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Abstract

Background: Current text mining tools supporting abstract screening in systematic reviews are not widely used, in
part because they lack sensitivity and precision. We set out to develop an accessible, semi-automated “workflow” to
conduct abstract screening for systematic reviews and other knowledge synthesis methods.

Methods: We adopt widely recommended text-mining and machine-learning methods to (1) process title-abstracts
into numerical training data; and (2) train a classification model to predict eligible abstracts. The predicted abstracts
are screened by human reviewers for (“true”) eligibility, and the newly eligible abstracts are used to identify similar
abstracts, using near-neighbor methods, which are also screened. These abstracts, as well as their eligibility results,
are used to update the classification model, and the above steps are iterated until no new eligible abstracts are
identified. The workflow was implemented in R and evaluated using a systematic review of insulin formulations for
type-1 diabetes (14,314 abstracts) and a scoping review of knowledge-synthesis methods (17,200 abstracts).
Workflow performance was evaluated against the recommended practice of screening abstracts by 2 reviewers,
independently. Standard measures were examined: sensitivity (inclusion of all truly eligible abstracts), specificity
(exclusion of all truly ineligible abstracts), precision (inclusion of all truly eligible abstracts among all abstracts
screened as eligible), F1-score (harmonic average of sensitivity and precision), and accuracy (correctly predicted
eligible or ineligible abstracts). Workload reduction was measured as the hours the workflow saved, given only a
subset of abstracts needed human screening.

Results: With respect to the systematic and scoping reviews respectively, the workflow attained 88%/89%
sensitivity, 99%/99% specificity, 71%/72% precision, an F1-score of 79%/79%, 98%/97% accuracy, 63%/55% workload
reduction, with 12%/11% fewer abstracts for full-text retrieval and screening, and 0%/1.5% missed studies in the
completed reviews.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: Andrea.Tricco@unityhealth.to
1Knowledge Translation Program, Li Ka Shing Knowledge Institute, St.
Michael’s Hospital, Unity Health Toronto, 209 Victoria St, Toronto, Ontario
M5B 1T8, Canada
4Epidemiology Division and Institute for Health Policy, Management, and
Evaluation, Dalla Lana School of Public Health, University of Toronto, 155
College St Room 500, Toronto, Ontario M5T 3M7, Canada
Full list of author information is available at the end of the article

Pham et al. Systematic Reviews          (2021) 10:156 
https://doi.org/10.1186/s13643-021-01700-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13643-021-01700-x&domain=pdf
http://orcid.org/0000-0002-4114-8971
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Andrea.Tricco@unityhealth.to


Conclusion: The workflow was a sensitive, precise, and efficient alternative to the recommended practice of
screening abstracts with 2 reviewers. All eligible studies were identified in the first case, while 6 studies (1.5%) were
missed in the second that would likely not impact the review’s conclusions. We have described the workflow in
language accessible to reviewers with limited exposure to natural language processing and machine learning, and
have made the code available to reviewers.

Keywords: Systematic review, Scoping review, Text mining, Natural language processing, Machine learning,
Classification model, Abstract screening, Automation

Background
Well-conducted knowledge syntheses such as systematic
reviews (SRs) provide valid evidence to inform decision-
making [1]. However, SRs in healthcare can be time-
consuming (e.g., 1 year), [2] labor-intensive (e.g., 1,139
person-hours, 5 reviewers) [3], and expensive (e.g., >
$100,000) [4]. Automation that aims to minimize time-
lines, person-time, and cost expenditures is of interest to
producers and users of knowledge synthesis internation-
ally [5].
Study selection is one of the most important steps in

the SR process [6]. The recommended practice is to have
two reviewers screen titles and abstracts and to resolve
discrepancies between reviewers in order to maximize
the chance of identifying all eligible studies. Experienced
reviewers are trained on eligibility criteria to reduce dis-
crepancies and then conduct abstract screening inde-
pendently [1, 6–8]. Abstract screening consumes about
25% of the total person-time per review, estimated to
range between 1000 and 2000 person-hours [9]. Despite
the rigorously recommended methods, sources of
between-screener variation remain, including lack of in-
formation and varying interpretation for eligibility deter-
mination due to abstracts that report limited details on
methods and results, and errors associated with distrac-
tion and fatigue, to name a few [10].
Recent advances in text mining (the science of

extracting information from text) [11], and machine
learning (the study of methods that learn patterns
from data and make decisions with minimal human
intervention) [12] have enabled solutions to previously
intractable problems [13]. Since 2006, these advances
have been adopted to support the automation of title
and abstract screening [14]. Substantial progress has
been made to partially automate the process [5], with
tools deployed for real-world use [15–18], and their
use described in review protocols [19]. With the in-
creasing use of SR methods for different types of
knowledge syntheses [20], continuing efforts have
been expended to improve the performance of the
automation tools [21, 22]. However, few tools for title
and abstract screening attain the level of sensitivity
and precision consistent with published benchmarks
for pairs of human reviewers [1, 7, 8, 23].

We set out to develop a workflow — consecutive steps
starting from importing titles and abstracts to a comput-
ing platform, to ending with a set of all eligible abstracts
— for the automation of title and abstract screening that
is comparable to the recommended practice of screening
by two reviewers, independently. Our motivation was
guided by making the workflow accessible to review
teams conducting different types of knowledge synthe-
ses, requiring minimal technical expertise and training.
The current paper describes the design, development,
and evaluation of the workflow using two case studies.

Methods
Workflow structure
The workflow is proposed to handle title and abstract
screening for knowledge syntheses addressing clinical or
non-clinical research questions. We adopted widely rec-
ommended text-mining and machine-learning methods
to phase 1) process title-abstract texts into computing
data; and phase 2) identify all eligible abstracts through
repeated interactions between human reviewers and
software, using a classification model and a nearest-
neighbor search procedure. The two phases of the pro-
posed workflow are outlined below, with terminologies
related to text mining and machine learning described in
a glossary (Additional File 1, Appendix A).

Phase 1: Preparation of abstracts for machine learning, and
creation of the training dataset
In this phase, title-abstract texts (henceforth referred to
as “abstracts”) are converted into numerical training data
to train the machine learning model that classifies ab-
stracts as eligible or ineligible. Using a simple example
in Table 1, we illustrate the initial steps of transforming
the content of a collection of abstracts into a “docu-
ment-feature matrix,” where the rows denote the ab-
stracts, the columns represent the features (e.g., in the
form of words), and the values in the matrix are weights
of the features in the corresponding abstracts. In this ex-
ample, the weights are frequency of the feature in the
abstract. Features with relatively high frequencies are se-
lected and retained in a reduced document-feature
matrix for further analyses. Figure 1 outlines the 9 steps
of this phase.
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Step 1. Import abstracts — Titles and abstracts from
the literature search are imported into a computing plat-
form for text mining and machine learning, excluding ci-
tations with title only and no abstract.
Step 2. Pre-process text — Texts of each title and ab-

stract are combined. Text is pre-processed through toke-
nization, lemmatization, parts of speech tagging, and as
needed, semantic annotation. Tokenization is a step
which splits longer strings of text into smaller pieces (to-
kens), such as words separated by white space.

Lemmatization is a step which replaces a word by its
normalized form (lemma). For example, “runs”, “ran”,
and “running”, all have a common lemma, “run.” These
steps ensure that words of the same meaning but
expressed in slightly different forms are processed uni-
formly. Parts of speech tagging is done by marking up a
word in a text as a noun, verb, pronoun, or adjective
(among others), based upon the definition of the word
and the context of its use (e.g., the context is defined by
surrounding words).

Table 1 Illustrated workflow steps to process a simple collection of abstracts for machine learning classification

DFM document-feature matrix. IDDM insulin-dependent diabetes mellitus. *The features in this example are words. **The DFM contains frequency counts of the
features. Highlighted columns in the DFM denote relatively high-frequency features that are selected and retained for further analysis

Fig. 1 Workflow — Phase 1: Preparation of abstracts for machine learning, and creation of the training dataset. DFMs: document feature matrices.
Dark lines denote iterations. Inputs to the workflow are denoted by black boxes. Box 4a. SVD: singular value decomposition. Box 4b. LDA: latent
Dirichlet allocation for topic modeling. Box 4c. Concept or word embeddings are vector representations of words and their relationships. Outputs
of this workflow phase are the abstract features, as well as the screening results of the abstracts reviewed by the 2 human reviewers in order to
generate the training dataset, denoted by the gray box
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Semantic annotation is a natural language processing
task specifically designed for detecting and disambiguat-
ing terms mentioned in the texts into machine-
understandable terminology, such as concepts in the
Unified Medical Language System (UMLS) [24]. The
UMLS Metathesaurus is a large biomedical thesaurus,
organized by concept or meaning, and different expres-
sions of the same concept are linked [25]. For example,
“heart attack”, “coronary thrombosis”, and “cardiac ar-
rest” are different expressions of the same concept —
“Myocardial infarction” — registered in the UMLS
Metathesaurus. To perform semantic annotation, we use
RysannMD, a general-purpose biomedical semantic an-
notator that balances accuracy and computing time [24].
Step 3. Construct 3 sets of features to represent the con-

tent of abstracts — Once pre-processing of the abstracts
is complete, the contents are summarized in a
document-feature matrix where the columns represent
each of 3 sets of features: (1) short phrases of 1, 2, or 3
contiguous words, (2) nouns and verbs, and (3) words
for knowledge synthesis addressing the non-clinical re-
view questions, or, in the case of clinical reviews, UMLS
concepts. As we will show in the evaluation, multiple
features are used to improve the sensitivity of the work-
flow, which aims to identify all eligible abstracts.
Step 4. Select features and perform dimension reduc-

tion of the 3 document-feature matrices — For the
document-feature matrix with short phrases, only
phrases common across abstracts are retained. A math-
ematical method known as Singular Value Decompos-
ition (SVD) is then applied to the matrix to further
reduce its dimension (e.g., from > 100,000 features to
about 300 derived features) [26]. SVD results in a matrix
transformation that obtains a more compact, computa-
tionally efficient representation of the abstracts, while at
the same time preserving their semantic relations [27].
For the document-feature matrix of nouns and verbs,

a topic-modeling method known as Latent Dirichlet Al-
location is applied to identify common topics across ab-
stracts [28, 29]. For, example, words like “cortisone”,
“anti-viral”, and “rituximab”, if seen relatively frequently,
might be grouped under the topic “Covid-19 treat-
ments”, while “case”, “hospitalization”, “ventilator” might
fall under “Covid-19 outcomes.” Only nouns and verbs
are used since their use tends to generate consistent and
meaningful topics [30]. The content of all abstracts is
then summarized in a reduced document-feature matrix,
with each row representing the probability distribution
of the topics within an abstract (e.g., 300 common topics
identified from all abstracts).
For the document-feature matrix of words for know-

ledge synthesis, only words with representations in
GloVe are retained in the matrix. GloVe is an open-
source project that has derived global vectors for word

representations (commonly known as word embeddings)
[31]. GloVe characterizes a word by other words that
tend to appear with it, assuming that the words near a
given word encode a large amount of information re-
garding that word’s meaning. Word embeddings model
this contextual information by creating a lower-
dimensional space such that words that appear in similar
contexts are nearby in this new space (e.g., a 300-
dimensional space). For example, semantically close
words such as “effect” and “consequence” are mapped to
close points in the low-dimensional space where repre-
sentations of semantically unrelated words such as “ef-
fect” and “reject” are more distant. Each abstract is then
replaced by a weighted average vector of the word em-
beddings that represent the words mentioned in the ab-
stract, weighting on the frequency count of the words. A
similar approach is applied to the document-feature
matrix of UMLS concepts, with concept embeddings ob-
tained from an open-source project that uses massive
sources of multimodal medical data to derive concept
embeddings [32].
Step 5. Generate 3 distance matrices representing pair-

wise distances between the 3 numerical vectors that rep-
resent the abstracts — Any two abstracts can be
compared by taking the cosine of the angle between
their vector representations (which are rows from a
document feature matrix), with values approaching 1 de-
noting semantically close abstracts, and values ap-
proaching 0 denoting distant abstracts [27]. The distance
between two abstracts is defined to be inversely propor-
tional to the cosine of the angle [33, 34]. For the
document-feature matrices derived with word embed-
dings, the word mover distance (WMD) between two
abstracts represents the minimum total cosine distance
that the embedded words of one abstract need to
“travel” to reach the embedded words of the other ab-
stract [35]. Compared to other distance measures, the
use of WMD reduces error rates in document classifica-
tion [35].
Step 6. Identify abstracts similar to eligible seed ab-

stracts — This step requires a few seed abstracts (e.g.,
3-5 abstracts) that are known to be eligible and are
often identified in the preparation of the review
protocol. For each of these seed abstracts, a fixed
number, k, of nearest-neighbor abstracts are identified
based upon the distances defined in step 5. For ex-
ample, if we have 3 known eligible abstracts, with k=
8 and three distance matrices, we would identify a
batch of approximately 3 × 8 × 3 = 72 abstracts (with
duplications removed). Information from a study
examining characteristics of a representative sample
of the population of SRs is used to guide the selec-
tion of k relative to the median number of 15 in-
cluded studies (interquartile range: 8–25) [36].
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Step 7. Screen abstracts by pairs of reviewers — The
batch of abstracts identified in step 6 is screened by two
reviewers independently to identify eligible abstracts [1].
We expect a high proportion to be identified as eligible
because their content is “near” those of known eligible
seed abstracts. These screening results include results
for both eligible and ineligible abstracts and will form
part of the training dataset for the classification model
(discussed below).
Step 8. Assess the cumulative number of screened ab-

stracts relative to a pre-set sample size for the training
dataset — If the cumulative number of screened ab-
stracts falls below a pre-set sample size for the training
dataset (e.g., 300–600 screened abstracts), additional eli-
gible abstracts need to be identified.
Step 9. Identify new eligible abstracts — The screening

results from step 7 identified eligible abstracts in
addition to the original seeds in step 6. These newly
identified abstracts are then input to step 6 as “seeds” so
that yet additional and potentially eligible abstracts are
screened for addition to the training dataset.
Steps 6–9 are iteratively applied to the eligible ab-

stracts newly identified in each iteration until the num-
ber of screened abstracts exceeds the pre-set sample size
requirement for the training dataset. As we will show in
the evaluation, phase 1 requires the screening of ap-
proximately 300 to 600 potentially eligible abstracts. We
will also show that these abstracts are approximately 5
times more likely to be eligible than a randomly selected
abstract from the literature search results.

Phase 2: Screening of abstracts through human-guided
machine-learning
This phase aims to identify all abstracts that are eligible
for full-text screening. It involves fitting a classification
model to the training dataset, predicting eligible abstracts
using the fitted model, screening the predicted eligible ab-
stracts by 2 human reviewers to identify eligible abstracts,
identifying abstracts similar to the eligible abstracts (using

step 6), screening the similar abstracts by 2 human re-
viewers, updating the training dataset to include the
screening results, updating the predictive model (which is
then fit to the training dataset), and repeating the de-
scribed steps until no newly eligible abstracts can be iden-
tified. Figure 2 outlines the 7 steps of this phase.
Step 1. Assemble training dataset — The screening re-

sults from step 7, phase 1 are merged with the
document-feature matrix with the SVD-based features
(from step 4, phase 1) to generate a training dataset, with
columns of the document-feature matrix being treated
as predictors and the screening results as the binary re-
sponse, for the development of the classification models
[26, 27]. We will show in the evaluation that the classifi-
cation model with SVD-based features attains a higher
F1-score (the average of sensitivity and precision) than
corresponding models based upon word-embedding and
topic-modeling features (Additional File 1, Appendix B).
Step 2. Train a random-forest model to classify eligible

abstracts — Among recently developed classification
models for binary responses, a “random forest” is a com-
bination of several decision trees (Glossary) [37] that at-
tains relatively high precision, high sensitivity, and fast
computing time [38]. A random-forest model is fit to the
training dataset using the recommended method of multi-
fold cross-validation to maximize the sensitivity of mod-
eled prediction [39]. To deal with imbalanced distribution
of eligible versus ineligible abstracts in each cross-
validation fold (e.g., 5% versus 95%, respectively), the
SMOTE algorithm is used to rebalance the distribution by
generating synthetic abstracts with high eligibility prob-
ability (glossary, Additional File 1, Appendix A) [40].
Step 3. Predict eligible abstracts — The fitted model is

used to predict eligible abstracts among all abstracts [39].
Step 4. Screen predicted eligible abstracts — The set of

predicted eligible abstracts is screened by two human re-
viewers to identify eligible abstracts [1].
Step 5. Assess for newly identified eligible abstracts in

step 4 — The eligible abstracts identified in step 4 are

Fig. 2 Workflow — Phase 2: Screening of abstracts through human-guided machine-learning. Dark lines denote iterations. Inputs to the workflow
are denoted by black boxes. Outputs from the workflow are denoted by a gray box. Upper black box and box 1 — SVD, singular
value decomposition
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verified against the cumulative set of eligible abstracts
identified so far to assess whether there are new eligible
abstracts. If there are no new eligible abstracts, the
process stops.
Step 6. Identify abstracts similar to eligible abstracts —

For each of the newly identified abstracts in step 4 and
using the distance measures from step 5 of phase 1, a
fixed number k of nearest-neighbor abstracts are identi-
fied as abstracts similar to the eligible abstracts (see also
step 6 of phase 1).
Step 7. Screen the set of similar abstracts by pairs of re-

viewers — The batch of similar abstracts identified in
step 6 is screened by 2 human reviewers, independ-
ently [1].
Steps 1–7 are then iteratively applied, using an updated

training set including the newly screened abstracts and
their eligibility assessments, until no newly eligible ab-
stracts can be identified in step 5 (Fig. 2).
As we will show in the evaluation, phase 2 involves ap-

proximately 5 iterations, requires the screening of 37%
to 45% of all abstracts, and identifies approximately 90%
of the eligible abstracts among all abstracts screened by
pairs of reviewers. We will show that compared to the
reference standard of screening by pairs of reviewers, the
workflow attains literature saturation, in the sense that
additional eligible abstracts, if any and if identified by
the reviewer pairs, would not change inferences in the
knowledge synthesis.
Table A1 in Additional file 1 summarizes the im-

plementation of the workflow in R (a programing
language for statistical computing), using publicly
available R packages for text mining and machine
learning, notably the “caret” package that stream-
lines model training and evaluation [41]. Table A1
also displays values of key parameters in the work-
flow, including values for the main analysis and al-
ternative values for sensitivity analysis. Values for
the main analysis were selected through trial and
error to optimize the performance of the workflow
with respect to maximizing both the sensitivity of
modeled classification and workload reduction
(below). The selection necessarily involved uncertain
judgment, and alternative parameter values likely to
affect the workflow’s performance were identified
for sensitivity analyses by varying the parameters
one at a time.
Human and computing resources required for the im-

plementation are reported in Additional File 1, Appendix
A. The R code is reproduced in Additional File 1, Ap-
pendix C, and the case study original screening results
can be replicated using the material available here
(https://knowledgetranslation.net/text-mining-to-support-
abstract-screening-for-knowledge-syntheses-a-workflow-
approach/) [42, 43].

Evaluating the performance of the workflow to identify
eligible abstracts
From the database of our knowledge synthesis team, two
case studies were selected based upon the following cri-
teria: i) different types of knowledge synthesis, ii) avail-
ability of a review protocol, iii) broad eligibility criteria,
and iv) the review results published in peer-reviewed
journals. We selected a SR of the efficacy and safety of
insulin formulations for patients with type-1-diabetes,
and a scoping review on knowledge synthesis methods
(Additional File 1, Appendix A) [42, 43]. The protocol
and planned search strategies for each SR are accessible
at https://osf.io/xgfud, and https://bmcmedresmethodol.
biomedcentral.com/articles/10.1186/1471-2288-12-114,
respectively. The search strategies may also be found
within each result's publication [42, 43].
The screening results by the recommended practice of

screening abstracts with 2 reviewers were considered the
reference standard in the evaluation of the proposed
workflow [1]. As such, for each of the two case studies,
the results from the original review were used as the ref-
erence standard.
The proposed workflow was evaluated with respect to

the following performance measures:

� NP: the number of predicted eligible abstracts
identified by the workflow at the end of phase 2,

� NWF: the number of eligible abstracts (as determined
by the reference standard) identified by the
workflow at the end of phase 2,

� NS: the number of eligible abstracts identified by
human reviewers (the reference standard) after
screening all abstracts (N),

� ΔN = NS − NWF: The number of eligible abstracts
missed by the workflow,

� The number of missed studies due to the full-
text screening of the NWF eligible abstracts in-
stead of full-text screening the NS eligible
abstracts,

� Precision — the percentage of eligible abstracts
predicted by the workflow that are confirmed via
the reference standard (correctly predicted eligible
abstracts) among all predicted eligible abstracts
(NWF/NP) *100,

� Sensitivity — or recall, the percentage of correctly
predicted eligible abstracts among the eligible
abstracts identified via the reference standard (NWF/
NS) *100,

� F1-score — the harmonic average of sensitivity and
precision,

� Specificity — the percentage of correctly predicted
ineligible abstracts among abstracts identified as
ineligible via the reference standard ((N − NWF)/(N
− NS)) *100,
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� Accuracy — the percentage of correctly predicted
(based on the reference standard) eligible or
ineligible abstracts,

� Workload reduction — the difference between the
total number of abstracts and the number of
abstracts screened by the workflow, assuming each
abstract is screened by two reviewers [11]

� Person-hours saved — the reduction in person-
hours associated with the workload reduction, as-
suming that on average, a reviewer screens about
200 abstracts per hour [44, 45].

To provide benchmarking measures for the workflow’s
performance, we conducted a literature review of studies
reporting data on the performance of human reviewers
conducting abstract screening for SRs (Additional File 1,
Appendix A). Studies were identified from a recent SR
of methods for study selection, including forward
searching of citations of studies identified by the SR to
identify eligible studies published after the SR [46].

Results
Table 2 displays the results of the evaluation of the
workflow’s performance; step-specific results of the
workflow performance are included in Additional File 1,
Appendix B. Figure 3 displays the workflow’s perform-
ance on various performance measures relative to the
recommended practice for abstracts screening. For the
main analysis of the SR of type 1 diabetes, the workflow
attained an 88% sensitivity, 71% precision, F1-score of
79%, 99.3% specificity, 98% accuracy, 63% workload re-
duction, or equivalently, a saving of 91 person-hours.
Pairs of reviewers identified 743 eligible abstracts, while
the workflow identified 655 eligible abstracts, or 88
fewer eligible abstracts. Compared to screening by pairs
of reviewers, the workflow recommended 88 fewer eli-
gible abstracts for full-text retrieval and screening, and
this did not lead to any missed studies among the 80
studies included in the SR, which were identified via
full-text screening of the 743 eligible abstracts.
For the main analysis of the scoping review of know-

ledge synthesis methods (Table 2), the workflow attained
an 89% sensitivity, 72% precision, F1-score of 79%,
99.3% specificity, 97% accuracy, 55% workload reduction,
or equivalently, a saving of 95 person-hours. Pairs of re-
viewers identified 957 eligible abstracts, while the work-
flow identified 852. Compared to screening by pairs of
reviewers, the workflow recommended 105 fewer eligible
abstracts for full-text retrieval and screening. This re-
duction led to 6 missed studies among the 409 studies
included in the scoping review, which were identified via
full-text screening of the 957 eligible abstracts (an error
rate of 1.5%).

Table 2 also displays results of the sensitivity analysis.
The workflow’s sensitivity increased to approximately
95% (from 88%/89%) with larger value k for the k-near-
est-neighbors in phase 2 (k = 25, base value k = 15), but
the workload reduction decreased by approximately
15%. Compared to the use of two feature representations
in step 3 of phase 1 of the workflow, the use of the three
feature representations led to higher sensitivity, which
was reduced by 4%/7% by excluding the topic-modeling
features. The results were robust against other param-
eter values, especially the threshold used to select com-
mon features in the derivation of the SVD-based
features. The workflow performance was consistent re-
gardless of the clinical and non-clinical topics, and
across the SR and scoping review.
Given the computing resources (Additional File 1, Ap-

pendix A) and the implementation details of the work-
flow (Table A1, Additional File 1, Appendix B), it took
approximately 6 computing hours to derive the
document-feature matrix with SVD-based features, ap-
proximately 18 hours to derive the matrix with topic-
modeling-based features, and approximately 60 hours to
derive the matrix with word or concept embeddings.
These initial steps to set up the workflow were time-
consuming. Phase 1 required approximately 3 iterations,
with no computing delays between iterations that were
noticeable by reviewers. The saturation of newly identi-
fied eligible abstracts was attained after approximately 5
iterations of the steps in phase 2, with approximately 45-
minute delays between iterations to update the classifica-
tion model.
Results of the literature review evaluating the perform-

ance of human reviewers are given in Additional File 1,
Appendix A. We identified three studies reporting
benchmarking data, with varying review topics (postal
survey methods in study 1 [45], diet research in study 2
[47], and brain injury in study 3 [48]), and varying re-
viewers’ experience (4 experienced reviewers, 12 re-
viewers with 6 experienced and 6 student reviewers, and
58 student reviewers, respectively). When reported, the
sensitivity of reviewers ranged from 47% to 90% (the
workflow’s sensitivity was 88–89% as reported above),
specificity from 73% to 100% (workflow: >99%), preci-
sion from 55 to 90% (workflow: 71–72%), F1-score from
56 to 77% (workflow: 79%); and pairs of reviewers did
not miss any eligible studies identified via full-text
screening, with an estimated range of 0% to 1% of
missed eligible studies (workflow: 0–1.5%).

Discussion
Currently, the recommended practice is to screen titles
and abstracts for knowledge syntheses with two re-
viewers, independently [1, 8, 23], and to err on the side
of over-inclusion during screening [8]. Until now, the
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use of pairs of reviewers seemed to be the only known
approach to reduce errors and subjectivity in study se-
lection [6]. Compared to the recommended practice, the
proposed workflow was sensitive, as it identified all eli-
gible studies in the first case, while missing 6 studies
(1.5%) in the second that would likely not impact the re-
view’s conclusions. Thus, most importantly, we infer that
in these cases, the results of the systematic reviews
would not have changed had our semi-automated work-
flow originally been implemented.
The workflow was also reasonably precise, with ap-

proximately 7 truly eligible abstracts out of 10 predicted
eligible. It was efficient, as it substantially reduced the
workload of abstract screening by approximately 60%.
Also, it referred 10% fewer abstracts for full-text retrieval
and full-text screening, while ensuring literature satur-
ation. Using two case studies, we showed that the work-
flow was generalizable to two different review topics and
two different types of knowledge synthesis - a SR of a
clinical review topic, and a scoping review of a method-
ology topic.
To overcome skepticism towards automation [5], both

within the scientific community and among recognized
SR, regulatory, and health technology assessment bodies,
we designed the workflow with a strong emphasis on
close interactions between human reviewers and the
text-mining and machine-learning application. We

endeavored to describe the proposed workflow in a way
that is accessible to reviewers with limited exposure to
text mining and machine learning, including a glossary
of common terms (Additional File 1, Appendix A). We
outlined the step-specific implementation in detail and
implemented the workflow with publicly available soft-
ware tools. Our study results can be replicated using ma-
terials available online, and the R codes are reproduced
in Additional File 1, Appendix C. We hope all this would
serve to facilitate the application, adoption and diffusion
of the workflow into routine practice for review teams
with interest in SR automation. We recommend our
workflow be considered in a de novo implementation
when the number of abstracts to be screened is at least
5000. As well, users may want to first consider piloting
the workflow on a systematic review they completed,
and comparing the results before using the workflow
routinely.
We compared the workflow with other automation

tools for abstract screening that are currently in use.
Abstrackr, a commonly used tool, has been recently
evaluated in four abstract-screening projects [49]. Across
the projects, sensitivity ranged from 79 to 97%, and pre-
cision ranged from 15 to 65% [49]. The text-mining
algorithm implemented in the online SR system EPPI-
Reviewer has been evaluated recently using a case study
[21]. According to the results, sensitivity could be very

Table 2 Evaluation of the workflow performance using the recommended practice as the reference standard
Case study Type of

analysis
Precision
(%)

Sensitivity*

(%)
F1-
score
(%)

Specificity
(%)

Accuracy
(%)

NWF, NS, ΔN (# of
eligible abstracts)

# missed
studies•

Workload
reduction♦ %

Hours♣

saved

SR — diabetes
(14, 314 abstracts)

Main analysisa 71 88 79 99.3 98 655, 743, 88 0 63% 91 h

SA: k-NN2 = 25 64 94 76 99.7 97 700, 743, 43 0 49% 70 h

SA: r = 300 70 89 78 99.4 97 660, 743, 83 0 62% 89 h

SA: k-NN1 = 15 68 89 77 99.4 97 664, 743, 79 0 61% 88 h

SA: ϕ = 80% 72 88 79 99.3 98 653, 743, 90 0 63% 91 h

SA: ϕ = 90% 68 88 76 99.3 97 653, 743, 90 0 64% 91 h

SA: 2 distance
measuresb

77 84 80 99.1 98 623, 743, 120 0 74% 105 h

Scoping — KS methods
(17, 200 abstracts)

Main analysisa 72 89 79 99.3 97 852, 957, 105 6 55% 95 h

SA: k-NN2 = 25 65 95 77 99.7 97 907, 957, 50 3 39% 68 h

SA: r = 300 72 90 80 99.4 97 858, 957, 99 5 54% 92 h

SA: k-NN1 = 15 73 89 80 99.4 98 853, 957, 104 5 54% 94 h

SA: ϕ = 80% 72 89 79 99.4 98 847, 957, 110 8 55% 95 h

SA: ϕ = 90% 73 88 80 99.3 98 842, 957, 115 8 56% 96 h

SA: 2 distance
measuresb

79 82 80 98.9 98 785, 957, 172 17 70% 119 h

*Sensitivity or recall; results of the sensitivity analyses are displayed in decreasing sensitivity of the workflow’s performance. ♣Person-hours that were tallied across
reviewers. aThe main analysis was conducted with distance definitions from three feature representations (SVD-based, LDA-based and word-embedding features),
a threshold ϕ = 70%, k-nearest-neighbor (k-NN1) for phase 1 of 8, k-NN for phase 2 (k-NN2) of 15, and initial sample size r = 600 (Table A1). SVD: singular value
decomposition. LDA latent Dirichlet allocation. bThis sensitivity analysis used 2 distance measures from the SVD-based and word-embedding-based features. SR
systematic review. SS scoping review. KS knowledge synthesis. SA sensitivity analysis. NN nearest-neighbors. ♦Workload reduction: the number of abstracts saved
with the workflow, relative to the recommended practice of screening all abstracts by 2 reviewers. NWF—Number of eligible abstracts identified by the workflow.
NS—Number of eligible abstracts identified via screening by 2 human reviewers (recommended practice). ΔN—The number of eligible studies missed by the
workflow: NS − NWF.

•The number of missed studies due to the full-text screening of the NWF eligible abstracts instead of full-text screening the NS

eligible abstracts
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high (e.g., 99%) at reasonable precision (e.g., 50%).
The text-mining algorithm implemented in the online
SR system Rayyan was evaluated using a sample of 15
SRs [22]. According to the results, sensitivity ranged
from 62 to 100%, and workload reduction ranged
from 3 to 55%. The algorithm implemented in the
Distiller SR platform was evaluated using a sample of
15 SRs, with workload reduction ranging from 9 to
62% [50]. In comparison, our proposed workflow was
associated with high sensitivity (approaching 90%),
high precision (approximately 70%), and high work-
load reduction (approximately 60%).
The workflow as described requires two systematic re-

viewers as part of the iterative human-machine-learning
process. Certainly, one experienced reviewer could be
considered instead, but we would expect inferior results.
One reviewer could be used for the first few iterations,
or for establishment of the training dataset, while the
potential abstracts are “nearest” the seeds, and two re-
viewers could be used for the remaining iterations, with-
out inferior results. This would be an item for further
research.
There are limitations to our study. First, the evaluation

of the workflow was retrospective, with potential bias as-
sociated with the fact that the reference standard was
known prior to the evaluation. We only used two case
studies in our evaluation because we wanted to provide
a detailed analysis of the proposed automation approach.
The step-specific methods we used in the workflow are
simple; they work well together, but they might not be
optimal for individual steps. The values we used for the
parameters governing the steps of the workflow in Table
A1 might not be the best values to optimize the overall
performance of the workflow. In this regard, we did not
try to establish optimal step-specific methods or

parameter values, since we believe optimality would de-
pend on the specific SRs or types of knowledge
syntheses.
In the second case study (scoping review), the work-

flow missed 6 eligible studies that were identified by
pairs of reviewers. We however believe that the work-
flow identified a saturated set of eligible studies, in the
sense that the 6 missed studies would not change the in-
ferences in the scoping review. These studies were eli-
gible for inclusion for the scoping review but were not a
major focus of the scoping review [51]. Another major
limitation is that the workflow did not perform well with
title-only citations, with low F-1 score (e.g., 7%, data not
shown). Reviewers who are interested in using this work-
flow may have to apply the proposed automation ap-
proach to the set of titles only and no abstracts
(separately from the handling of titles and abstracts) or
manually screen citations with titles only.

Conclusions
The workflow was a sensitive, precise and efficient alter-
native to the recommended practice of abstract screen-
ing with 2 reviewers, independently. All eligible studies
were identified in the first case, while 6 studies (1.5%)
were missed in the second that would likely not impact
the review’s conclusions. We have described the work-
flow in language that is accessible to reviewers with lim-
ited exposure to natural language processing and
machine learning as well as making the codes accessible
to reviewers.
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