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Abstract
Social network users publicly share a wide variety of information with their followers and
the general public ranging from their opinions, sentiments and personal life activities. There
has already been significant advance in analyzing the shared information from both micro
(individual user) and macro (community level) perspectives, giving access to actionable
insight about user and community behaviors. The identification of personal life events from
user’s profiles is a challenging yet important task, which if done appropriately, would facil-
itate more accurate identification of users’ preferences, interests and attitudes. For instance,
a user who has just broken his phone, is likely to be upset and also be looking to purchase a
new phone. While there is work that identifies tweets that include mentions of personal life
events, our work in this paper goes beyond the state of the art by predicting a future personal
life event that a user will be posting about on Twitter solely based on the past tweets. We
propose two architectures based on recurrent neural networks, namely the classification and
generation architectures, that determine the future personal life event of a user. We evaluate
our work based on a gold standard Twitter life event dataset and compare our work with the
state of the art baseline technique for life event detection. While presenting performance
measures, we also discuss the limitations of our work in this paper.
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1 Introduction

Social microblogging platforms, such as Twitter, are accessible information sharing envi-
ronments where individuals, governments and even multi-national corporations share their
thoughts, views, sentiments and recent news. The live stream of content that is generated and
shared on these platforms serve as a valuable source of information for performing macro
and micro-level analyses ranging from the understanding of individual users’ interests and
preferences (Zarrinkalam et al. 2016; Zhao et al. 2016) to detecting and monitoring the
formation and evolution of user communities (Fani et al. 2016, 2017a, b) as well as identi-
fying important trending topics (Madani et al. 2015; Kaleel and Abhari 2015) and how they
can enable descriptive and prescriptive analytics (Fan and Gordon 2014). Researchers have
already extensively explored the possibility of using socially shared data to build predictive
models. For instance, work has been done on using social data to offer macro-scale predic-
tions on dependent variables such as stock market prices (Nguyen et al. 2015; Nguyen and
Shirai 2015; Mao et al. 2012; Bollen et al. 2011; Nofer and Hinz 2015), movie sales (Liu
et al. 2016; Choudhery and Leung 2017), disease outbreak (Woo et al. 2016; Byrd et al.
2016) and election results (Franch 2013; Tsakalidis et al. 2015; Cameron et al. 2016), just
to name a few. There has also been interesting studies showing that with even scant amount
of information from individual users on the social network, it is possible to perform micro-
level predictions such as detecting psychopathy (Wald et al. 2012; Preotiuc-Pietro et al.
2015), anxiety and depression (DeChoudhury et al. 2013; Coppersmith et al. 2015).

One of the main focal research areas on social network data is to derive such actionable
insights in order to facilitate decision making. To this end, detecting and monitoring events
on the social network has been of interest as trends and events on social networks have
shown to reflect many of the characteristics of the events of the real world (Unankard et al.
2015; Paltoglou 2016). Most of the techniques that focus on the detection of trending topics
and events on social networks are based primarily on the hypothesis that trending social top-
ics or events can be characterized by the change in observation frequency. In other words,
if a certain topic is frequently mentioned in a certain time period, while the topic had been
dormant in the past time periods, it can be considered to be a reflection of an event hap-
pening in the real world or a trending issue. Therefore, the success of such event detection
models relies on the global monitoring of social content across, at least, a subsection of the
broad social network.

More recently, researchers have become interested in studying a more nuanced form of
events that are specific to a given user, known as personal life events. Personal life events,
also known as life events, relate to an event or incident that happened for an individual social
network user that was then publicly reported by this user on the social network. Life events
can include getting engaged, moving to a new house, buying a new phone, and graduating
from college, among others. If detected, personal life events can provide a good basis for
making recommendations to users. For instance, it would be possible to recommend new
phone products on the market to a user who has reported a personal life event related to
breaking his/her phone. As another example, it would be possible to recommend relevant
career opportunities for a user who is engaged with the life event of changing jobs.

The detection of life events has a different set of challenges compared to the detec-
tion of trending topics and global events as these events are only mentioned locally by
the user him/herself and at most reacted to by some close social connections. Therefore,
methods that rely on changes in content frequency would not be suitable for this purpose.
For instance, a user would tweet ‘I just got married thanks monbebes for tuning into our
wedding ceremony’ ; reporting that she/he has gotten married. This tweet was liked three
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times and re-tweeted only once; therefore, it is quite difficult to determine its significance
and importance. Furthermore, social network users use special jargon to report life events
that are quite hard to pick out and identify. As an example, a Twitter user posts ‘i don’t miss
being alone!’ and posts a picture of his engagement party. It is difficult to determine this life
event given the brevity and rather cryptic nature of the message. Moreover, there are many
messages posted on Twitter that are similar to life events but are in fact information shar-
ing or advertising content. A user posting ‘That I’ll get hoodwinked into a 2nd marriage.’ is
not reporting a life event but rather expressing his/her opinion about a topic that has a simi-
lar representation to a life event. Finally, the high class imbalance of reported personal life
events compared to non-life event content makes the detection of life event messages a dif-
ficult task. Existing work (Dickinson et al. 2015; Cavalin et al. 2014; Choudhury and Alani
2014a; Li et al. 2014) already extensively explore various manually curated features such as
syntactic, semantic, sentiment as well as behavioral features to build classification models
that can determine whether one or a collection of tweets are discussing a personal life event.

The objective of this paper is to move beyond the state of the art by attempting to predict
if and what personal life event a given user will discuss in a future time interval by solely
relying on and processing the user’s historical tweets. In other words, in contrast to earlier
work, this paper presents several methods for anticipating whether a given user will report
on or mention a certain personal life event in her future tweets by considering previous
tweets. For instance, by considering a past tweet from a Twitter user, such as ‘I do not
understand why planes don’t board from the back first. That would save so much time and
frustration. Is that not logical?!’, our work would determine that the user will be reporting on
a Travel related life event in the future; however, without having access to the future tweet
that mentions ‘Left Chicago today & moved into new NYC apartment’. From an objectives
perspective, the main differentiating aspect of our work from the literature is that earlier
work always benefit from the tweet that has reported the personal life event as one of the
inputs to their classification model; however, our work performs predictive analytics based
on past tweets assuming that the tweet that will be reporting the personal life event has not
yet been posted by the user.

In this paper, we view the problem of predicting a user’s future life event as a sequence
generation process where the objective is to process a sequence of past tweets and generate
a future sequence that would determine the future personal life event of the user through our
proposed variants of recurrent neural networks. Succinctly, the contributions of this paper
are as follows:

– We propose two variants of a classification architecture based on recurrent neural
networks that consider a sequence of input life events and a sequence of tweets,
respectively and directly generate an output label that represents a future life event;

– In addition, we introduce a sequence generation architecture based on recurrent neural
networks that considers past tweets and their life event labels in tandem to generate an
output sequence resembling a future tweet, which would then be used to determine the
future life event;

– Our proposed work is evaluated on a gold standard dataset that is systematically col-
lected from Twitter and has real-world characteristics such as having a high class
imbalance. We further discuss examples of where our methods fail to identify future
life events and elaborate on the reasons for them.

The rest of this paper is organized as follows: In the next section, we classify the related
work in three subsections covering pertinent work in event prediction, life event detection
and deep learning techniques applied on social content. In Section 3, a high-level overview
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of our proposed approach is presented, which is then followed by an in-depth presentation
of the details of the work in Section 4. The details of our experiments, gold standard dataset,
measurement metrics, baselines and our findings are presented in Section 5. The next section
is dedicated to error analysis and the paper is finally concluded in Section 7.

2 Related work

The prior related work to this paper can be classified broadly into three categories, namely
event prediction, personal life event detection, and deep learning methods for social content.
We present work in these areas in the following subsections.

2.1 Event prediction

Users’ behavior on social networks is often a reflection of the events and emotions that
they experience in the real world. As such researchers have been interested to use social
content in order to model user behavior and make prediction on that basis. A wide range
of prediction models based on Twitter content have already been developed that span sev-
eral domains including traffic (Ni et al. 2014), election (Franch 2013; Tsakalidis et al.
2015; Cameron et al. 2016), healthcare (Eichstaedt et al. 2015; Woo et al. 2016; Byrd
et al. 2016), and the stock market (Nguyen et al. 2015; Nguyen and Shirai 2015; Mao
et al. 2012; Bollen et al. 2011; Nofer and Hinz 2015). For instance, Tsakalidis et al. (2015)
relied on Twitter content to predict the outcome of elections in the EU (Germany, Nether-
lands and Greece). Their model included eleven features based on Twitter, such as the
number of times that different parties were mentioned on Twitter. In addition, they used
sentiment analysis to assign a sentiment value to each tweet. They found that the use of
Twitter features leads to statistically significant better results compared to just using poll
information. Cameron et al. (2016) found that the size of candidates’ network, such as the
number of followers on Twitter and friends on Facebook, is not a good predictor of election
results.

Mao et al. (2012) studied whether the daily number of tweets can predict the S&P 500
stock indicators while the work in Bollen et al. (2011) employed sentiment features for
predicting stock market trends. Nguyen et al. (2015) proposed a model for predicting the
stock market by capturing company and topic specific sentiments. They proposed a novel
feature called the topic-sentiment which represents the sentiments towards specific company
topics. Nofer and Hinz (2015) considered the number of Twitter followers in their analysis
in addition to sentiments because they hypothesized that the importance of every tweet
depends on the number of users recognizing the original message.

Liu et al. (2016) used bag of words, mentions, presence of a URL, emoticons, tweet
length and trigger word features to predict box-office revenues for movies prior to their
release. Choudhery and Leung (2017) presented a social data mining system that takes
into account the number of tweets per day, as well as percentages of positive and negative
tweets (based on sentiment analysis on those tweets) to build a polynomial regression model
to predict the expected box office revenue. Based on the features of the social graph and
social text content, Lassen et al. (2014) developed a linear regression model that transforms
iPhone-related tweets into an accurate prediction of the quarterly iPhone sales with an aver-
age error close to the established prediction models from investment banks. Radosavljevic
et al. (2014) developed a model called Goalr that predicts the World Cup outcomes and the
relative strength of each country based solely on Tumblr blog posts. They used both team
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mentions and player mentions in their analysis. In all above methods, feature extraction
from social content is a necessary task for building the prediction model.

Byrd et al. (2016) collected a set of tweets based on influenza related keywords, classified
them based on their sentiment characteristics and identified Twitter users who are affected
by influenza in selected cities. Eichstaedt et al. (2015) used language expressed on Twitter
to show that community-level psychological features correlate with age-adjusted mortality
from atherosclerotic heart disease (AHD). They identified that the language pattern showing
negative emotions are risk factors for AHD whereas as positive emotions act as a protective
factor against AHD.

2.2 Personal life event detection

Most of the earlier work that have focused on the detection of life events from Twitter
employ either an individual tweet (DiEugenio et al. 2013; Dickinson et al. 2015; Choudhury
and Alani 2014b; Cavalin et al. 2014) or a stream of conversations (Cavalin et al. 2015;
Moyano et al. 2015). One of the widely used approaches for detecting life events is based
on the analysis of individual tweets with the objective to process the content of the given
tweet using natural language processing (NLP) techniques to explore whether a mention
of a certain life event can be detected or not. However, this task can be very challenging
due to noisy, ambiguous and the short length of tweets. The use of conversations; however,
can improve the performance of life event detection methods. Briefly, conversations can not
only help identify events with a higher precision, but can also be a way to infer additional
information that might not have been present in the original tweet. To this end, Choudhury
and Alani (2014a) used the collection of a user’s tweets within a specific time interval
in order to detect whether a life event has been reported by the user in that time or not.
However, in their work, they do not detect the type of the life event and only resort to
detecting whether a life event has been mentioned.

Regardless of whether one tweet or a collection of tweets are selected, the primary
focus of the work in the literature has been to extract strong discriminative features
from tweets in order to identify life events. One of the most common features is the
bag of words feature that models tweets as a vector whose entries are nonzero if the
corresponding terms appear in the tweet. DiEugenio et al. (2013) and Dickinson et al.
(2015) have explored various features and found that n-grams (an extension of the bag of
words approach) show the highest performance. However, this method suffers from the
curse of dimensionality when the vocabulary size is large. This is particularly the case
for Twitter content due to the large number of slangs, acronyms, abbreviations, and mis-
spellings that are predominantly observed in tweets. Furthermore, the temporal ordering
of words and the semantic and syntactic features of the text, e.g., named entities and part
of speech tags, are overlooked in this approach. Several researchers have explored the
impact of linguistic and structural features such as part of speech tagging (DiEugenio et al.
2013; Li et al. 2014) and reported that this feature is not sufficient alone because few
users actually observe grammatical structure on Twitter given the informal communication
style.

Another group of features that have shown to be useful are based on the so called named
entity vectors, which attempt to extract information by answering the 4W questions: who,
what, when, and where. To this end, named entity extraction (Dickinson et al. 2015) and
semantic role labeling (DiEugenio et al. 2013) techniques have been used to generate seman-
tic features. Furthermore, given the fact that personal life events can impact a user’s feelings
and emotions such as becoming glad, upset, and restless, among others, the use of sentiment
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features have also been considered (Choudhury and Alani 2014b) and shown to be strong
indicative features for personal life event detection. From a different perspective, attention
features (Choudhury and Alani 2014a) define how the content posted by a user are noticed
by other users and are measured in terms of replies and retweets, and reflect how many
times the user is addressed/talked about by other users within a given time interval. The
motivation for using these features is based on the simple logic that important events are
bound to generate more attention and activity within the immediate personal network of an
individual (Dickinson et al. 2015; Choudhury and Alani 2014a, b). Dickinson et al. (2015)
refer to attention features as interaction features and rather than just considering the number
of retweets, favorites or replies, they consider who are the users performing these actions
and their interaction patterns towards the poster of the tweet. They found almost no effect
for the interaction features for the purpose of life event detection when applied on Twitter
content and compared to other features such as n-grams, sentiments, and emojis.

Finally, while many of the introduced features have good performance on the preci-
sion metric, they do not perform too well with respect to recall. To address this issue, the
work in (Khodabakhsh et al. 2017) adopts a word vector representation of tweets that is
obtained from neural word embedding techniques. These neural word embedding based fea-
tures incorporate both syntactic and semantic aspects of the content and therefore show to
be effective features for identifying personal life events from the perspective of both recall
and precision.

2.3 Deep learning on social content

Unlike work on life event detection and event prediction on Twitter, our work in this paper
focuses on predicting future life events prior to them being reported by the user. We employ
recurrent neural networks (RNN) for this purpose.

In tasks that involve sequential inputs, such as speech and language, recurrent neural
networks process each element of the input sequence in the order observed in the input and
codify the observed past information in the sequence as a vector in the hidden states, which
can be considered to be a form of a feature. RNNs are in essence a folded feed-forward
network. RNNs are suitable for predicting the next characters in text Sutskever et al. (2011),
the next word in a sequence (Mikolov et al. 2013b) or more complex tasks such as translation
(Sutskever et al. 2014; Cho et al. 2014). After reading a sentence word by word, an encoder
network is used to learn the thought expressed in that sentence in its final hidden state,
referred to as the thought vector. The final hidden state is then used as the initial hidden
state of a jointly trained decoder that would produce a probability distribution for the first
word in the output sequence. Once a particular first word is chosen from this distribution
and provided as input to the decoder, it will then output a probability distribution for the
second word of the output sequence and so on until a termination symbol is observed.

In theory, RNNs can make use of information in arbitrarily long sequences, but in prac-
tice they are limited to looking back only a few steps. Long Short-Term Memory (LSTM)
was introduced to overcome this problem by augmenting the network with a memory cell
which remembers inputs for a long time (Hochreiter and Schmidhuber 1997). LSTM net-
works or related forms of gated units are also currently used for encoder and decoder
networks that perform well in machine translation (Sutskever et al. 2014; Cho et al. 2014),
sentiment analysis (Tang et al. 2015; Glorot et al. 2011), text classification (Zhang et al.
2015; Lee and Dernoncourt 2016; Kim 2014), generation of sequence models (Graves
2012a).
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Beyond RNNs, other deep learning methods have also shown promising results on var-
ious tasks on Twitter content. Tang et al. (2014) extended the C&W model and developed
three neural networks to learn sentiment-specific word embeddings from Twitter content.
The tweets containing positive and negative emotions were used as training data. Sev-
eryn and Moschitti (2015) used a three-step process to train their deep learning model for
sentiment analysis of tweets at both message and phrase levels. Word embeddings were
initialized using a neural language model which is trained on a large unsupervised collec-
tion of tweets, and a convolutional neural network is used to further refine the embeddings
on a large distant supervised corpus. Limsopatham and Collier (2016) presented a model
based on bidirectional LSTMs to automatically learn orthographic features without requir-
ing feature engineering for named entity recognition in Twitter messages. Their model
consists of three main components: (1) orthographic sentence generator, (2) word repre-
sentations as input vectors, and (3) a bidirectional LSTM. Li et al. (2016) proposed an
attention-based LSTM model, which incorporates topic modeling into the LSTM architec-
ture through an attention mechanism in order to recommend hashtags for tweets.

A deep learning framework for rumor debunking on Twitter and Weibo is introduced
in Ma et al. (2016). The framework learns RNN (tanh, GRU, LSTM) models by utiliz-
ing the variation of aggregated information across different time intervals related to each
event. Lin et al. (2014) believed that individuals’ psychological stress is recognizable via
social media. They defined two sets of attributes: 1) low-level content attributes from a
single tweet, including text, images and social interactions, and 2) user-scope statistical
attributes such as behavioral attributes, social engagement and linguistic style attributes
from users’ weekly tweet postings. To combine content attributes with statistical attributes,
they designed a convolutional neural network (CNN) with cross autoencoders to generate
user-scope content attributes from low-level content attributes. Finally, they proposed a deep
neural network (DNN) model to incorporate the two types of user-scope attributes to detect
users’ psychological stress.

3 Approach overview

In our work, we propose three variations of recurrent encoder-decoders for predicting
future personal life events based on user’s past tweets. We employ Sequence-to-Sequence
(Seq2Seq) models to perform (i) direct life event label prediction; and, (ii) indirect life event
prediction through the generation of future tweets. In the first approach, we predict future
life event labels directly based on a many-to-one Seq2Seq architecture. The output label of
the sequence to sequence model is the future life event that the user might report on her
Twitter timeline. We present two variations of the many-to-one Seq2Seq architecture. In the
first variation, a set of tweets are directly fed into the encoding stage and predicted life event
label is produced in the decoding stage. The second variation; however, works with a col-
lection of past life event labels from that user to predict the future life event. Therefore, the
input to the decoder stage is a sequence of past personal life events reported by the user and
the output is a predicted personal life event in the future. Now, given the second variation
requires a set of input life events, we generate such labels by using state of the art methods
that classify a given tweet into certain life event classes. As such, a set of past tweets of the
user are passed through such classifier that would produce one life event label per tweet.
These life event labels are then passed onto the many-to-one Seq2Seq model as input to the
encoder stage.
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Fig. 1 Overview of the proposed Seq2Seq models for life event prediction (LEC stands for Life Event
Classifier)

In the second approach, we employ a many-to-many Seq2Seq model that operates over
the combination of the inputs of the two earlier variations of the first approach, namely the
tweets and the past personal life events, in the encoding stage. The model then generates a
word sequence in the decoding stage that estimates the content of a future tweet. The idea
of the second approach is that it might be possible to predict a user’s future tweet based on
the personal life events they have reported in the past as well as the tweets they have posted.
We generate the user’s future tweet through a many-to-many recurrent model, the output of
which is then classified into one of the personal life events using state of the art life event
classification methods. Figure 1 shows the graphical representation of the two proposed
approaches for life event prediction.

4 Proposed approach

We provide the details of our two proposed approaches for life event prediction based on a
sequence-to-sequence architecture. The Seq2Seq architecture is trained for classification in
the first approach and for sequence generation in the second.

4.1 Many-to-one classification architecture

In the first approach, a Seq2Seq architecture is used to directly generate a personal life event
label for a user given her past shared content. The most intuitive approach for predicting
future behavior based on social content is to take the tweets that the user has posted into
account to predict what the user will post in the future. For instance, a person who is getting
married is likely to post tweets talking about preparing for the wedding day or a person
changing jobs might post about how she is looking for a new job in the days or months
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leading to her finding the job. Therefore, our main hypothesis is that a user’s past tweets
can be seen as potential indicators for a future life event.

In the first variation of the many-to-one Seq2Seq architecture, a sequence of tweets
from the timeline of a user is taken into consideration to predict the future personal life
event that the user will mention in her timeline. To this end, we need to work with an input
sequence consisting of l tweets of user u, denoted as twu = [tw1

u, tw
2
u, ..., tw

l
u]. In order

for the sequence twu to be used as input, a representation form for each tweet needs to be
adopted. One representation model for a tweet is to represent it as a bag of words, where
each tweet is represented as a vector with v dimensions where v is the number of unique
words in the tweet corpus. This method suffers from the curse of dimensionality, which
is aggravated within the context of Twitter given the wide range of slangs, acronyms and
abbreviations. As an alternative, Vosoughi et al. (2016) proposed a model for generating
general-purpose vector representation of tweets. The model learns tweet embeddings using
a character-level CNN-LSTM encoder-decoder. Dhingra et al. (2016) also adopted a similar
strategy and proposed a Bi-directional Gated Recurrent Unit (GRU) neural network for
finding vector space representations of tweets by learning complex, non-local dependencies
in character sequences. We adopt a similar strategy to Dhingra et al. (2016) and compute a
vector representation for each tweet to be used as input. Based on the vector representations
of the past tweets and an observed personal life event reported by the user at time interval
l, denoted by ϕl

u, the objective of the model is to maximize the selection probability of ϕl
u

given twu:

argmax
u

P (ϕl
u|tw1

u, tw
2
u, ..., tw

l−1
u ) (1)

4.1.1 Encoding

In the proposed architecture, the encoder converts the input tweet vectors into a set of high
dimensional hidden representations h = [h1, ...hl−1] where hi is the hidden state of the
Seq2Seq architecture at time i. In other words, at time i, the encoder reads twi

u and updates
its hidden state hi as follows:

hi = RNN(hi−1, tw
i
u) (2)

where h0 = 0 and the RNN applied in the encoder is often either a Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) or Gated Recurrent Units (GRU) (Cho
et al. 2014), which are both capable of learning long-term dependencies and do not suffer
from the vanishing gradient problem. Similar to our proposed interval encoding mechanism
shown in (2), there have been other work that employ comparable approaches. For instance,
Tang et al. (2015) used an LSTM to produce sentence vectors, which are then applied within
the context of a bi-directional gated recurrent neural network to compose the sentence vec-
tors into document vectors. Likewise, Yang et al. (2016) proposed a hierarchical attention
network for document classification, which employs GRU for encoding both words and
sentences. Similarly in our encoders, we use GRUs primarily because they have similar
performance to LSTMs but are more computationally efficient.

4.1.2 Decoding

In our architecture, the decoder is a single-layer GRU that is responsible for generating the
output predicted life event based on the encoded input in the form of a vector in the embed-
ding space. Given the output sequence only consists of one token in our first approach, i.e.,
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the predicted personal life event, the decoder would predict ϕl
u based on hl−1:

P(ϕl
u = le|tw1

u, tw
2
u, ..., tw

l−1
u ) = P(ϕl

u = le|hl−1)

= sof tmax(d1, ϕl
u = le) (3)

where le is some life event such as changing jobs or getting married and d1 ∈ Rd is the
hidden state of the GRU decoder:

d1 = GRU(d0, ϕ1
u) (4)

It should be noted that d0 is initialized based on the hidden state of the interval encoding
hl−1 based on (2).

4.1.3 Model training

In order to train the model, we maximize (1) whose parameters are learned by maximizing
the log-likelihood of the condition. Back propagation through time (BPTT) (Werbos 1990)
is used for computing the gradient of the objective function. The overall scheme for the first
approach is depicted in Fig. 2, where the encoder computes the hidden representation for all
ϕi

us, where l > i ≥ 1 through GRU. This hidden representation is then used to compute the
probability of ϕl

u.
The second variation of the samemany-to-one Seq2Seq architecture, as shown in Fig. 2b,

is based on a more dense input representation where the input to the encoder is the sequence
of personal life events that have been reported by the user in the past. As discussed in
the related works, there are already work in the literature that can classify a tweet into
one of several classes of life events depending on the content of that tweet. For instance,
such methods are able to label a tweet such as ‘Just booked my flight to
Cali, a vacation sounds nice’ as one that is related to travel and another tweet
such as ‘So excited to start my new job i’ve practically bought
an entirely new wardrobe’ as a tweet that reports on the job change life event.
Based on such personal life event classifiers, we are able to produce a sequence of life

Fig. 2 The architecture for the many-to-one Seq2Seq model for both variations: a based on past posted
tweets, and b based on past observed life events
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events, including the none event, which refers to cases when no life events are mentioned
in the tweet, for each user. In our work, we adopt the method proposed in Khodabakhsh et al.
(2017) for detecting personal life events. This method proposes to collect a set of words to
discriminatively express each life event. The word vector representation of these words are
then computed using word embedding methods, i.e., the Skipgram model (Mikolov et al.
2013a). Based on the vector representation of the life event words, it is possible to calculate
the distance between each life event and a given tweet, also represented as the vector of its
constituent words using the word mover’s distance measure (Kusner et al. 2015). Now, the
advantage of this model is that it not only identifies the life event mentioned in a tweet, but
also provides a vector representation for each of the life events based on the centroid of its
constituting discriminative words. As such, the corresponding vector representation to each
life event is used as input to the encoder in the Seq2Seq architecture when that life event
has been detected in the previous tweets. In summary, we label a tweet with a life event
based on the closeness of its vector representation to the vector representation of the life
events and chose the vector representation of the selected life event as the representation of
the tweet to be input into the encoder of the Seq2Seq model. The rest of the details of the
architecture are similar to the first variation.

4.2 Many-to-many generation architecture

The main idea of the second approach is to predict a future personal life event by trying to
predict the content of a user’s future tweet. Similar to Sordoni et al. (2015), we hypothesize
that there are two information pieces that can assist with the prediction of a future tweet,
namely the past tweets and the user’s past tweet topics. In the context of our work and given
we are interested in personal life events, we customize these two information pieces as (i)
user’s past tweets, and (ii) user’s past reported life events; therefore, we exploit users’ tweets
and the life events that they reported as prior knowledge for estimating the next tweet. In
order to incorporate these information pieces into our model, we need to first create a uni-
form representation as the two information sources are not compatible because past tweets
are a set of words while the reported life events are merely a label. We address this issue by
converting the reported life event labels into a set of representative words for the life event.
The representative words used here are those derived based on Khodabakhsh et al. (2017)
and used in the second variation of the first approach. Based on these words, depending
on the life event that a tweet is reporting, it is augmented with a set of words representing
that life event. It should be noted that the reported life event for each tweet is automatically
determined and those tweets that are determined not to be reporting any personal life events
are not augmented with any additional words. Now, based on the vector representation of
the augmented tweets as well as an augmented future tweet, i.e. the sequence of words in
a future tweet plus the representative words of the life event that tweet is representing, the
objective is to maximize the generation probability of the augmented future tweet as follows:

argmax
u

P
(
aug

(
twl

u, ϕ
l
u

)
|aug

(
tw1

u, ϕ
1
u

)
, aug

(
tw2

u, ϕ
2
u

)
, ..., aug

(
twl−1

u , ϕl−1
u

))
(5)

where twl
u is the user’s lth tweet, and ϕl

u is the reported life event in that tweet. Also, aug()

is a function that augments the words within the input tweet with the relevant representative
life event words. This function returns a vector whose elements are the tweet words and
life event words sequentially. In other words, the words in the tweet are concatenated with
the representative words of the life event, forming one sequence of words consisting of
the tweet words first followed by life event words. The overall architecture of the Seq2Seq
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model for the second approach is shown in Fig. 3. This many-to-many Seq2Seq architecture
predicts the next tweet given the tweets already posted by the user. The history of past
posted tweets is considered as a sequence at two levels: a sequence of words for each tweet
and a sequence of tweets. The many-to-many Seq2Seq architecture models this hierarchy of
sequences using two RNNs: one at the word level and one at the tweet level. In the sequence
of tweets, the first encoder RNN maps each tweet to a tweet vector. The tweet vector is the
hidden state obtained after the last token of the tweet has been processed. The higher-level
encoder RNN keeps track of past tweets by processing each tweet vector iteratively. After
processing a tweet, the hidden state of the second encoder RNN represents a summary of the
sequences up to and including the tweet, which is used to predict the next tweet. The next
tweet prediction is performed by means of a decoder RNN, which takes the hidden state
of the second encoder RNN and produces a probability distribution over the tokens in the
next tweet. The decoder RNN is similar to an RNN language model but with the important
difference that the prediction is conditioned on the hidden state of the second encoder RNN.
It can be seen as a tweet generation module.

4.2.1 Encoding

The encoding process of our architecture consists of two encoding processes: (1) encoding
of the augmented tweets, and (2) the encoding of the sequence of augmented tweets. In
the first encoding step, we employ a recurrent neural network architecture for encoding the
augmented tweets, which produces a fixed-length vector, after reading the last word of an
augmented tweet. The RNN processes the tweet words and the life event words sequentially

Fig. 3 The architecture for the many-to-many Seq2Seq model for augmented tweet prediction (the different
color circles point to the fact that vector elements can have different values)
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from the augmented tweet and updates its hidden state as follows:

h1i = RNNE

(
h1i−1, aug

(
twk

u, ϕ
k
u

)
[i]

)
(6)

The hidden state
(
h1i

)
is expressed with a superscript to denote that it is related to the first

encoding step and aug(twk
u, ϕ

k
u)[i] is the ith word of the augmented tweet twk

u. It is impor-
tant to mention that our work has resemblance to the work by Semeniuta et al. (2017), which
is based on the the variational autoencoder framework for generating tweets. Its scoring
components are a convolutional encoder and a deconvolutional decoder combined with an
LSTM recurrent layer. Similarly, Oak et al. (2016) also employed LSTMs at both charac-
ter and word levels to generate realistic-looking tweets with the same statistical properties
as the actual data. Furthermore, Shang et al. (2015) have introduced a Neural Responding
Machine (NRM), based on the general encoder-decoder framework, in order to generate
response for Weibo (a popular Twitter-like microblogging service in China) conversations.
They used GRU for both the encoder and decoder. Also, Serban et al. (2017) proposed the
multi-resolution recurrent neural network for generatively modeling sequential data at mul-
tiple levels of abstraction. They used GRUs and applied it to dialog response generation
for Twitter conversations. One of the shortcomings of GRUs is that they are only able to
make use of previous context and have restrictions as the future input information cannot be
reached from the current state. Bidirectional RNNs (BRNNs) (Schuster and Paliwal 1997)
address this issue by processing data in both directions with two separate hidden layers,
which are stacked on top of each other. In our work, we use Bidirectional GRUs, to rep-
resent RNNE , which compute a forward hidden layer by iterating through the input from
beginning to end and a backward hidden layer by iterating through the input sequence from
the end to the beginning. These two hidden layers are concatenated into a single vector,
denoted by h1i . Therefore, h

1
i represents the encoded version of the augmented tweet up to

word i.
The second encoding step is focused on reading the encoded version of the augmented

tweets sequentially and encoding this sequence into a fixed-length vector. The RNN pro-
cesses the encoded representation of each augmented tweet and updates the encoding as
follows:

h2i = RNNS

(
h2i−1, h

1
i

)
(7)

Likewise, RNNS is modeled as a GRU.

4.2.2 Decoding

In this architecture, the decoder is another GRU, which is trained to generate the next
augmented tweet given the previous augmented tweets. In other words, the GRU decoder
processes the hidden state of the encoded augmented tweets as input and produces a prob-
ability distribution over the tokens in the next time interval as output and is computed as
follows:

P(aug(twl
u, ϕ

l
u)| aug(tw1

u, ϕ
1
u), ..., aug(twl−1

u , ϕl−1
u )︸ ︷︷ ︸

Ψ

) =
N∏

i=1

P(wi |w1, .., wi−1, Ψ ) (8)
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where is N is the length of twl
u and wi is its ith word. The probability of word wi given

previous words in the tweet and the previous augmented tweets can be estimated as follows:

N∏
i=1

P(wi = v|w1, .., wi−1, Ψ ) = sof tmax(dl−1, wi = Ov) (9)

where Ov is the encoded embedding of word v and dl−1 ∈ Rd is the hidden state of the
RNN decoder:

dj = RNND(dj−1, wj ) (10)

Here, RNND is a GRU. It should be noted that we use beam search (Graves 2012b) for
in the decoding process to approximate the most probable augmented tweet given the past
augmented tweets.

4.2.3 Model training

Let us assume that a time interval I consists of l augmented tweets and that a generative
model parameterizes a probability distribution P with parameters θ over the set of possible
intervals of arbitrary length. The probability of an interval I can be defined as follows:

Pθ (aug(tw1
u, ϕ

1
u), ..., aug(twl

u, ϕ
l
u))=

l∏
t=1

Pθ (aug(twt
u, ϕ

t
u)| aug(tw1

u, ϕ
1
u), .., aug(twt−1

u , ϕt−1
u )︸ ︷︷ ︸

ϒ

)

=
l∏

t=1

Nt∏
i=1

P(wt
i |wt

1, .., w
t
i−1, ϒ) (11)

where Nt is the length of the tth augmented tweet and wt
i is its i

th word.
The parameters θ can be learned by maximizing the log-likelihood of an interval I. We

employ back propagation through time (BPTT) (Werbos 1990) for computing the gradient
of the objective function as defined in (11). Based this equation, it is possible to generate a
future augmented tweet based on its relevance to the past augmented tweets. In our work,
the recurrent neural networks RNNE , RNNS and RNND are GRUs whose parameters are
learnt in this way. In light of the fact that the sequence of words produced by the decoder
in the output is intended to represent a user’s future tweet, we employ it to predict the next
life event of the user. We use the same method presented in Khodabakhsh et al. (2017),
denoted as Life Event Classifier (LEC) in Fig. 1, to classify the generated sequence into one
of the life events. The determined life event class for the generated tweet would represent
the predicted life event in this model.

5 Experiments

We evaluate the different variations of our sequence to sequence model, and compare it
against the state of the art baseline methods. The objective of our experiments is to measure
the effectiveness of our proposed work for predicting future personal life events solely based
on the previous tweets of the user.
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Table 1 Specification of the
dataset with the distribution of
life events

Life event Number of tweets Percentage

Broken device 5,768 8.69%

Device upgrade 2,822 4.25%

Moving 4,001 6.03%

New job 4,001 6.03%

Travel 3,480 5.24%

Wedding 4,015 6.05%

Negative samples (no life event) 42,275 63.7%

5.1 Experimental setup

The primary dataset used in our experiments is composed of 66,362 labeled tweets collected
and annotated manually by twenty experts.1 The labeled tweets cover six personal life events
as shown in Table 1. The dataset also consists of tweets that are not about any life events,
which are used as negative samples. As shown in Table 1, we have preserved the significant
class imbalance that is prevalent in life events on Twitter in this dataset. Given most tweets
do not necessarily talk about a life event on Twitter, in our dataset, over 63% of the tweets
are related to no life events.

For each of the labeled tweets in the dataset, we also extracted tweets by the same user
from one week prior to the given tweet through the Twitter RESTful API in order to have
access to historical tweets. We pre-processed the dataset as follows. First, we removed URLs
and reposting marks such as ‘RT’ and ‘//’. Then, we filtered stop words. Finally, we used
the Stanford CoreNLP tool set for lemmatizing all the tweets.

In all models, back propagation through time Werbos (1990) and Adam (Kingma and
Ba 2015) are used for computing gradient of the objective function and optimization,
respectively. All our models were trained on NVIDIA Tesla K80 GPU provided through
SHARCNET.2 Our implementation is done using the open-source Python library Theano
(Bastien et al. 2012). The hidden state dimension for the encoders and decoders is set to
512 in both variations of the first approach. Also the size of the embeddings is set to 100.
The training stops if the likelihood of the validation set does not improve for 10 consecutive
iterations (early stop). The learning rate was set to 0.001. The dimension of hidden state
of the RNN in the second approach is set to 1,000. We initialize the word vectors using a
pre-trained word embedding with size 400 obtained by executing the Skip-gram methods
(Mikolov et al. 2013a) on a 10 million English tweet corpus collected through the Twitter
RESTful API. This model is trained with a learning rate of 0.0001 and with mini-batch con-
taining 25 training samples. The size of beam is 1. In the test phase, we consider variant
lengths of 4, 6 and 8 because the average number of words in a tweet is close to 6 based on
an experiment that we did on our tweet corpus.

5.2 Baselines

While there are no prior work on predicting future personal life events, as mentioned in the
related work, there are work that determine whether a life event is mentioned in a tweet

1Available upon request
2https://www.sharcnet.ca/

J Intell Inf Syst (2020) 54:101–127 115

https://www.sharcnet.ca/


or a collection of tweets. One of the most related works in the literature is proposed by
Li et al. (2014), which is a pipelined system for detecting major life events. This work
first identifies the life event category the tweet is referring to and subsequently identifies
whether the tweets is a self report of the life event or it is referring to the life event for
a third party. As suggested by the authors, in order to replicate the baseline, we extract
features including bag of words, named entity mentions, dictionary and window for tweet
modeling. Bag of words and NER features are the sequence of words in the tweet and
named entities, respectively. A dictionary of the top-40 words for each life event cate-
gory is built (automatically inferred by a topic model). The dictionary feature value is the
term’s probability generated by the corresponding event. If a dictionary term exists in the
tweet, left and right context words within a window of 3 words and their part-of-speech
tags are extracted as the window feature. Named entity tags are assigned using Ritter et
al.’s Twitter NER system (Ritter et al. 2011) and Part-of-Speech tags are assigned based
on Twitter POS package (Owoputi et al. 2013). As suggested by the authors (Li et al.
2014), we train a 7-class maximum entropy classifier with all these features as the experi-
ments by Li et al. reported this classifier to have the best performance. The other work that
we use as baseline is the life event detection method proposed by Choudhury and Alani
(2014b). In their work, the authors propose to extract a set of features including hashtags,
emoticons, named entities, and sentiments to build classifiers that can find life event men-
tions. We use these features as well to build a second baseline using a maximum entropy
model.

Given the objective of our evaluation is to investigate the performance of the proposed
method for life event prediction, we use the standard information retrieval metrics including
precision, how many of the life events detected by our method were correct, recall, how
many life events in the ground truth set were retrieved by our method and F-Score, which is
the harmonic mean of precision and recall.

5.3 Results

In order to perform the evaluations, we split the life event dataset introduced in Table 1 into
three parts, namely training, validation and testing, each of which contained 80%, 10%,
and 10% of the original dataset, respectively. The results of the experiments are shown in
Table 2 for both variations of the first approach (classification architecture) as well as the
second approach (generation architecture). The results are compared against the strongest
baselines available in the literature reported by Li et al. (2014) and Choudhury and Alani
(2014b). Given our objective is to predict the personal life event of a future time interval, we
executed Li et al.’s method using both the last tweet prior to the future tweet as well as the
past one week of tweets leading to the future tweet of interest. However, given the nature
of the features by Choudhury et al., we report the findings based on building classifiers
for each individual feature as well as a classifier where all features are included using the
Maximum Entropy classifier. The results are reported in Table 2. As seen in the table, the
precision of both variations of the baseline by Li et al is quite poor and in fact close to
random when keeping in mind that we are performing a 7-class prediction task and therefore
a random classifier would perform at a 14% precision rate compared to the current precision
of the baseline which is 13.3%. It should be noted that the work by Li et al is considered
to be a strong baseline as it performs at precision rates of ∼ 75% when the life event
is mentioned in the tweet that is being classified; however, as observed in our results, it
is not able to show competitive performance for performing future life event prediction.
Among other conclusions, this significant difference in classification precision shows that
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Table 2 The performance of the proposed classification and generation methods

Method Precision Recall F-Score

Classification architecture Variation 1 0.234 0.211 0.222

Variation 2 0.272 0.328 0.297

Sequence Length

Generation architecture 100 0.289 0.363 0.322

8 0.357 0.358 0.358

6 0.377 0.359 0.368

4 0.394 0.369 0.381

Baseline by Li et al. (2014) Latest Tweet 0.13 0.361 0.191

All Tweets from Past Week 0.133 0.364 0.195

Baseline by Choudhury and Alani (2014b)

based on maximum entropy classification Hashtags 0.129 0.359 0.19

Emoticons 0.13 0.36 0.191

Named Entities 0.13 0.36 0.191

Sentiments 0.133 0.365 0.195

All Features 0.19 0.358 0.248

the task of predicting the personal life event of a future task is quite difficult and cannot be
performed using existing life event classification techniques. Furthermore, we observe that
the work by Choudhury and Alani (2014b) shows quite similar performance to the work by
Li et al. (2014) when individual features are used to train the classifier. The performance
of these classifiers are weaker than an average baseline, which would have a precision of
14%. However, the performance of the classifier based on all of the features is better than
the other baselines in terms of precision at 0.19. However, this performance is still weaker
than all variations of our generation architecture and weaker than the second variation of
the classification architecture.

Now, in terms of the comparative performance of the two variations of the first approach,
which is primarily based on a many-to-one Seq2Seq classification architecture, one can
see that the second variation shows stronger performance. While the first variation works
directly with the tweets, the second variation only works based on a set of life event labels
that have been observed in the past. In other words, the input sequence to the second varia-
tion is a sequence of personal life events that the user has tweeted about (including a none
label). Our observation has been that reducing symbol space of the Seq2Seq model has
improved the performance of the model in terms of both precision and recall. The main
reason for this could be that the first variation needs to model any sequence, which could
consist of many different tokens spanning possibly beyond the number of English words,
as tweets could include abbreviations and slang words, and therefore, creating an accurate
representation for such a large symbol space would be challenging. In contrast the input
sequence space of the second variation consists of only seven symbols each representing
one of the life events or the none life event label.

While the second variation shows better performance compared to the first variation, it
is important to point out that it is limited to the performance of the underlying tweet life
event classification algorithm. In other words, given the input to this model is a sequence
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of life event labels, and tweets themselves do not have the life event labels with them and
hence the life event label for each tweet is automatically determined using a classifica-
tion technique, the performance of the second variation is dependent on the performance
of the employed life event classifier. Therefore, it is possible to get better performance
using the second variation if more accurate life event classifications per tweet were
available.

In the second approach, which unlike the first approach, is based on a sequence gen-
eration architecture, an augmented tweet is predicted, which is assumed to be the rough
estimated representation of a future personal life event-related tweet by the user. As seen in
Table 2, we have tested the second approach on varying lengths of the output sequence. The
output sequences that were generated had a length of 4, 6, 8, and 100 tokens. We were inter-
ested to see whether both smaller and larger sequence lengths had any significant impact on
the performance of the prediction model. The first important observation is that the predic-
tions made based on the second architecture, regardless of the length of the output sequence,
have both higher precision and recall rates compared to the classification architecture. This
can be attributed to the fact that the generation architecture employs an augmented tweet as
input, which consists of the tweet itself and a specific set of words for the related life event.
This way, the set of words related to the life event drives the encoding and decoding process
and hence leads to better prediction performance. It should be noted that more so than the
second variation of the classification approach, the performance of the generation architec-
ture is even more dependent on the performance of the employed life event classifier as it is
used for both generating the augmented tweets as well as classifying the generated output
sequence.

From the perspective of the generated sequence length, it can be observed that while it
does not significantly impact the performance of the recall metric, it does have a substantial
impact on precision. Longer generated sequences have a lower precision and hence less
effective for predicting a future personal life event. This can be potentially explained at
least by two reasons. First, a study in 20123 showed that while tweets can be as long as 140
characters, in practice they are 40 characters long on average. This is approximately 4-6
words in length per tweet. This is also in line with our own observation in our Twitter gold
standard dataset. Therefore, generating output sequences of the same length as the average
tweet would prevent the generation of possibly irrelevant tokens in the output. Second, given
the output sequence generated at the decoder relies on beam search, the longer the sequence
is, the more likely it will be that the generated sequence would have lower cohesion (Graves
2012b). We observed that the output sequence of length four provides the best performance
in terms of both precision and recall.

5.4 Bootstrap aggregating

Several researchers have already shown that ensemble meta-algorithms can improve the
performance of recurrent neural networks. More specifically, the bootstrap aggregating
(bagging) method can lead to improved classification performance without the need to
change the model being trained and by only learning ensembles over different subsets of
the training data. Bagging operates by generating n training subsets by uniformly sampling
data points with replacement from the original training set, which would then be used for

3https://goo.gl/ohBcD8
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training n similar models trained on different data subsets. Breiman (1996) has shown that
bagging can improve the performance of unstable methods such as neural networks that
have been used in this paper. On this basis, we applied the bagging approach on both the
baselines and the various proposed architectures in this paper.

To apply the bagging approach, we trained several models with different number of
epoches ranging from 200 to 400 with an interval of 50 epoches in between while also sys-
tematically applying the training dataset splits. Given the results in Table 2 showed that the
generation architecture shows its best performance with a sequence length of 4, we used
this sequence length in the models trained in the bagging approach, as well. The multiple
predicted labels were gathered and used to get an aggregated predicted label based on a
plurality vote. It should be noted that we experimented with both weighted and unweighted
bagging methods and the difference was not noticeable to the third decimal point. The
results of the bagging approach are reported in Table 3.

There are two main observations from the obtained results. The first is that all models
have been improved as a result of the bagging process on both precision and f-score mea-
sures. This is most noticeable on the generation architecture where the precision improved
as a result of bagging from 0.394 to 0.519, which is an improvement of 31.7%. The sec-
ond observation is that the bagging process does not have a significant impact on recall as
the improvements are only marginal. This observation can be broadened by comparing the
recall rates across the different methods as well as before and after the bagging process. In
all cases, while the recall rate of the generation model both after and before bagging out-
performs the other methods but still the differences are not substantial. This shows that the
models have very similar retrieval capacity with recall values in the range of 0.33 to 0.373,
while the generation architecture has a strong classification ability shown by the precision
of 0.519.

It should be noted that the results of the life event prediction should be understood within
the context of the work on personal life prediction and the extremely difficult, highly noisy
and class imbalanced dataset that it offers. We would like to point out that the strongest

Table 3 The performance of the proposed classification and generation methods after bagging

Method Precision Recall F-Score

Classification architecture Variation 1 0.262 0.330 0.292

Variation 2 0.278 0.338 0.305

Sequence Length

Generation architecture 4 0.519 0.373 0.434

Baseline by Li et al. (2014) Latest Tweet 0.247 0.264 0.255

All Tweets from Past Week 0.278 0.305 0.291

Baseline by Choudhury and Alani (2014b)

based on maximum entropy classification Hashtags 0.129 0.359 0.19

Emoticons 0.129 0.359 0.191

Named Entities 0.129 0.359 0.191

Sentiments 0.223 0.256 0.195

All Features 0.19 0.358 0.248
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baseline proposed by Li et al. (2014) offers an f-score of 0.54 when working directly on
the tweet of interest and performing a tweet classification task. In contrast, we attempt to
predict the future life event without having access or working with the content of the tweet
of interest and solely rely on past tweets to predict the future life event and achieve an f-
score of 0.434, which is meaningful and strong when compared to the results obtained in Li
et al. (2014).

In the next section, we will present tweets from our dataset for both correctly labeled
and incorrectly labeled instances and discuss the predominant reasons for the incorrect
classifications.

6 Error analysis and discussion

Beyond the information retrieval metrics that report the performance of the proposed meth-
ods, it is also important to understand the cases when the models succeed in identifying the
correct personal life event as well as when and why the models do not correctly identify
the life events. To this end, we have reviewed the result of the better performing generation
architecture. We found that the model performs very well for cases when a logical progres-
sion between the tweets of the same user can be observed. In other words, for those twitter
users who consistently and continuously discuss their personal life events on Twitter, the
model is able to show good performance. This is primarily due to the fact that the Seq2Seq
model builds an internal representation by encoding a sequence of tweets and their life event
labels (augmented tweets), which is then used to predict a future tweet. The more cohesive
the set of tweets in this sequence are, the more consistent the encoded internal representation
would be and hence the generated sequence through decoding is more likely to represent the
future tweet and its life event. However, if the past sequence of tweets has arbitrary order,
then the internal representation would be convoluted based on the inputs from the unrelated
tweets in the sequence.

An example of a case where the model is successful in predicting the personal life event
is when a user reports ‘Smashed my iPhone, okay fairs’ and subsequently posts ‘first one
I’ve ever smashed!!! Dan do apple fix your phone or give you a replacement??’. For such
a consistent sequence of tweets, the model generates the sequence: ‘note drop phone
break’, which is easily labeled as the ‘Broken Device’ label. The first two rows of Table 4
provides two more examples of how coherent flows of tweets lead to correct classification.

Now in terms of the incorrectly predicted personal life event labels, we identified three
primary reasons for the incorrect predictions. The first and primary cause (Error Type I) for
the errors was related to the cases when the user was reporting a life event related to another
person. In such cases, it was possible that the reported life event would be determined to
be a personal life event and hence labeled incorrectly. For instance, for a user who tweeted
‘OMG in shock with the news I just received. You never know when your time is up’ and
subsequently ‘Mom going house hunting in Florida’, the method incorrectly predicted the
‘Move’ life event having mistakenly labeled the second tweet as a move related tweet and
hence using the incorrect life event in the augmented tweet and hence negatively influencing
the sequence generation process. It should be noted that the performance of the Life Event
Classifier (Khodabakhsh et al. 2017) used in our experiments leads to such errors. While
this model does implicitly consider self-reports in the process, it does not explicitly do so
from a linguistics perspective. There are other techniques in the literature (Li et al. 2014)
that have a pipeline that determines whether the user who is reporting the life event is in
fact directly involved in the life event or not, e.g., through checking whether the subject of
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the tweet is a first person singular, but given those models do not have 100% precision, still
such instances can happen.

The second reason for the errors (Error Type II) was due to cases when a user was pro-
viding information on a topic that had similar components to a life event. For instance, for
a user who tweeted ‘If you was a Passport where would you hide?’ and then later tweets ‘I
lost my passport, got a new one. Lost new one, found old one. Can I use it?? ’, the user is in
fact communicating some information about his passport to his followers. However, given
the tweets have similar components to a travel tweet, the model would predict a ‘Travel’
life event for this user. The third reason for the errors (Error Type III) in the prediction
was related to a sudden change of subject in the users tweets. In these cases, the user is
discussing some topic and suddenly changes the topic and discusses a new topic. For such
cases, the proposed sequence generation approach cannot build a coherent internal encoded
representation and hence has difficulty in predicting the correct life event. For instance, a
user has tweeted ‘@user love ya mucho’ and then immediately afterwards posts ‘unpacking
from one trip and packing for another’. In this case, the proposed approach having encoded
the word love mistakenly predicts the ‘Wedding’ life event. As such Error Type III is essen-
tially related to cases where the subject matter changes abruptly and hence the proposed
approach in this paper is very likely (or at least expected) to predict the wrong personal life
event given it cannot predict ubrupt changes. Table 4 provides further examples for these
three types of systematic errors that the proposed approach suffers from.

In addition to the above three types of errors, we also observed some other cases that
a human oracle might also have problem in predicting if the actual future tweet was not
available. For instance, for the following two tweets: ‘Man I’m mad I broke my phone. That
s[..]t killing me’ and ‘Cant wait until Friday to get my new phone’, our proposed approach
predicted a ‘Broken Device’, which is in fact correct; however, the user went on to tweet
about a new phone and hence a ‘Device Upgrade’ would have been the more appropriate
label, which was not correctly predicted by our approach. It seems that this type of error is
similar to Error Type III in the sense that the user moves beyond the immediate scope of the
previous tweet onto a different life event; however, it differs from Type III errors in that the
transition to the new life event is logical.

Based on these three types of errors, we believe that the work in this paper can be
extended in the following directions:

1. The generation architecture proposed in this paper depends on a method to accurately
determine the life events of each individual tweet. While there has already been work in
the literature that perform life event classification at tweet level, as used in this paper,
the performance can still be improved. One of the direction of our future work will
focus on learning life event representations in tandem with the Seq2Seq architecture.
In other words, instead of performing a pre-processing step to extract the life events
for each tweet, we will use an autoencoder architecture to learn dense representations
for life events. This will have two advantages: 1) it will remove dependence on the life
event classifier, and 2) the life event representations will be learnt based on the available
training set and will hence be customized for the prediction task.

2. Based on our observation that there are many tweets that have similar components to
personal life events but are not personal reports of a life event, we believe that the
inclusion of a binary classifier that would determine whether each individual past tweet
is a personal report or not could potentially serve as an indicative feature of whether
the user will be engaging in a personal report or not. The hypothesis for our future
work is that if a user has engaged in a pattern of self reports in the past tweets then it
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is more likely to do so in the future as well. This binary classifier can either be used
independently to act as a filter or in tandem with the recurrent neural network in the
same way that the life event classifier was incorporated in our proposed approach in
this paper.

3. Finally, the identified type III errors seem to be related to the fact that recurrent neural
networks are more dependent on short-range dependencies as opposed to longer-range
dependencies (Bengio et al. 1994). As such, in our model, the latest tweets would have
the highest impact on the generated output sequence that would subsequently determine
the predicted personal life event. There has been some research that already proposed
hacks such as reversing the order of the input to bring longer-range dependencies into
the short-range (Shi et al. 2016); however, a more systematic approach would be to use
attention models (Cho et al. 2015). In our future work, we are interested in employ-
ing attention models in our work so as to determine which portions of the past tweets
or which phrases therein should be considered more heavily within the recurrent neu-
ral network. This can potentially address type III errors by lowering attention on less
relevant content to the personal life event prediction objective.

7 Concluding remarks

In this paper, we have addressed the problem of predicting future mentions of personal
life events on social microblogging platforms, with specific attention to Twitter content.
While the literature is abundant with methods that are able to identify and monitor events
on social networks at a macro-scale, the detection of personal life events, which are user-
specific and have an insignificant social resonance is yet to be fully explored. Within the
area of personal life events, a few researchers have shown that it is possible to perform
extensive feature engineering to train machine learning classifiers to classify a given tweet
into a certain class of life events. Our focus in this paper has been to go beyond the state
of the art and predict if and what personal life events will be mentioned in a future and yet
unobserved tweet of a given user. To this end, we have proposed two main architectures
based on recurrent neural networks that either directly or indirectly predict future personal
life event mentions. We have shown in our experiments that this is a non-trivial task and
our work is able to provide reasonable performance on a gold standard dataset despite the
highly class-imbalanced nature of the personal life event data. We have further explored the
errors observed in the obtained results and classified the errors into three primary error type
classes, based on which, we have proposed three avenues for future work. In addition, we
have only considered six life event types in our work in this paper that would only constitute
a subset of all possible personal life event types that can be observed on Twitter. The main
reason for this has been the high cost of curating and labeling life event related tweets from
Twitter. Future work will need to focus on a larger and broader set of life event types that
would show generalizability of this work beyond the six main life event types that have been
covered in this paper.
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