L-grams and the proposed method as a whole is O(Npl

2).
Considering the time complexity of each part, we can infer

that the total time complexity of the proposed algorithm for
detecting commonmorphological fragments isO(SN2). As the
number of organization is limited, the values of S can be
ignored. Thus, the time complexity is O(N2).

8.2.4 Time complexity of extracting common fragments
with flexible degree of morphologicality

For extracting common fragments with flexible degree of
morphologicality (Section 6.4), we have to perform the pre-
processing step and also generate L-grams. So, this part would
have a time complexity of O(SN2). For every two L-grams

Inf Syst Front

gi and gj with length l, Dm(gi, gj) can be calculated with O(l
2).

The time complexity of calculating Dm(gi, gj) for all existing
L-gram (SNpl

2) is O((SNpl
2)2 × l2). The number of operations

for detecting clusters is equal to the number of l-grams multi-
plied by the number of initial clusters (which we set to be
equivalent to the number of L-grams). So, the time complexity
of extracting clusters isO((SNpl

2)2). Since we have l ≪N , S ≪N
and Np ≪N, again we can infer that the time complexity of the
algorithm when considering the degree of morphologicality is
also equal to O(N2).

9 Conclusion and future works

In this paper, we assess various existing definitions of process
fragments based on Bunge’s ontological model and its process
representational model, GPM and compare them based on
various criteria. We then present a new definition for process
fragments, called morphological fragments, which has practi-
cal implications on composability and reusability. On this ba-
sis, we propose a novel algorithm for extracting common
morphological fragments from a collection of event logs.
Furthermore, we propose a supporting algorithm for clustering
fragments with some degree of variation. According to the
experimental results, our proposed approach supports reus-
ability and flexibility in identifying process fragments.
Another positive feature of our proposed approach is that it
extracts process fragments directly from event logs, which
would be useful in many domains of process mining. As fu-
ture work, we are interested in exploring the applications of
our work in composing optimized business process models.
We intend to extract and use other features of event logs such
as cost or complexity and propose methods for automatically
composing the best configurable process model according to
user’s preferences. To this end, we would like to focus on
reusing morphological fragments for composing optimized
process models given an input set of constraints.

References

Andrews, T., et al. (2003). Business process execution language for web
services, version1.1, Technical Report, Microsoft, IBM, Siebel
Systems, SAP, BEA.

Asadi, M., Gašević, D., Wand, Y., Hatala, M. (2012).Deriving Variability
Patterns in Software Product Lines by Ontological Considerations,
In Proceedings of the 31st International Conference on Conceptual
Modeling, Florence, Italy, pp. 397–408.

Assy, N., Chan, N.N., Gaaloul, W. (2013). Assisting Business Process
Design with Configurable Process Fragments. In: IEEE SCC, pp.
535–542.

Atluri, V. S. A., Chun, S. A., Mukkamala, R., & Mazzoleni, P. (2007). A
decentralized execution model for inter-organizational workflows.
Distributed and Parallel Databases, 22(1), 55–83.

Basu, A., & Blanning, R. (2003). Synthesis and decomposition of pro-
cesses in organizations. Information Systems Research, 14(4), 337–
355.

Bunge, M. (1977). Treatise on basic philosophy, Ontology I: The
Furniture of the World (Vol. 3). Boston: Reidel.

Burattin, A., & Sperduti, A. (2010). PLG: A Framework for the
Generation of Business Process Models and Their Execution Logs.
In Business Process Management Workshops, pages 214–219.
Springer.

Dijkman, R. M., Dongen, B. F., Dumas, M., Garcia-Banuelos, L., Kunze,
M., Leopold, H., et al. (2013). A short survey on process model
similarity, Seminal Contributions to Information Systems
Engineering (pp. 421–427). Heidelberg: Springer.

Dumas, M., Rosa, M., La, M. J., & H.A., R. (2013). Fundamentals of
business process management (p. 414). Berlin: Springer-Verlag.

Eberle, H., Unger, T., & Leymann, F. (2009). Process fragments, in On
the Move to Meaningful Internet Systems: OTM 2009, ser. Lecture
Notes in Computer Science, 2009(5870), 398–405.

Evermann, J., & Wand, Y. (2005). Ontology based object-oriented do-
main modelling: fundamental concepts. Requirements Engineering,
10(2), 146–160.

Fahland, D., Favre, C., Koehler, J., Lohmann, H., Volzer, N., & Wolf, K.
(2011). Analysis on demand: instantaneous soundness checking of
industrial business process models. Data and Knowledge
Engineering, 70(5), 448–466.

Ganter, B., & Wille, R. (1999). Formal concept analysis, mathematical
foundations. Berlin: Springer.

Gao, X., Chen, Y., Ding, Z.,Wang, M., Zhang, X., Yan, Z., Wen, L., Guo,
Q., Chen, R. (2014). Process Model Fragmentization, Clustering
and Merging: An Empirical Study. Lecture Notes in Business
Information Processing Volume 171.

Ghattas, J., & Soffer, P. (2009). Evaluation of inter-organizational busi-
ness process solutions: A conceptual model-based approach.
Information Systems Frontiers, 11(3), 273–291.

Hens, P., Snoeck, M., De Backer, M., & Poels, G. (2014). Process frag-
mentation, distribution and execution using an event-based interac-
tion scheme. Journal of Systems and Software, 89, 170–192.

Hruschka, E. R., Campello, R. J. G. B., Freitas, A. A., & de Carvalho, A.
C. P. L. F. (2009). A survey of evolutionary algorithms for cluster-
ing. IEEE Transactions on Systems, Man, and Cybernetics Part C:
Applications and Reviews, 39, 133–155.

Ivanovic, D., Carro, M., and Hermenegildo, M. (2010). Automatic frag-
ment identification in workflows based on sharing analysis. In
Mathias Weske, Jian Yang, Paul Maglio, and Marcelo Fantinato,
editors, Service-Oriented Computing –ICSOC.

Jan R., Marta I., Michael R., and Peter G. (2006). How Good is BPMN
Really? Insights from Theory and Practice. Proceedings 14th
European Conference on Information Systems, Goetborg, Sweden.

Khalaf, R., Kopp, O., & Leymann, F. (2008). Maintaining data depen-
dencies across bpel process fragments. International Journal of
Cooperative Information Systems, 17, 259–282.

Larosa, M., Dumas, M., Uba, R., & Dijkman, R. M. (2013a). Business
process model merging: An approach to business process consoli-
dation. ACM Transactions on Software Engineering and
Methodology, 22, 2,11.

Larosa, M., Dumas, M., Uba, R., & Dijkman, R. M. (2013b). Business
process variability modeling: a survey. ACM Transactions on
Software Engineering and Methodology, 22(2), 11.

Leemans, S. J. J., Fahland, D., & van der Aalst, W. M. P. (2014).
Discovering block-structured process models from incomplete event
logs (Vol. 8489, pp. 91–110). Heidelberg: Springer. In PETRI NETS
2014. LNCS

Leymann, F. (1996). Workflows make objects really useful. EMISA
Forum, 6(1), 90–99.

Inf Syst Front

Li, J., Wang, H. J., & Bai, X. (2015). An intelligent approach to data
extraction and task identification for process mining. Information
Systems Frontiers, 17(6), 1195–1208.

Mancioppi, M., & Danylevych, O. (2012). Towards classification criteria
for process fragmentation techniques (pp. 1–12). Heidelberg:
Springer Berlin. in: Proc. BPM Work.

Milani, F., Dumas, M., &Matulevičius, R. (2013).Decomposition driven
consolidation of process models, advanced information systems en-
gineering. Lecture Notes in Computer Science, 7908, 193–207.

Milani, F., Dumas, M., Matulevičius, R., & Ahmed, N. (2015). Criteria
and heuristics for business process model decomposition: review
and comparative evaluation. Business & Information Systems
Engineering, 58(1), 7–17.

Pourmaoumi A., Kahani, M., Bagheri, E., Asadi, M. (2014). Mining
Common Morphological Fragments from Process Event Logs. In
Center for Advance Studies Conference (IBM CASCON), Best
Student Paper Award, Toronto, Canada.

Pourmasoumi, A. (2015).Mining configurable processmodels from event
logs. In Business Process Management, Doctoral Symposium,
Innsbruck, Austria.

Pourmasoumi, A., Kahani, M., Bafgeri, E., Asadi, M. (2015a). Process
fragmentation: An ontological perspective. In Proceedings of the
2015 International conference on business process modeling, devel-
opment, and support (BPMDS’15), Springer, Stockholm.

Pourmasoumi, A., Kahani, M., Bagheri, E., Asadi, M. (2015b). On
Business Process Variants Generation, CAiSE FORUM.

Reijers, H.A., Mendling, J. (2008).Modularity in process models: review
and effects, in: BPM, Springer.

Reijers, H. A., Mendling, J., & Dijkman, R. M. (2011). Human and
automatic modularizations of process models to enhance their com-
prehension. Information Systems, 36(5), 881–897.

Rosa, M., Dumas, M., Ekanayake, C., García-Bañuelos, L., Recker, J., &
Hofstede, H. M. (2015). Detecting approximate clones in business
process model repositories. Information Systems, 49, 102–125.

Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S. (2010)
Integrating Compliance into Business Processes: Process
Fragments as Reusable Compliance Controls. Proc. of the MKWI.

Seidita, V., Cossentino, M., Hilaire, V., Gaud, N., Galland, S., Koukam,
A., et al. (2010). The meta model: a starting point for design pro-
cesses construction. International Journal of Software Engineering
and Knowledge Engineering, 20(4), 575–608.

Seidita, V., Cossentino, M., Chella, A. (2011) A proposal of process
fragment definition and documentation, 9th European Workshop
on Multi-agent Systems (EUMAS).

Smirnov, S., Dijkman, R. M., Mendling, J., & Weske, M. (2010).
Meronymy-based aggregation of activities in business process
models. Conceptual Modeling–ER, 2010, 1–14.

Soffer, P., &Yehezkel, T. (2011). A state-based context-aware declarative
process model, In: Enterprise, Business-Process and Information
Systems Modeling (pp. 148–162). Berlin: Springer.

Soffer, P., Kaner, M., &Wand, Y. (2010). Assigning ontological meaning
to workflow nets. Journal of Database Management, 21(i3), 35.

Tan, W., & Fan, Y. (2007). Dynamic workflow model fragmentation for
distributed execution. Computers in Industry, 58(5), 381–391.

TFPM – ieee task force on process mining (2012). Process mining
manifesto, In BPM Workshops. Lecture Notes in Business
Information Processing Series (Vol. 99). Berlin: Springer-Verlag.

Uba, R., Dumas, M., Garc’ıa-Ba˜nuelos, L., & La Rosa, M. (2011). In S.
Rinderle-Ma, F. Toumani, & K. Wolf (Eds.), BPM 2011. LNCS

Clone detection in repositories of business process models (Vol.
6896, pp. 248–264). Heidelberg: Springer.

Valenca, G., Alves, C., Alves, V., & Niu, N. (2013). A systematic map-
ping study on business process variability. International Journal of
Computer Science & Information Technology, 5(1), 1–21.

van der Aalst, W. (2009). Process-aware information systems: Lessons to
be learned from process mining. T. Petri Nets and Other Models of
Concurrency, 2:1–26.

van der Aalst, W. (2011). Process mining: Discovery, conformance and
enhancement of business processes. Berlin: Springer-Verlag.

van der Aalst, W. (2012) Process mining: Overview and opportunities.
ACM Transactions on Management Information Systems, Vol. 99,
No. 99, Article 99.

Vanhatalo, J., Volzer, H., Leymann, F. (2007). Faster and more focused
control-flow analysis for business process models through sese
decomposition. Proceedings of the 5th International Conference on
Service-Oriented Computing (ICSOC).

Vanhatalo, J., V¨olzer, H., Koehler, J. (2008) The refined process struc-
ture tree. In Proceedings of BPM, Lecture Notes in Computer
Science, Springer, 5240, 100–115.

Vanhatalo, J., V¨olzer, H., & Koehler, J. (2009). There fined process
structure tree. Data & Knowledge Engineering, 68(9), 793–818.

Wand, Y., & Weber, R. (1995). On the deep structure of information
systems. Information Systems Journal, 5, 203–223.

Wen, L., Wang, J., & Sun, J. (2007). Mining invisible tasks from event
logs, APWeb/WAIM 2007. LNCS (Vol. 4505, pp. 358–365).
Heidelberg: Springer.

Weske, M. (2012). Business process management architectures, in
Business Process Management (pp. 333–371). Berlin Heidelberg:
Springer.

Zemni M., Hadj-Anouane, N., Yeddes, M. (2012). An Approach for
Producing Privacy-Aware Reusable Business Process Fragments,
Proceedings of the 2012 I.E. 19th International Conference on
Web Services, p.659–661, June 24–29.

Asef Pourmasoumi is Ph.D candidate, research assistant at Ferdowsi
university of Mashhad. He is also member of the Laboratory for
Systems, Software and Semantics (LS3) at Ryerson University, Canada.
His research interest includes process mining (especially on organization-
al mining), natural language processing and software engineering. He can
be reached at asef.pourmasoumi@stu.um.ac.ir

Mohsen Kahani is a professor of computer engineering, IT director and
head of Web Technology Lab. at Ferdowsi University of Mashhad. His
research interests includes semantic wen, software engineering, natural
language processing and process mining. He can be reached at
kahani@um.ac.ir

Ebrahim Bagheri is a Canada Research Chair in Software and Semantic
Computing, Associate Professor, and the Director of the Laboratory for
Systems, Software and Semantics (LS3) at Ryerson University. He has
been active in the areas of social semantic web and software engineering,
and, for the past several years, Dr. Bagheri’s research has focused on
devising empirically tested methods that enhance the systematic large-
scale reuse of software assets with a focus on the software product line
engineering paradigm. He can be reached at bagheri@ryerson.ca

Inf Syst Front

	Mining variable fragments from process event logs
	Abstract
	Introduction
	Related work
	A running example
	Preliminaries
	Bunge’s ontology
	Generic process model (GPM)
	Process fragment definitions

	Analyzing process fragments using Bunge’s ontology
	Process fragments based on GPM
	Morphological fragments

	Extracting morphological fragments
	Preprocessing
	Generating L-grams from each set of event logs
	Detecting common L-grams between organizations’ event logs
	Extracting common fragments with flexible degree of morphologicality

	Evaluation
	Dataset
	Experiments
	Refactoring gain
	Impact of rate of morphologicality

	Discussions
	Stable states of morphological fragments
	Computational complexity analysis
	Time complexity of preprocessing
	Time complexity of generating L-grams
	Time complexity of detecting common L-grams
	Time complexity of extracting common fragments with flexible degree of morphologicality

	Conclusion and future works
	References

