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ABSTRACT
Traditional evaluation metrics, such as NDCG, have long been the
conventional approach for evaluating the effectiveness of information
retrieval methods. However, such metrics are focused on absolute
measures of effectiveness. While they allow us to compare the
absolute performance of one retrieval method to another, we do
not know if systems with similar absolute performance achieve this
performance by finding the same items, or by finding different items
with similar relevance grades. To address this problem, several recent
proposals have measured the relative performance of a retrieval
method in the context of the results from one or more other methods.
In this paper, we address theoretical limitations of these proposals
and introduce a new metric called Normalized Residual Gain (NRG)
that can be seen as an extension of the underlying absolute metric,
rather than as an entirely new metric. Operating in the context of
the results retrieved by one or more other methods, NRG adjusts
gain values according to the browsing model of the absolute metric.
Through testing over the MS MARCO dev small and TREC DL
2019 datasets, we find that higher absolute effectiveness does not
necessarily correlate with a higher NRG score, which will vary
depending on context. In particular, in the context of modern neural
models, NRG suggests that a traditional BM25 ranker continues to
find relevant items missed by even the best neural models.
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1 INTRODUCTION
Information Retrieval (IR) systems are traditionally assessed using
offline effectiveness metrics like MRR and NDCG [18]. These well-
established effectiveness metrics rely on a fixed set of queries and
corresponding relevance judgments over some collection of items.
However, it’s important to note that these metrics provide an absolute
measure of retrieval effectiveness for a single ranking; they do not
directly compare the output of one ranker to that of another. When
comparing the performance of competing rankers over a query set,
this comparison is traditionally based on comparing the absolute
value of the metric on each query, or the average over the query
set, which may not fully capture the nuances of their performance
differences. One crucial aspect that these metrics fail to encompass is
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the ability to discern whether the relative performance of a particular
ranker, when compared to others, derives from a better ordering of
the same items, or from the discovery of different, more-relevant
items.

In this paper, we develop a metric called Normalized Residual
Gain (NRG) that allows us to measure the additional value provided
by a new ranker, as measured against a set of existing rankers,
particularly in terms of its ability to find unique relevant items.
A ranker that is known to return distinct relevant items from a
collection can provide value, even if its absolute performance is
inferior to that of another ranker, for example, by providing insights
into paths for further improvements. In addition, if we are building a
reusable test collection, a retrieval method that offers unique relevant
contributions to the pool of judged items provides value by improving
re-usability [31].

Recently, researchers have proposed metrics intended to address
this problem [1, 30]. Türkmen et al. [30] introduce a novel metric,
rareness-based precision-at-k, which incorporates the rareness of
items within a group of competing rankings when determining
the precision for a new ranking. Arabzadeh et al. [1] introduce a
metric known as TaSC. The TaSC metric focuses on quantifying the
subspace coverage within a new ranking, when compared against
a set of existing rankings. TaSC is designed to assess the extent to
which the new ranking represents similar or distinct query subspaces.

While both papers experimentally demonstrate their value, both of
these metrics combine scoring functions in ad hoc ways, and do not
generalize to a full range of metrics. For example, “rareness-based
precision-at-k” is an extension of precision@𝐾 only. It focuses solely
on whether or not other rankers retrieve an item, without taking into
account the positions where the rankers rank those items. The TaSC
metric also does not consider the position at which items appear in
the existing rankings. It works directly with aggregated effectiveness
scores, and it does not prioritize items that are relevant but may
not have been retrieved by other rankers. Nonetheless, inspired by
the ideas in these papers, we take a step back and consider how to
approach the problem in a manner consistent with the theoretical
searcher browsing models underlying offline effectiveness metrics,
proposing NRG as the solution.

In the next section, we derive NRG in terms of a theoretical
framework grounded in the principles established by approaches such
as C/W/L [3, 23–25]1 and other searcher browsing models [2, 6, 9, 10,
35, 36]. NRG can be viewed as an extension of an existing underlying
absolute metric, such as MRR or NDCG. We then experimentally
validate NRG with two different test collection, the MS MARCO
development set and the TREC Deep Learning 2019 collection,
which use MRR and NDCG as their primary metrics, respectively.
Our experiments reveal an interesting insight into the differences
between traditional ranking methods and modern neural ranking
methods. While modern neural ranking methods exhibit superior

1Appendix A analyses theoretical connections between NRG and C/W/L.
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performance in absolute terms, traditional methods can outperform
neural methods in relative terms, finding relevant material not found
by neural methods. One practical conclusions is that, when building
future reusable test collections, traditional methods should continue
to form the baselines, since they may find unique relevant items not
found by modern neural methods2.

2 NORMALIZED RESIDUAL GAIN
We can express many of the most widely used offline evaluation
metrics as a user browsing model with the form [7, 8, 21, 25]:

𝑆 (𝑅) =
1
N

𝐾∑︁
𝑖=1

𝐺 (𝑑𝑖 ) · seen(𝑖), (1)

where 𝑅 =< 𝑑1, 𝑑2, ... > is a ranked list with depth ≥ 𝐾 produced by
a ranker for a query 𝑞; 𝐺 (𝑑) is the gain associated with the searcher
observing item 𝑑; seen(𝑖) is a survival probability that the searcher
observes the item at rank 𝑖; and N is a normalization factor, typically
intended to map the metric into a value in the range [0, 1]. We assume
seen(𝑖) is monotonically decreasing with increasing 𝑖, and for later
convenience we define seen(∞) = 0. To evaluate a ranker, 𝑆 (𝑅) is
usually averaged over a large set of queries 𝑞 ∈ 𝑄 .

NDCG@𝐾 , RBP, precision@𝐾 and MRR all fit this model, each
with different instantiations for N , 𝐺 (𝑑), and seen(𝑖) [6, 26]. For
example, for NDCG@𝐾 gain 𝐺 (𝑖) is typically based on human rele-
vance labels and seen(𝑖) = 1/(log(𝑖) + 1). The normalization factor
is based on the maximum possible value for the raw, unnormalized
score 𝑆raw (𝑅) =

∑𝐾
𝑖=1𝐺 (𝑑𝑖 ) · seen(𝑖). Given a collection of items

with known gain values, we sort them by decreasing gain, breaking
ties arbitrarily, to create an ideal ranking 𝑅ideal of depth 𝐾 . The
normalization factor is then N = 𝑆raw (𝑅ideal), so that:

𝑆 (𝑅) =
𝑆raw (𝑅)

𝑆raw (𝑅ideal)
. (2)

Now, suppose the searcher has already observed a set of rankings
for 𝑞, each produced by a different ranker, R = {𝑅1, ..., 𝑅𝑀 }, which
we call the prior rankings or prior set. While an item can appear in
multiple prior rankings, or even all of them, we assume that no item
appears multiple times in a given ranking 𝑅𝑖 . Then, for an item 𝑑

appearing in the top 𝐾 of ranking 𝑅, we can define pos(𝑑, 𝑅) as the
position where it appears. If the item does not appear in the top 𝐾 ,
we define pos(𝑑, 𝑅) = ∞.

We assume that once a searcher has observed an item, they will
received no further gain from observing it again, so that we can
compute a residual gain for an item in terms of the survival probability
of the item in each prior ranking:

𝐺 (𝑑 |R) = 𝐺 (𝑑) ·
𝑀∏
𝑗=1

(
1 − seen(pos(𝑑, 𝑅 𝑗 )

)
. (3)

To define normalized residual gain (NRG) of a ranker 𝑅 with
regard to a set of prior rankings R we substitute Equation 3 for the
gain value in Equation 1, giving:

𝑆 (𝑅 |R) =
1
N

𝐾∑︁
𝑖=1

𝐺 (𝑑𝑖 |R) · seen(𝑖), (4)

2Appendix B provides an analysis of the role of NRG in test collection construction.

If an ideal ranking is required for normalization, this ideal ranking
should be derived by sorting items according to residual gain.

If 𝑀 = 0, we have𝐺 (𝑑 |R) = 𝐺 (𝑑), and so Equation 4 reduces to
Equation 1. Equation 1 is known to provide a reasonable — if overly
simplistic — model of searcher behavior. However, for values of 𝑀
greater than 1 or 2, Equation 4 probably does not. If𝑀 = 1 we might
view Equation 4 as measuring the expected benefit of, for example,
switching to a different search engine or clicking on a reformulation.
If𝑀 ≫ 2, as it does in later experiments, we not claim that Equation 4
provides a meaningful model of searcher behavior. No searcher could
be expected to mechanically scan dozens of rankings, looking for
unobserved items. We claim only that Equation 4 is derived from
Equation 1 in a theoretically justifiable way in terms of survival
probabilities. As we see in the next two sections, Equation 4 can also
provide novel insights into experimental comparisons3.

3 IMPROVEMENTS OVER TIME
In this section we apply NRG to measure performance difference be-
tween retrieval methods released over a period of a time, between June
2020 and September 2021. At the time of release, each represented
a performance improvement over the prior methods, as measured
by MRR@10 on the 8.8 million passages of the MS MARCO test
collection using its “small dev” query set [4]. This query set com-
prises 6,980 queries with associated binary relevance judgments over
the passages. When compared to most other test collections, this
test collection has a larger number of queries, but fewer judgments
per query. Most queries (94%) have only a single judged relevant
passage; no query has more than 4 judged relevant passages. Given
the sparsity of judgments and the use of binary relevance, MRR@10
is the standard effectiveness measure for this collection.

This period of time represents a major transition in retrieval
methods, away from methods based on term and document statistics
and towards neural methods. Many different neural methods were
proposed and developed over this period, including sparse neural
methods, dense methods and various hybrid methods. For our exper-
iments, we employ a diverse range of retrieval models, categorized
into four distinct groups: 1) BM25 [28], an unsupervised sparse
retrieval model based on term and document statistics; 2) Four dense
retrieval models, namely RepBERT [38], ColBERT [19], ANCE
[32], and S-BERT [27]; 3) A hybrid model, ColBERT-H [19]; and
4) two learned sparse retrieval models, UniCOIL [20] and SPLADE
[17].

Figure 1(a) tracks changes in the neural methods over that period.
Methods are in chronological by release date, with release dates
shown. For each method, the prior set consists of those methods
released before it. For example, for ANCE, both BM25 and RepBERT
serve as the prior set. For RepBERT, BM25 alone serves as the prior
set. In the case of the latest retrieval method, SPLADE, all other
ranking methods are included in the prior set. With each new release,
MRR increases while NRG drops, flattening over time. The initially
high NRG value associated with RepBERT reflects its ability to
return relevant passages that are missed by BM25.

Figure 1(b) provides an NRG-based comparison between the same
methods where the prior set does not increase over time. Instead, the

3The implementation of the NRG metric used for these experiments is available at
https://anonymous.4open.science/r/Normalized-Residual-Gain-0B4A/
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Figure 1: NRG vs. MRR@10 comparison of retrieval methods over the MS MARCO small dev test collection. (a) Chronological
comparison of retrieval methods demonstrating that while newly released methods enhance retrieval effectiveness, NRG decreases over
time. (b) Results of an inter-method comparisons between all retrieval methods, where the prior set for computing NRG consists of all
other methods.

prior set for each method consists of all other methods. The MRR@10
value for on this plot is the same as in Figure 1(a). The other points
correspond to the NRG value obtained if the method had been released
last. While NRG generally correlates with MRR@10, we see some
interesting difference that might warrant further investigation. For
example, if we are creating a hybrid ranker that combines several
methods, we might consider including ANCE over ColBERT, since
ANCE provides a higher NRG.

4 COMPARISONS BETWEEN SYSTEMS
In this section we apply NRG to compare systems submitted to the
passage-retrieval task of the TREC 2019 Deep Learning track [14].
The track employed the same MS MARCO passage corpus with
43 new queries. While the number of queries is much smaller than
the “small dev” set, these queries are judged on a 4-point graded
relevance scale: 0 (“Irrelevant”), 1 (“Related”), 2 (“Highly relevant”),
and 3 (“Perfectly relevant”). As is usual for TREC experiments,
experimental runs submitted by track participants were pooled and
judged to a fixed depth, creating 9,260 judgments in total, with
between 132 and 582 judgments per query.

Figure 2 plots NRG vs. NDCG@10 for all runs submitted to the
passage-retrieval task of the TREC 2019 Deep Learning Track. For
each run, the prior set use for computing its NRG consists of the best
run by NDCG@10 submitted from each other group. We include
only the single best run from each group in the prior set since some
groups submitted more runs than others, and we want each group
to be represented equally. We also exclude from each run’s prior
set other runs from the same group since they may be only trivially
different.

With the exception of the “BASELINE” runs, the runs are labeled
by the participating group that submitted it. While we treat the
BASELINE as a single group for the purpose of computing NRG,
these runs were solicited from various groups who were encour-
aged “to run strong traditional IR baselines, and submit them as
additional runs,” creating a valuable opportunity to directly com-
pare neural and non-neural methods. These runs represent serious
“best effort” attempts at the retrieval task without neural methods.
The best of these BASELINE runs, as measured with NDCG@10
(bm25tuned_prf_p) incorporates grid search for parameters tuning
and query expansion using pseudo-relevance feedback [37].

Most of the non-BASELINE runs, including all of the top 20 runs
under NDCG@10, employ neural methods. They dominate the runs
based on traditional methods. Under NRG however, we see a clear split
between the traditional and neural methods. Within each group, NRG
generally increases with increasing NDCG. However the high values
of NRG seen in the BASELINE methods suggest that neural runs may
be ranking passages differently than traditional methods. Many of
the best BASELINE runs under NRG incorporate pseudo-relevance
feedback [34, 37], which may be a source of unique relevant passages.
The best non-neural run (srchvrs_ps_run3) has an NDCG@10
slightly higher than the best BASELINE run but an NRG lower than
all of them. It employs a combination of traditional methods [5], but
notably does not include pseudo-relevance feedback4.

The plot includes other difference that may be worth investigating.
The best method by NDCG@10 (idst_bert_p1) employs neural
methods to expand each passage, creates a traditional inverted index

4Personal communication with L. Boytsov, as there is no TREC proceedings paper.
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Figure 2: NDCG@10 vs. NRG for all experimental runs submitted to the passage-retrieval task of the TREC 2019 Deep Learning Track.
For each run, the prior set for computing NRG consists of the best run submitted from each other group. Higher NDCG generally
correlates with higher NRG, except for the non-neural BM25-based runs, especially those from the “BASELINE” grouping. Despite
having lower NDCG@10 values, these runs exhibit higher values of NRG.

from the expanded passages, and applies BM25 [33]. Another run
from the same group (idst_bert_pr1) includes a final re-ranking
step, which slightly harms NDCG@10, but drops NRG below all
BASELINE runs. Notably, this re-ranker is trained on MS MARCO,
as are many of the other top methods. Due to this training, the
re-ranking may favor the same passages as other methods trained on
MS MARCO.

5 CONCLUDING DISCUSSION
We introduce and experimentally validate the Normalized Residual
Gain (NRG) metric. NRG measures the effectiveness of a ranked list
relative to the performance of a prior set of ranked lists. For example,
A ranker returning many relevant items not appearing the prior set
will receive a higher NRG score than a ranker returning equally
relevant items that repeatedly appear in the prior set. Informally,
NRG provides an indication of the difference between a ranking and
the rankings in the prior set.

NRG was directly inspired by the work of Türkmen et al. [30] and
Arabzadeh et al. [1], but builds on a theoretically sounder foundation
by extending the browsing models of establishes metrics. Neither

Türkmen et al. nor Arabzdeh et al. account for the positions at which
items appears in prior rankings. Türkmen et al. compute rarity as a
linear function of the number of systems that return a item, regardless
of the rank at which it is returned. Arabzdeh et al. directly aggregate
effectiveness scores, and do not consider individual items at all.
Figure 1(a) can be directly compared with Figure 3 in Arabzdeh et al,
and Figure 1(b) can be directly compared with Figure 4(c) and 4(d)
in Arabzdeh et al. Neither Türkmen et al. nor Arabzdeh et al. show
clear differences between distinct ranking approaches, e.g., neural
vs. traditional5.

The results shown in Figure 2 and discussed in Section 4 illustrate
insights provided by NRG, including an ability to identify rankers
that have unique characteristics. Novel retrieval approaches may
not immediately perform at the state-of-the-art, even if they show
initial promise, and may be discarded. If future evaluation efforts
report NRG (similar to Figure 2) it may allow these approaches to
demonstrate their potential, even if they do not place in the top few
runs by NDCG, or other traditional measures.

5Appendix C provides a further experimental comparison between NRG and the
metrics of Türkmen et al. [30] and Arabzadeh et al. [1].
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A COMPARISON WITH C/W/L AND C/W/L/A
Reviews for this paper asked about theoretical connections with the
C/W/L framework [23–25], suggesting that C/W/L might provide
a more general starting point for the theoretical development of
NRG than Equation 1. While we might reasonably have started
with C/W/L, it does not provide a more general starting point. If
we substitute Equation 3 of Moffat et al. [24] into Equation 4 of
that paper, the result corresponds to Equation 1 of this paper, with
𝐺 (𝑑𝑖 ) = 𝑟𝑖 , seen(𝑖) = 𝑉 (𝑖), N = 𝑉 +, and 𝐾 → ∞. With appropriate
instantiations of𝐺 (𝑑𝑖 ), seen(𝑖), and N , Equation 1 encompasses the
same range of metrics as C/W/L, including precision@𝐾 , rank biased
precision [26], and DCG, while providing more explicit support for
NDCG via the normalization factor N .

Reviews also asked about theoretical connections with the ex-
tended C/W/L/A framework described by Moffat et al. [24], which
adds an additional aggregation component to the C/W/L framework
(the “A”). This additional component accommodates evaluation met-
rics such as expected reciprocal rank (ERR) [3, 9], which discounts
the relevance of the item at rank 𝑖 according to the relevance of
items appearing at ranks less than 𝑖. ERR models a searcher scanning
down a ranked list by assuming that the probability they will stop
scanning increases with the amount of relevant material they have

https://arxiv.org/abs/cs.CL/1611.09268
https://arxiv.org/abs/1611.09268
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Prior set
Ranking NDCG@10 R1 R2 R3 Other two R1-3

R1 A B C D E F G H I J 0.7933 - 0.7361 0.8277 0.8417
R2 E D C B A F G H I J 0.7933 0.7361 - 0.7988 0.8316
R3 J I H G F E D C B A 0.7933 0.8277 0.7988 - 0.8681

Table 1: Impact of rank order on NRG. All three rankings include the same items in different orders. Relevant items are bolded. While
NDCG@10 is the same for all rankings, NRG depends on the prior ranking or rankings. See Appendix B for further discussion.

seen, an assumption confirmed by experience in commercial web
search environments [9]. The original C/W/L framework assumes
that the relevance of a item is independent of the items that appear
above it in a ranked list. With a few exceptions [9, 10] this indepen-
dence assumption is shared by other evaluation metrics, including
NRG. The C/W/L/A extension provides a mechanism to address this
independence assumption, as well as providing other benefits.

NRG addresses the same independence assumption, but in a
manner that is orthogonal to C/W/L/A and ERR. NRG adjusts the
relevance of an item (i.e., its gain value) according to a context
defined by a set of prior rankings, rather than by the relevance of
the items that appear above it in the current ranking. While it should
be possible to combine these ideas — making adjustments for both
prior rankings and relevant material in higher ranks — we leave the
exploration of this idea for future work.

B UNIQUE CONTRIBUTIONS
Reviews for this paper suggested an analysis of NRG as a tool for
the development of more robust test collections. Past work on test
collection development — especially collections developed through
TREC – have encouraged diverse retrieval approaches in order to
increase the set of judged-relevant documents. For example, the
overview papers for TREC 7 [15] and TREC-8 [16] report “unique
contributions to the relevant set”, noting that manual runs tend to
make more unique contributions than automatic runs.

TREC test collections are typically constructed using a pooling
process that starts with the experimental runs submitted by partici-
pating groups [13–16]. To create a pool of documents for judging,
TREC organizers take the top-𝐾 documents from one or more runs
per group, based on priorities assigned by the group. These doc-
uments are de-duplicated, randomized, and presented to assessors
for judging. This process is known as “pooling to depth 𝐾”. If a
document appears in the final set of judged relevant documents only
because it appears in the top-𝐾 of a single assessed run, that run is
given credit for contributing a unique document to the pool.

NRG generalizes this “unique contributions to the relevant set”
metric. In Equation 1 let 𝐺 (𝑑𝑖 ) = 1, if 𝑑𝑖 is relevant, 0 otherwise;
seen(𝑖) = 1, if 𝑖 ≤ 𝐾 , 0 otherwise; N = 1; and 𝐾 equal to the pooling
depth. If we take the other runs contributing to the pool as the prior
set, the resulting instantiation of NRG is exactly the number unique
contributions a ranking makes to the pool, averaged over all queries.

Figure 3 plots this “unique contributions” instantiation of NRG
vs. NDCG@10. Since none of the reports or data for the TREC
2019 Deep Learning Track indicate which runs contributed to the
pool — at least as far as we can see — we take as the prior set as
the top run by NDCG@10 from each other group. Consistent with
Figure 2, traditional retrieval methods exhibit high NRG relative to

NDCG@10. Under this variant of NRG, many neural methods make
relatively few or no unique contributions, while some traditional
methods outperform all neural methods.

Variants of NRG based on NDCG, MRR and other metrics
generalize the notion of “unique contributions” to account for the
depth that items appear. However, the value of NRG does not depend
solely on the presence of unique items in a ranking. Table 1 provides
an example. Each of the three rankings (R1, R2, and R3) contain
the same items. At different pooling depths each would contribute
a different number of unique items to a hypothetical pool, but at
depth 10 none make a unique contribution. Each has a relevant item
at rank 1, 5, 6, and 10, which we assume to have equal relevance
at the highest grade, a grade of 4. If we know nothing else about
these items, there is no basis for an evaluation metric to assign them
different scores. NRG values, on the other hand, reflect the different
orderings of the items. R1 and R2, place A at the top and J at the
bottom, while R3 places J at the top and A at the bottom.

Reviews for this paper suggested that the only application of NRG
might be to inform test collection development and improve the
robustness of pools. While improving robustness of pools represents
one application of NRG, it is not the only application. Informally,
NRG measures the extent to which ranking methods behave “like”
some other methods or “differently” than those other methods.
While Figure 2 and 3 suggest that traditional ranking methods —
especially those employing pseudo-relevance feedback — should be
encouraged for test collection development, the figures also suggest
that a traditional method might be valuable in an ensemble ranker
that includes several neural methods. In general, NRG may have
application in any circumstance where we wish to measure diversity
in a set of rankings.

Reviews expressed concerns about the impact of missing judg-
ments on NRG. Like most standard evaluation metrics, NRG is
computed post hoc, after items have been judged. Like most standard
evaluation metrics, NRG may be impacted by unjudged items, which
are often assumed to be non-relevant. Sakai and Kando [29] discuss
approaches to address this problem that could be adapted to NRG.
We leave this effort to future work.

Developing robust test collections may also require us to do more
than just encourage a diversity of methods. Cormack et al. [12]
and Losada et al. [22] both describe dynamic pooling methods that
improve upon fixed-depth pooling, with the goal of increasing the
ratio of relevant items found per judgment. These methods tend to
favor runs that have many relevant items in high ranks, i.e., runs that
will ultimately have high NDCG. It is possible that NRG could be
adapted to created a dynamic pooling method that favors diversity.
We leave this effort to future work.
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Figure 3: NDCG@10 vs. NRG@10 for all runs submitted to the passage-retrieval task of the TREC 2019 Deep Learning Track. In
this plot, NRG is derived from precision@10, where 10 is the pooling depth for the track. For each run, the prior set for computing
NRG@10 consists of the best run submitted from each other group. Appendix B explains the relationship between this metric and
unique contributions to the relevant set.

C FURTHER COMPARISONS
As a central contribution of this paper, we place the ideas of Türkmen
et al. [30] and Arabzadeh et al. [1] on a more solid theoretical
foundation. We are not claiming that the work in those papers is
incorrect, or that different conclusions would always be reached if
we apply NRG instead of the metrics in those paper. We have already
noted that Figure 1 can be directly compared with plots in Arabzadeh
et al. [1]. Türkmen et al. [30] have no notion of a prior set — they
compute rareness in terms of all available rankings — so we cannot
compute the equivalent figure for their metric without modification,
which was the starting point for the work in this paper.

Neither Türkmen et al. [30] nor Arabzadeh et al. [1] provide a
software release. In addition to an implementation of our NRG metric,
our software release includes an implementation of rareness-based
precision-at-k [30] and TaSC [1]6. Using these implementations we
have repeated the experiment of Section 4.

6https://anonymous.4open.science/r/Normalized-Residual-Gain-0B4A/

The results are plotted in Figure 4 and Figure 5. These plots may
be compared to Figure 2 and Figure 3. Both rareness-based preci-
sion@10 and TaSC are correlated with NDCG@10. Neither metric
suggests any distinction between traditional and neural methods.
Since rareness-based precision@10 [30] does not have an notion
of a prior set, we follow the definition of that paper and compute
the metric over all runs. While we considered modifying the metric
to incorporate the notion of a prior set, for the purposes of this
comparison we adhere as closely as possible to the definition in the
paper.

Other comparisons might prove interesting. In particular, it might
be interesting to apply NRG to older TREC experiments, where
manual runs were more prevalent [15, 16]. It might also be interesting
to explore various re-ranking and other methods in terms of their
impact on NRG. For example, we might expect ensemble methods
such as reciprocal rank fusion [11] to lower NRG, since it gives
higher scores to items that appear in more rankings. If NRG proves
to be a useful tool, these comparisons can be considered for future
work.

https://anonymous.4open.science/r/Normalized-Residual-Gain-0B4A/
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Figure 4: NDCG@10 vs. rareness-based precision@10 for all runs submitted to the passage-retrieval task of the TREC 2019 Deep
Learning Track. For each run, the rarity of documents within top-10 ranked list of documents is calculated based on all the runs
including the target run.

Figure 5: NDCG@10 vs. TaSC for all runs submitted to the passage-retrieval task of the TREC 2019 Deep Learning Track. For each
run, the prior set for computing MAX TaSC consists of the best run submitted from each other group.
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