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ABSTRACT
The increasing complexity and multidisciplinary nature of queries
on Community Question Answering (CQA) platforms have ren-
dered the traditional model of individual expert response inade-
quate. This paper tackles the challenge of identifying a group of
experts whose combined expertise can effectively address such com-
plex inquiries collaboratively, leading to more accepted answers.
Our approach jointly learns topological and textual information
extracted from the CQA environment in an end-to-end fashion.
Extensive experiments on several real-life datasets indicate that
our approach improves the quality of expert ranks on average 4.6%
and 7.1% in terms of NDCG and MAP, respectively, compared to the
best baseline. The results also reveal that groups formed by our
approach are more collaborative and on average 61.6% of members
recommended by our approach are among the true answerers of
questions which is around 6.1 times improvement compared to the
baselines.
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1 INTRODUCTION
Community-based question answering (CQA) platforms such as
Stack Exchange and Quora play a pivotal role in matching informa-
tion seekers with knowledgeable individuals. The task of identify-
ing suitable community experts for new questions is crucial as it
can significantly enhance the quality and longevity of answers [5].
This process, often referred to as expert finding or question routing
in the literature [59, 66, 68], traditionally relies on the similarity
between the textual content of new questions and the historical
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contributions of experts [8, 22, 54]. Recent approaches also con-
sider the social networks of experts to improve the relevance and
quality of matches [35, 50, 59]. Although such approaches achieve
promising results, a significant number of questions in CQA sys-
tems still remain unanswered or without accepted answers. For
example, as of January 2024, there were approximately 3.4 million
unanswered questions and over 11.7 million questions without an
accepted answer on Stack Overflow1.

One of the main reason is the complexity of questions which
often necessitates input from multiple experts. This is reflected
in the average length of discussion threads—6.7 on platforms like
StackOverflow and Yahoo![40], indicating that effective answers
often result from the collaboration among experts with diverse,
complementary point of views. Despite these implications, existing
methods frequently overlook the collaborative dynamics among
experts, which is a foundational aspect of problem-solving on CQA
platforms. Indeed, effective and lasting answers typically emerge
from early collaborative interactions among experts, who combine
their diverse and complementary skills to provide comprehensive
solutions[5]. This highlights a pressing need for methodologies
that not only identify individual expertise but also facilitate the
formation of expert groups capable of collaboratively addressing
more complex and multidisciplinary questions.

To this end, we argue that to effectively capture such interactions
and leverage both textual and topological information for expert
finding, the learning process must happen in tandem such that the
impact of latent topological information is considered during the
process of learning representations for textual content and vice
versa. To do so, we present a novel kernel-based model that jointly
learns embedding representations for information within the CQA
network based on both topological and textual information. We
also incorporate a mechanism to consider the collaboration level
of the top-ranked experts for an input question while retrieving
experts for a new question. Our proposed method ranks compact
subgraphs of the CQA network using their corresponding textual
contents given a subgraph built using newly posted questions. Thus,
collaborative experts with similar expertise obtain similar ranking
scores. In summary, the main contributions of our work are outlined
as follows:

• we formulate the problem of collaboration-driven experts
finding in a CQA platform as a ranking problem that is driven
by embedding representations learned by jointly considering
both textual and topological information in tandem;

• we systematically consider the level of past collaboration
history between the ranked list of retrieved experts such that
they show effective past collaboration with each other as
opposed to only ranking experts to question based on their
relevance independently;

1https://data.stackexchange.com/stackoverflow/queries
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• we propose a novel end-to-end model to learn the latent rep-
resentations of entities in a CQA environment by satisfying
two objectives: (1) employing topological and textual infor-
mation extracted from the environment, and (2) adopting
experts’ past collaborations. Our proposed kernel pooling-
based model captures the topological features of entities,
the textual content in the CQA network, and the experts’
collaboration history;

• we carry out extensive comparative experiments to shed
light on the performance of our model and the existing state-
of-the-art expert finding techniques in terms of finding an
effective list of experts.

• we conduct extensive experiments on four real-life datasets
to investigate the impact of using different types of informa-
tion for the expert finding task. Our ablation study reveals
that jointly learning latent representations of entities such
as questions, owners, tags, and experts in the CQA network
along with the content similarity of questions and their an-
swers in an end-to-end framework boosts the quality of the
expert finding task in terms of widely-used ranking metrics.

2 RELATEDWORK
The literature can be categorized into two main streams: expert
finding, which focuses on identifying individuals with specific ex-
pertise, and collaborative team discovery, which aims to assemble
groups of experts that can effectively work together to complete a
given project.

2.1 Expert Finding
Recent studies on expert finding focus on matching new questions
with experts who have the requisite knowledge and willingness to
respond [4, 12, 35, 69]. These studies are categorized into three main
approaches based on the information sources used in Community
Question Answering (CQA) platforms: content-based, network-based,
and hybrid methods.

Content-based methods rely on the textual content produced by
experts, such as questions, answers, and tags, to recommend the
most suitable answerers for new questions. These methods typi-
cally frame expert finding as a document ranking problem, using
language models [2, 3, 22, 32, 33, 39, 49, 70, 70, 71], learning to rank
techniques [7, 22], latent topic modeling [17, 34, 42, 53, 63], and col-
laborative filtering [9, 28, 58, 64, 69]. Network-based methods lever-
age the topological information derived from relationships among
entities within the environment to identify experts [21, 56, 72]. For
example, some studies construct user-user graphs and apply link
analysis techniques to measure user authority using centrality met-
rics like PageRank and HITS [23, 67]. Hybrid methods integrate
both content-based and network-based approaches to enhance ex-
pert finding by combining textual and topological information from
the CQA environment. These methods utilize techniques such as
linear combination [36], learning to rank [1, 57], reciprocal rank
fusion (RRF) [29, 30], and probabilistic generative models [65].

Traditional methods often depend on hand-crafted features and
struggle to capture the semantic depth of questions for expert rec-
ommendation. However, recent advancements in deep learning
have significantly improved expert finding systems by enabling

models to learn semantic features from textual data and extract topo-
logical information from CQA environments. For instance, Peng
et al. [46] introduced a multi-view matching method that learns
features from question titles, bodies, and tags and integrates this
information using a personalized attention network. Liu et al. [37]
developed a non-sampling learning model that leverages complete
data rather than negative sampling. Peng et al. [48] presented the
Hierarchical Matching network (EFHM), which includes word and
question-level match encoders to capture fine-grained semantic
matching and an expert-level match encoder for overall expert fea-
ture matching. Sun et al. [59] constructed a heterogeneous network
and used a graph convolutional network to learn embeddings of
various entities end-to-end. Li et al. [35] applied a heterogeneous
information network (HIN) embedding model to embed question
content, askers, answerers, and their relationships into a shared
latent space, using these representations to rank potential answer-
ers. Qian et al. [50] proposed a model that combines contrastive
learning with meta-path walks to learn user interest and expertise
embeddings in a unified framework. Our method differs by jointly
learning latent representations of both textual and topological infor-
mation, resulting in enriched embeddings, and using an end-to-end
framework based on the quality of predicted expert ranks.

Pretrained language models (PLMs) like BERT [13] have fur-
ther enhanced language modeling by enabling models to learn
generalized knowledge representations from large unsupervised
datasets. This knowledge transfer has been particularly beneficial
for downstream NLP tasks in low-data scenarios. Inspired by this,
researchers have explored pre-training’s potential for expert identi-
fication [38, 44]. For example, Liu et al. [38] introduced ExpertBert,
a pretraining language model designed for expert finding on CQA
platforms, which focuses on modeling questions, experts, and their
matching patterns. Peng et al. [44] proposed an expert-level pre-
training paradigm that integrates expert interest and expertise,
incorporating historical answered question titles and vote score
information for comprehensive expert representations. They fur-
ther extended this work with personalized information integra-
tion and a fine-grained expert pre-training architecture [47], and
a CQA-domain contrastive pre-training framework [45] that im-
proves question representations through a title-body contrastive
learning task and a personalized tuning network.

Despite many approaches to expert finding in CQA systems,
most ignore the collaborative nature of question answering, over-
looking past collaborations among experts. The research by [6]
is one of the few that addresses collaborative question routing in
CQA. Unlike our end-to-end framework that jointly captures tex-
tual and topological information, their proposed greedy algorithm
(CQR) uses heuristics to capture expert expertise, availability, and
compatibility, forming a collaborative group based on these factors.

Most existing methods for expert finding in CQA systems neglect
the collaborative aspect of expert recommendations, making it chal-
lenging to provide qualified answers for multidisciplinary questions
requiring expertise in various fields. Only a few studies [6, 14] aim
to route new questions to small teams of collaborating experts. Our
approach differentiates itself by estimating collaboration among
experts and computing the similarity between required skills for
new questions and the skills of experts. Our method learns and
uses embeddings of experts, questions, and tags, assigning higher
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ranking scores to experts with more interactions or similar tags
due to the high similarity in their embeddings. This contrasts with
other methods that rely on tags and expert co-occurrence networks
to estimate collaborative willingness among experts.

2.2 Collaborative Team Discovery
A related line of research to collaborative expert finding is the
problem of assembling expert teams from networks using graph-
based search techniques, which has garnered significant attention
in recent years [15, 24, 25, 27, 27, 52, 61]. Given a graph whose
nodes are experts and edges represent their past collaborations,
these methods aim to find a compact subgraph of the network
whose nodes possess the skill sets required by the question while
optimizing a predefined objective functions. For example, Lappas
et al. [31] proposed a method, called CC here, to find a team while
maximizing the collaboration level among the members. Khan et al.
[25] proposed approximation algorithms, called CS, to form compact
groups in a way that members are closely connected and each one
owns as many required skills as possible. Kargar et al. [24] designed
a method, called CO here, to find a team while maximizing the
collaboration level among team members and their expertise level
by considering the problem of group discovery over weighted node-
labeled network graphs.

Recently, there has been growing interest in using neural-based
approaches for the problem of forming expert teams from expert
networks [18, 51]. Sapienza et al.’s work [55] is a pioneering effort in
this area, utilizing an autoencoder design to accelerate computation.
However, this approach tends to overfit, resulting in suboptimal
performance, especially given the sparse nature of collaboration
networks. Meanwhile, Nikzad-Khasmakhi et al. [43] leverage a neu-
ral architecture to learn expert representations, enabling expert
retrieval by measuring similarity scores between required skills
and experts. Rad et al. [18] take a different approach with a varia-
tional Bayesian neural network that goes beyond simple mappings
between skill and expert nodes. Their method identifies teams with
a history of collaboration, ensuring comprehensive skill coverage.

Despite the advances in team formation methods, these ap-
proaches have limitations that hinder their direct application to the
collaborative expert finding task: (1) they require a predefined set
of skills, and (2) they are computationally expensive (NP-hard in
practice) and rely on heuristic-based approximations that can lead
to suboptimal teams due to the local exploration of subgraphs. Our
method addresses these limitations by mapping the CQA network
graph and its textual data into an efficient embedding space.

3 PROBLEM FORMULATION
Let𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛} be a set of𝑛 questions, and𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑚}
be a set of𝑚 experts (or answerers). Let 𝑞 (𝑖 )𝑒 be a set, represented
by {𝑒 (𝑖 )1 , 𝑒

(𝑖 )
2 , ..., 𝑒

(𝑖 )
𝑛𝑖 }. This set contains 𝑛𝑖 answerers ( 𝑒𝑖 ∈ 𝐸 ) who

have answered the question 𝑞𝑖 . Their respective answers are given
in the set 𝑎 (𝑖 ) , denoted by {𝑎 (𝑖 )1 , 𝑎

(𝑖 )
2 , ..., 𝑎

(𝑖 )
𝑛𝑖 }, corresponding to the

same question 𝑞𝑖 . Each answer receives a voting score, 𝑠 (𝑖 )
𝑗

, which
is calculated by taking the difference between the up-votes and
down-votes given by users who have seen this answer. Also, allow
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Figure 1: A CQA heterogeneous network
𝑡 (𝑖 ) = {𝑡 (𝑖 )1 , 𝑡

(𝑖 )
2 , .., 𝑡

(𝑖 )
𝑧𝑖 } to be a set of tags for question 𝑞𝑖 assigned

by its asker denoted as 𝑜𝑖 .
Problem statement. Given a new question 𝑞′, the problem of

finding collaborative experts is to build a ranked list of experts from
𝐸 that satisfy two main objectives: (O1) each recommended expert
possesses a high level of expertise related to those needed to answer
𝑞𝑘 . Assume that the model R : 𝐸 → N1, provides a ranked list of
experts for 𝑞𝑘 . Given two experts, 𝑒𝑖 and 𝑒 𝑗 , answering a question
𝑞𝑘 . If 𝑠

(𝑘 )
𝑖

≥ 𝑠
(𝑘 )
𝑗

, then the ranking score of 𝑒𝑖 for 𝑞𝑘 will also be
greater than or equal to that of 𝑒 𝑗 :

R(𝑒𝑖 |𝑞𝑘 ) ≥ R(𝑒 𝑗 |𝑞𝑘 )

Here, R(𝑒 |𝑞𝑘 ) denotes a positive integer, representing the ranking
score of expert 𝑒 for 𝑞𝑘 .

(O2) Each expert is highly inclined to collaborate. For two ranked
lists, Π𝑚 and Π𝑛 , Π𝑚 is preferred if:∑︁

𝑒𝑖 ,𝑒 𝑗 ∈Π𝑚

Pcl (𝑒𝑖 , 𝑒 𝑗 ) ≥
∑︁

𝑒𝑘 ,𝑒𝑙 ∈Π𝑛

Pcl (𝑒𝑘 , 𝑒𝑙 )

Here, Pcl represents past collaborations between two experts; greater
past collaboration indicates a higher likelihood of future coopera-
tion.

In this paper, we model our data as a network. The Community
Question Answering (CQA) heterogeneous network is denoted as
G(V, E,T), where V is the set of node, E represents the set of
edges, and T denotes the types of nodes and edges, respectively. In
this graph, nodes can be questions (q), tag (t), asker (o), or experts (e).
Edges can also be of types: question-expert (q–e), question-asker
(q–o), and question-tag (q–t).

Fig. 1 illustrates a CQA heterogeneous network. The weight on
an edge (for 𝑞−𝑜 , 𝑞−𝑤 edges) shows the voting score. For instance,
the weight of 4 between 𝑎2 and 𝑒4 shows that the answer 𝑎2 from
expert 𝑒4 received 4 votes. Additionally, question 𝑞3 is associated
with two tags: 𝑡4 and 𝑡1.

4 PROPOSED APPROACH
Figure 2 shows an overview of the proposed framework. Given a
new question, we leverage both the structure and semantics of the
CQA heterogeneous network to identify experts. We first introduce
a sub-graph kernel pooling technique, encoding the network’s topo-
logical data while factoring in historical collaborations between
experts (explained in Subsection 4.1). Subsequently, we extract
and encode the semantics from the attributes of the nodes and
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Figure 2: The proposed framework overview.

edges within sub-graphs using another kernel pooling approach
(explained in Subsection 4.2). These processed features are then
input into a multilayer perceptron, determining the expert rank-
ings (explained in Subsection 4.3). Our model undergoes end-to-end
training and, once trained, can rank experts for any new question
(explained in Subsection 4.4).

4.1 Sub-graph Encoding
To capture the topological information within the CQA network,
our method begins by iterating over each node 𝑞 categorized as
a ‘question’ in network G. For each question node, we construct
sub-graphs: 𝑔𝑞 (derived from the question node) and 𝑔𝑒 (sourced
from either the linked or unlinked answerer node to the question).
These sub-graphs are obtained via a random walk initiated from the
respective question and answerer nodes in the network. Inspired
by document ranking techniques [10, 62], we treat the question
subgraph as a query. Concurrently, its linked answerer subgraph
is viewed as a relevant document, while some unlinked answerer
subgraphs (selected randomly from the network) to the question
are considered irrelevant documents.

Given a question and its associated answerer subgraphs, the node
embeddings within the sub-graphs 𝑔𝑞 and 𝑔𝑒 can be formulated as:

Z𝑔𝑞 = (z𝑞1 , z
𝑞

2 , ..., z
𝑞

|𝑔𝑞 | )

and
Z𝑔𝑒 = (z𝑒1, z

𝑒
2, ..., z

𝑒
|𝑔𝑒 | )

The dimensions of Z𝑔𝑞 and Z𝑔𝑒 are defined as R |𝑔𝑞 |×𝑑 and R |𝑔𝑒 |×𝑑 ,
respectively, where𝑑 is the embedding dimension of nodes. Notably,
|𝑔| represents the number of nodes in sub-graph 𝑔.

To obtain the similarity feature vector for the pair (𝑔𝑞, 𝑔𝑒 ), we
employ a differentiable function, Φ, defined as:

y𝑞𝑒 = Φ(Z𝑔𝑞 ,Z𝑔𝑒 ), (1)

where y𝑞𝑒 ∈ R𝑟 denotes the dimension of the feature vector, cap-
turing the topological similarity between 𝑔𝑞 and 𝑔𝑒 .

We define function Φ as a neural learn-to-ranking method based
on kernel pooling as follows. First, embedding vectors of nodes in
𝑔𝑞 and 𝑔𝑒 are utilized to compute the translation matrix M(𝑡 ) ∈
R |𝑔𝑒 |× |𝑔𝑞 | as:

𝑚
(𝑡 )
𝑖 𝑗

=
z𝑒
𝑖
z𝑞
𝑗

| |z𝑒
𝑖
| |.| |z𝑞

𝑗
| |
, (2)

where embedding vectors z𝑒
𝑖
and z𝑞

𝑗
are the embedding vectors of

node 𝑖 in 𝑔𝑒 and node 𝑗 in 𝑔𝑞 , respectively. Such embedding vectors
of nodes are randomly initialized and learned in an end-to-end
manner during the training phase.

Element𝑚 (𝑡 )
𝑖 𝑗

reveals the similarity between embedding vector

of node 𝑖 in 𝑔𝑒 and node 𝑗 in 𝑔𝑞 . Let M
(𝑡 )
𝑖

denote row 𝑖 in matrix
M(𝑡 ) in which it captures the similarity between node 𝑖 in 𝑔𝑒 and
all nodes in 𝑔𝑞 . We reduce the size of M(𝑡 )

𝑖
(𝑖 = 1, 2, ..., |𝑔𝑒 |) from

|𝑔𝑞 | to 𝑟 using 𝑟 kernels to obtain an 𝑟 -dimensional feature vector.
The effectiveness of the feature vector depends on the kernels used
in the model. The RBF kernel is adopted as follows due to the fact
that it is differentiable and its high performance reported in the
literature [62].

Suppose 𝑟 RBF kernels as K(𝑡 ) = {𝐾 (𝑡 )
1 , 𝐾

(𝑡 )
2 , ..., 𝐾

(𝑡 )
𝑟 }, kernel

𝐾
(𝑡 )
𝑘

(𝑘 = 1, 2, ..., 𝑟 ) is applied on the 𝑖𝑡ℎ row of the translation

matrixM(𝑡 ) , i.e., M(𝑡 )
𝑖

, as follows:

𝐾
(𝑡 )
𝑘

(M(𝑡 )
𝑖

) =
|𝑔𝑞 |∑︁
𝑗=1

𝑒𝑥𝑝
©«−

(𝑚 (𝑡 )
𝑖 𝑗

− 𝜇𝑘 )2

2𝜎2
𝑘

ª®¬ . (3)

where 𝜇𝑘 and𝜎𝑘 are the parameters of kernel𝐾 (𝑡 )
𝑘

, and𝐾 (𝑡 )
𝑘

(M(𝑡 )
𝑖

) ∈
R. By applying 𝑟 kernels onM(𝑡 )

𝑖
, we build a vector with 𝑟 values

as:

K(𝑡 ) (M(𝑡 )
𝑖

) =
(
𝐾
(𝑡 )
1 (M(𝑡 )

𝑖
), 𝐾 (𝑡 )

2 (M(𝑡 )
𝑖

), ..., 𝐾 (𝑡 )
𝑟 (M(𝑡 )

𝑖
)
)
. (4)

Given matrix M(𝑡 ) with |𝑔𝑒 | rows, we end up with |𝑔𝑒 | vectors
as K(𝑡 ) (M(𝑡 )

1 ),K(𝑡 ) (M(𝑡 )
2 ), ...,K(𝑡 ) (M(𝑡 )

|𝑔𝑒 | ). Finally, the log-sum of
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such |𝑔𝑒 | feature vectors is computed to obtain the similarity be-
tween subgraphs 𝑔𝑒 and 𝑔𝑞 as feature vector y𝑞𝑒 as:

y𝑞𝑒 =

|𝑔𝑒 |∑︁
𝑖=1

𝑙𝑜𝑔 K(𝑡 ) (M(𝑡 )
𝑖

) . (5)

where y𝑞𝑒 ∈ R𝑟 .

4.2 Semantic Encoding
Parallel to the sub-graph encoding, the similarity between the con-
tents of attributes of the question node and its connected answerer
is captured by the semantic encoding component as follows. Sup-
pose 𝑡𝑥𝑡𝑞 and 𝑡𝑥𝑡𝑒 with 𝑛𝑞 and 𝑛𝑒 words are the title and body of
starting question 𝑞 in 𝑔𝑞 and the content of the answer written by
staring expert 𝑒 in 𝑔𝑒 , respectively. LetW𝑞 = (w𝑞

1 ,w
𝑞

2 , ...,w
𝑞
𝑛𝑞 ) and

W𝑒 = (w𝑒
1,w

𝑒
2, ...,w

𝑒
𝑛𝑒
) be lists of word embedding vectors in 𝑡𝑥𝑡𝑞

and 𝑡𝑥𝑡𝑒 . Assume that 𝑑′ is the word embedding dimension in 𝑡𝑥𝑡𝑞
and 𝑡𝑥𝑡𝑒 , i.e., w

𝑞

𝑖
, w𝑒

𝑗
∈ R𝑑 ′

. We define a differentiable function Ψ

to obtain the similarity of pair (𝑡𝑥𝑡𝑞, 𝑡𝑥𝑡𝑒 ) as:

s-tf𝑒𝑞 = Ψ(W𝑞,W𝑒 ) . (6)

We utilize a neural learning to rank method based on kernel pooling
to encode the textual similarity between 𝑞 and the answer provided
by 𝑒 . First, each element of the translation matrix M(𝑐 ) is com-
puted using the embeddings of the words as: w𝑒

𝑖
w𝑞

𝑗
/| |w𝑒

𝑖
| |.| |w𝑞

𝑗
| |.

Then, a set of RBF kernels denoted by K(𝑐 ) with 𝑚 kernels as
{𝐾 (𝑐 )

1 , 𝐾
(𝑐 )
2 , ..., 𝐾

(𝑐 )
𝑚 } is applied on matrix M(𝑐 ) to obtain the soft

term frequency feature (s-tf) vector. The RBF kernel 𝐾 (𝑐 )
𝑘

(𝑘 =

1, 2, ...,𝑚) is computed on the 𝑖𝑡ℎ row of matrix M(𝑐 ) , i.e., M𝑖
(𝑐 ) ,

as:

𝐾
(𝑐 )
𝑘

(M(𝑐 )
𝑖

) =
𝑛𝑞∑︁
𝑗=1

𝑒𝑥𝑝

(
−(𝑚 (𝑐 )

𝑖 𝑗
− 𝜇𝑘 )2/2𝜎2𝑘

)
, (7)

where 𝜇𝑘 and 𝜎𝑘 are the parameters of kernel 𝐾 (𝑐 )
𝑘

. Finally, vector

s-tf𝑒𝑞 ∈ R𝑚 is computed as:
∑𝑛𝑐
𝑖=1 𝑙𝑜𝑔 K(𝑐 ) (M(𝑐 )

𝑖
).

4.3 Expert Rank Predictor
The topological and textual similarities between question 𝑞 and its
answerers encoded in y𝑞𝑒 and s-tf𝑒𝑞 are utilized by a multilayer
perceptron network to predict the ranking scores of the answerers
of the question. Given a question, we define R as the proposed
model to rank experts:

R(𝑞, 𝑒) = 𝜎 (𝑛)
(
𝜎 (𝑛−1) (..𝜎 (1) (x𝜃 (1) + 𝑏 (1) ) ..)𝜃 (𝑛) + 𝑏 (𝑛)

)
, (8)

where x = y𝑞𝑒 | |s-tf𝑒𝑞 and | | is the concatenation of two vectors,
and 𝜎 (𝑖 ) is a non-liner activation function in layer 𝑖 with trainable
parameters 𝜃 (𝑖 ) and bias 𝑏 (𝑖 ) . Note that R(𝑞, 𝑒) predicts the voting
score of the answer provided by expert 𝑒 to answer question 𝑞.

4.4 Model Training
Consider question 𝑞 (𝑖 ) and its true answerers set as 𝑞 (𝑖 )

𝑒+ . Let 𝑞
(𝑖 )
𝑒−

be a set of random negative samples where |𝑞 (𝑖 )𝑒− | = |𝑞 (𝑖 )
𝑒+ |. The loss

Algorithm 1:Model Training
Input: G(V, E, T) .
Output: 𝜃 , b, Z, W, Π.

1 begin
2 Randomly initial 𝜃 , b, node and word embeddings namely Z,W.
3 /* Training in each epoch */
4 foreach node 𝑞 of type question in G do
5 𝑞𝑒+ : a set of nodes of type answerers in G connected to

node 𝑞𝑖 .
6 𝑞𝑒− : a random answerers in G disjoined to 𝑞 with size

|𝑞𝑒+ | .
7 foreach pair (𝑒+, 𝑒− ) ∈ 𝐸𝑞 = {𝑞𝑒+ × 𝑞𝑒− } do
8 Build subgraphs 𝑔𝑞 , 𝑔𝑒+ , and 𝑔𝑒− .
9 /*Parallel Computations:*/

10 y𝑞𝑒+ = Φ(Z𝑔𝑞 ,Z𝑔𝑒+ ) . using Eq. 1
11 y𝑞𝑒− = Φ(Z𝑔𝑞 ,Z𝑔𝑒− ) .
12 s-tf𝑒+𝑞 = Ψ(W𝑞,W𝑒+ ) using Eq. 6
13 s-tf𝑒−𝑞 = Ψ(W𝑞,W𝑒− )
14 /*Predict ranks using Eq. 8 */
15 𝑠𝑒+ = R(𝑞, 𝑒+ ) .
16 𝑠𝑒− = R(𝑞, 𝑒− ) .
17 end
18 Minimize L =

∑
(𝑒+,𝑒− ) ∈𝐸𝑞 𝑚𝑎𝑥 (0, 1 − 𝑠𝑒+ + 𝑠𝑒− )/|𝐸𝑞 | .

19 end
20 /* Collaborative Experts Retrieval */
21 Create subgraph 𝑔𝑞′ for new question 𝑞′ .
22 foreach expert 𝑒 in 𝐸 do
23 Compute y𝑞′𝑒 = Φ(Z𝑔𝑞′ ,Z𝑔𝑒 ) .
24 Compute s-tf𝑒𝑞′ = Ψ(W𝑞′ ,W𝑒 ) .
25 𝑠𝑒 = R(y𝑞′𝑒 , s-tf𝑒𝑞′ ) .
26 end
27 Π = (top ranked experts based on their 𝑠𝑒 )
28 end

value for 𝑛 questions is defined as:

L =
1
𝑛

𝑛∑︁
𝑖=1

∑
𝑒+∈𝑞 (𝑖 )

𝑒+ ,𝑒
−∈𝑞 (𝑖 )

𝑒−
𝑚𝑎𝑥 (0, 1 − 𝑠𝑒+ + 𝑠𝑒− )

|𝑞 (𝑖 )
𝑒+ |

, (9)

where 𝑠𝑒 = R(𝑞 (𝑖 ) , 𝑒). The model is trained to minimize the pro-
posed loss function.

Algorithm 1 illustrates the detailed steps to train the model for
collaborative expert finding. The algorithm begins by initializing
parameters and embeddings, which are then refined through it-
erative training. Each epoch consists of processing nodes labeled
as questions in the graph G, for which paired sets of connected
and randomly disconnected answerers are constructed. The algo-
rithm constructs subgraphs for each question and its connected
and disconnected answerers, and computes embeddings to predict
the relative ranks of these answerers using the defined functions
Φ and Ψ. Subsequently, the model is optimized using a margin-
based loss function designed to enhance the separation between
the scores of connected (positive) and disconnected (negative) an-
swerers, thereby improving the accuracy in identifying true experts.
In the final phase, the trainedmodel is applied to retrieve top-ranked
experts for new questions. This retrieval process evaluates the rel-
evance of potential experts based on learned representations and
ranking functions, ensuring effective identification of suitable col-
laborators.
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Table 1: Statistics of the datasets.

Dataset N Questions Experts+Owners Tags
android 2,903 882 1,511 510
history 4,102 1,697 1,838 567
dba 6,959 2,906 3,475 578
physics 11,265 4,912 5,636 717

5 EXPERIMENTAL RESULTS
In this section, we present the findings from a series of experiments
conducted to evaluate the performance of our proposed model
against baselines.

5.1 Datasets and Baselines
Datasets. Table 1 presents a summary of the datasets that we used
which were released by Stack Exchange in September 2019. During
data preprocessing, stopwords and special characters were removed
and only questions with a minimum of two answers were retained.
Also, answers with voting scores less than four were removed. The
pre-processed datasets along with our code and the results are
publicly available2.
Baselines. Two sets of baselines are adopted for investigating the
performance of the proposed approach:

• Expert Finding: we compare the proposed framework with
the state-of-the-art expert finding techniques, i.e., PMEF[46],
EndCold (EnC) [59], and NeRank (NeR) [35]. PMEF[46] incor-
porates different view textual information for expert and
question learning in a personalized way. The EnC method
employs a graph convolutional network to learn the topolog-
ical information of the CQA heterogeneous network in an
end-to-end way. The NeR method uses both the textual and
topological information extracted from a CQA environment
to build latent representations. Then, such latent represen-
tations are used to rank experts. Furthermore, inspired by
[39], we used existing neural-based learning to rank meth-
ods including DUET [41], CKNRM [11], KNRM [62], and
DSSM[19] to build different expert finding techniques that
only rely on the textual information in a CQA environment.
We employ the default parameters implemented in Match-
Zoo [16].

• Collaborative Team Discovery: we also compare the re-
sults with the collaborative question routing techniques,
i.e., CQR [5] which models the collaborations among experts
using a homophily graph. Then, a greedy technique is em-
ployed to build a collaborative group of experts. Furthermore,
we compare our work with three team formation techniques,
namely CC [31], CO [24], CS [25]. These methods find a set of
experts that collectively cover the skills required to answer
the new question. These methods employ heuristics to lo-
cally explorer on the CQA graph to form a group. Therefore,
they are not always able to find the optimal team given the
local search on the graph.

2https://anonymous.4open.science/r/SIGIRAPColExperts

5.2 Evaluation Metrics
We used two groups of evaluation metrics based on our objectives,
namely O1 and O2:

• Ranking Metrics: To evaluate methods based on objec-
tive O1, popular ranking metrics, namely normalized dis-
counted cumulative gain (NDCG) [20] and mean average pre-
cision (MAP)[60], are employed. The NDCG@n indicates how
well the discovered ranked list of n experts matches with
their true ranks. Similarly, MAP@n demonstrates that on av-
erage what portion of the top-n ranked experts are among
the true experts.

• Collaboration Metrics: Several metrics are adapted from
the literature to evaluate the quality of discovered collab-
orative experts for a new question [5] (objective O2). In-
tuitively, answering common past questions is considered
a sign of collaboration among recommended experts. We
use the following metrics by considering 𝑛 test questions
labeled as 𝑞1, .., 𝑞𝑛 , and when 𝑞 (𝑖 )𝑒 , and 𝑞 (𝑖 )𝑒 are the recom-
mended and ground truth answerers of the test question
𝑞𝑖 : (1) Gold Standard Match (GM) computes the match be-
tween recommended experts and the true answerers of test
questions as: GM = 100

𝑛

∑𝑛
𝑘=1

(
|𝑞 (𝑘 )𝑒 ∩ 𝑞 (𝑘 )𝑒 |/|𝑞 (𝑘 )𝑒 |

)
. Metric

GM is equivalent to Recall in the information retrieval; (2)
Precision at N (PN) measures the percentage of discovered
experts that match with the actual answerers of each test
question as: PN = 1

𝑛

∑𝑛
𝑘=1 |𝑞

(𝑘 )
𝑒 ∩ 𝑞 (𝑘 )𝑒 |/|𝑞 (𝑘 )𝑒 |; (3) F1-score

(F1): F1 = 1
𝑛

∑𝑛
𝑘=1 2GM𝑘PN𝑘/GM𝑘 + PN𝑘 , where GM𝑘 and PN𝑘

aremetrics GM and PN computed for test question𝑘 . (4) Match-
ing Set Count (MSC) indicates the percentage of test ques-
tions in which at least one of their recommended experts
is among the true answerers: MSC = 1

𝑛

∑𝑛
𝑘=1 𝑓 (𝑞

(𝑘 )
𝑒 , 𝑞

(𝑘 )
𝑒 ),

where 𝑓 (𝑥,𝑦) = 1 if 𝑥 ∩ 𝑦 ≠ 𝜙 ; otherwise zero.

5.3 Experimental Setup
In each dataset, 90% of questions are used for training and 10% for
testing. For each test question, all experts are potential answerers.
Subgraphs 𝑔𝑞 and 𝑔𝑒 are created using respective first-order neigh-
bors. RBF kernel parameters range from 𝜇1 = 1.0 to 𝜇11 = −0.9,
and 𝜎1 = 10−3 with 𝜎 = 0.1 for kernels K(𝑡 ) and K(𝑐 ) . Embedding
dimensions are 𝑑 = 128 and 𝑑′ = 300. We utilized Adam [26] as
the optimizer with an exponential decay learning rate initialized
from {1× 10−5, 1× 10−4} and other parameters with default values.
For EnC, based on author explanations, it is implemented with two
convolutional layers and an embedding dimension of 128. We used
an MLP with two layers for both our method and EnC. In CQR [5], all
experts’ availabilities are equally weighed. For other baselines, we
adhered to default parameters from their original implementations.
The best results from five repetitions are reported.

5.4 Impact of Topological and Textual Encoding
We first conduct experiments to investigate the impact of end-to-
end jointly learning of the topological and textual information
extracted from the CQA environment. As such, three variations of
the proposed technique are built as follows: TextOnly, employs
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Figure 3: Impact of employing topological and textual information on predicting expert ranks based on ranking metrics NDCG
and MAP at search depth 𝑛.

only the textual information, TopologyOnly, utilizes only topo-
logical information, and Topology+Text. uses both textual and
topological information. The methods are used to rank the true
answerers of test questions and random negative samples with
the same number of true answerers. The ground truth ranks are
obtained based on the answers’ voting scores of the experts. The
ranking metrics are employed to evaluate the results as shown in
Fig. 3. In this figure, 𝑛 denotes the rank depth determined based on
the maximum number of answerers of test questions in each dataset.
We observe that: 1) the superior expert ranks in terms of NDCG and
MAP is achieved when the model utilizes both the topological and
textual data; 2) the topological information is more informative for
ranking experts compared to only employing textual information;
3) using both the topological and textual data improves the quality
of experts’ ranks on average by 3.4% in terms of NDCG and 11.29%
in terms of MAP compared to the variant utilizing only the topologi-
cal data on all datasets. Thus, we report the results of the variant
employing both the topological and textual data as our best model
in the rest of this paper.

5.5 Quality of Expert Ranks
We conduct comprehensive experiments to evaluate the effective-
ness of our proposed approach against existing expert finding base-
lines. Our primary focus is on assessing the quality and accuracy
of the predicted rankings of experts. In our experimental setup,
each method ranks the individuals who have provided true answers
to test questions, identified based on their voting scores from es-
tablished experts in the domain. For a thorough evaluation, we
augment each test question with an equal number of randomly
selected negative samples, in addition to the true answerers.The
results are depicted in Fig. 4. We make several observations: 1) Our
model achieves consistently superior expert ranks in terms on both
NDCG and MAP on all datasets. It indicates that our model better iden-
tifies and ranks the actual answerers of test questions compared the
baselines. The improvement ratios are on average 4.4% and 4.6% in

Table 2: Comparison of the methods when they discover
groups with the same size as the true answerers.

Datasets GM/PN/F1(%) MSC(%)
NeR EnC CQR Our NeR EnC CQR Our

android 4.0 6.6 4.6 35.1 9.1 15.9 12.5 63.6
history 6.5 11.5 10.3 69.2 16.6 29.0 27.2 91.7
dba 6.5 8.7 11.0 77.7 13.8 20.3 25.2 97.2
physics 4.7 7.6 8.1 64.3 11.8 17.9 18.7 89.6

terms of NDCG and 7.1% and 9.3% in teams of MAP compared to our
best baselines, namely NeR and EnC respectively; 2) The topological
data extracted from the CQA environment is more informative for
expert ranking compared to only using textual information. The
experiments indicate that the learning to rank models which only
utilize the textual similarities between the new question and past
answers of experts obtain the worst results compared the other
techniques in terms of ranking metrics.

5.6 How Collaborative are Discovered Experts?
In this section, we perform experiments to assess the collaborative
nature of the experts identified by our methods. To this end, all
experts in each dataset are ranked by NeR, EnC the top two expert-
finding performers from the previous experiment, and our method
given a test question. Then, top 𝜏 experts are employed as a list
of ranked experts to answer the question. Note that method CQR
retrieves a collaborative ranked experts given a test question with
a specific size. First, the methods are applied to find ranked experts
with the same size as the true answerers of the test questions.
The results are reported in Table 2. Since the size of predicted
ranked lists of experts and the ground truth is the same, we have
GM = PN = F1. The experiments reveal that our approach discovers
more collaborative experts compared to the baselines. In other
words, it discovers ranked experts with on average over 6.1 times
superior results in terms of GM, PN, and F1 metrics and around 3.2
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Figure 4: Comparison of the methods based on the quality of expert ranks using ranking metrics at search depth 𝑛.

times better results considering measure MSC compared to methods
EnC and CQR.

5.7 Group Size Impact on Expert Collaboration
Effectiveness

We investigate the impact of the size of groups on the collaboration
among ranked experts obtained by each method. Thus, the parame-
ters of the methods are set to discover expert lists with different
sizes ranging between one and ten. The metrics are computed based
on the discovered lists and reported in Fig 5. We summarize our
findings as follows: 1) The proposed method consistently outper-
forms the baselines in terms of evaluation metrics GM, PN, F1, and
MSC. Furthermore, CQR achieves the second place. 2) Our method
recommends on average 68.6% of actual answerers of test questions
as the members of new groups with sizes ranging from one to ten
which it is roughly 3.3, 3.9, and 6.3 times improvement in terms of
metric GM compared to baselines CQR, EnC, and NeR respectively. 3)
On averages 39.5% of members of ranked expert lists discovered
by our method are from the true answerers (2𝑛𝑑 row in the fig-
ure). That is roughly 4.1 times improvement compared to our best
baseline CQR. 4) Our method recommends on average 3.8, 4.4, and
7.2 times superior ranked experts in terms of F1 score compared
to baselines CQR, EnC, and NeR respectively. 5) In 83.9% of lists rec-
ommended by our method at least one of their members is among
the true answerers. It is on average 3.7, 3.9, 6.4 time improvements
compared to EnC, CQR, and NeR respectively (last row in the figure).

5.8 Comparison with Team Formation
Techniques

We also compare our method against techniques for finding a team
of experts (TE). As we do not have control over the size of groups
formed by such methods, TE baselines are first applied on each
test question and the size of a discovered group is used as an input
for our method and other baselines namely CQR, EnC, and NeR. The
results are reported in Tables 3, 4, and 5. The average size (𝜏) of

ranked expert lists is shown for each dataset in the tables. Our
observations are summarized as follows: 1) Ourmethod consistently
outperforms the baselines in terms of all the evaluation metrics.
2) The proposed model shows a significant superiority in terms of
metrics GM, PN, and F1, with improvements of approximately 2.2
times compared to the best baseline CC as shown in Table 3. The
improvement in the MSC metric is about 118% compared to our best
baseline CC. 3) As reported in Table 4, our method demonstrates
superior performance in terms of collaboration metrics compared
to the baselines. The improvement is around 313% in terms of
GM, which significantly exceeds improvements for other metrics
compared to our best baseline CQR and second best baseline CO,
respectively. 4) The experiments reported in Table 5 indicate that
experts retrieved by our method more closely match the actual
answerers compared to the baselines. The results reveal that our
approach achieves on average 2.1 times superior results in terms of
MSC compared to our best baseline CQR.

6 CONCLUSION AND FUTUREWORK
This paper addresses the problem of collaborative expert discovery
on CQA platforms by introducing a novel end-to-end framework
that simultaneously captures textual and topological information
from the environment. Our proposed sub-graph encoding technique
highlights the similarity among compact sub-graphs derived from
the CQA network, while the semantic encoding component retains
the textual congruence between a question and its answer. Through
extensive experiments, we demonstrate the superior performance
of our model in expert ranking quality. Furthermore, experts ranked
by our method achieve higher collaboration scores compared to
the state of the art. In our future work, we plan to investigate
the dynamics of expert collaboration by examining how temporal
factors and socio-psychological elements influence experts’ effec-
tiveness within Community Question Answering (CQA) platforms.
We aim to analyze how the timing of interactions affects the quality
and efficacy of collaborative responses and to explore the roles of
reputation and authority in shaping such collaborations.



It Takes a Team to Triumph: Collaborative Expert Finding in Community QA Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

0

25

50

G
M

%

android

0

50

history

0

50

dba

0

50

physics

0

20

40

P
N

%

0

50

0

50

25

50

75

10

20

30

F
1

%

25

50

25

50

75

0

25

50

1 2 3 4 5 6 7 8 9 10

Size (τ)

25

50

75

M
S
C

%

1 2 3 4 5 6 7 8 9 10

Size (τ)

50

100

1 2 3 4 5 6 7 8 9 10

Size (τ)

50

100

Proposed CQR EnC NeR

1 2 3 4 5 6 7 8 9 10

Size (τ)

0

50

100

Figure 5: Comparison of the methods based on collaboration metrics.

Table 3: Performance Analysis of Top Expert Finding Methods (NeR, Enc) and Team Formation Methods (CQR, CC) against Our
Method in Terms of Team Size as Determined by CC [31].

Datasets 𝜏
GM(%) PN(%) F1(%) MSC(%)

CC NeR CQR EnC Our CC NeR CQR EnC Our CC NeR CQR EnC Our CC NeR CQR EnC Our

android 3.5 15.6 4.2 8.6 7.6 46.2 10.0 3.0 6.1 5.5 31.4 11.9 3.3 6.9 6.1 35.8 34.9 9.6 20.5 18.1 75.9
history 3.0 14.4 7.7 11.5 13.5 65.7 14.0 6.3 12.0 13.6 60.7 13.1 6.5 10.8 12.6 58.8 37.3 17.8 29.0 30.2 91.7
dba 2.7 13.4 6.9 11.6 10.4 73.1 12.5 6.6 10.9 9.5 67.7 11.9 6.1 10.2 9.1 66.0 30.5 14.5 24.8 23.0 95.4
physics 2.9 9.5 5.7 9.6 9.1 61.5 9.5 4.6 8.9 8.7 58.7 8.6 4.7 8.5 8.1 55.4 22.9 13.1 20.2 19.8 89.8

Table 4: Performance Analysis of Top Expert Finding Methods (NeR, Enc) and Team Formation Methods (CQR, CC) against Our
Method in Terms of Team Size as Determined by CO [24].

Datasets 𝜏
GM(%) PN(%) F1(%) MSC(%)

CO NeR CQR EnC Our CO NeR CQR EnC Our CO NeR CQR EnC Our CO NeR CQR EnC Our

android 5.1 17.9 5.2 12.9 8.2 56.0 8.4 2.9 5.8 3.9 27.4 11.0 3.6 7.8 5.2 34.9 38.6 12.0 30.1 19.3 86.7
history 4.9 15.4 9.8 15.3 18.2 71.9 9.7 5.2 9.9 11.2 46.0 11.2 6.6 11.2 13.0 52.7 37.3 21.9 36.1 40.8 94.1
dba 5.7 14.3 10.4 20.6 14.7 86.6 6.3 4.7 9.2 6.6 38.0 8.3 6.1 12.1 8.6 50.6 31.9 22.3 41.5 31.2 97.9
physics 6.4 11.0 13.3 16.0 15.9 76.2 4.7 4.7 6.4 6.3 32.1 6.2 6.7 8.6 8.5 43.0 25.5 28.0 32.7 33.1 94.7

Table 5: Performance Analysis of Top Expert Finding Methods (NeR, Enc) and Team Formation Methods ( CQR, CC) against Our
Method in Terms of Team Size as Determined by CS [25].

Datasets 𝜏
GM(%) PN(%) F1(%) MSC(%)

CS NeR CQR EnC Our CS NeR CQR EnC Our CS NeR CQR EnC Our CS NeR CQR EnC Our

android 7.6 20.3 8.5 18.3 10.6 60.0 6.6 2.4 5.7 3.4 18.6 9.8 3.7 8.5 5.1 27.9 43.4 19.3 42.2 24.1 89.2
history 7.1 19.8 12.1 21.4 23.9 79.3 7.3 4.3 7.8 8.5 30.8 10.3 6.1 11.0 12.1 42.6 45.6 26.0 46.2 49.7 98.2
dba 5.6 13.9 10.6 20.9 14.4 87.1 5.8 4.3 9.3 6.0 38.1 7.9 6.0 12.4 8.2 51.4 32.6 22.7 41.1 30.9 98.2
physics 9.6 9.7 17.6 20.9 20.4 80.8 2.6 4.3 5.3 5.1 21.8 4.0 6.8 8.2 8.0 33.4 22.2 37.3 41.2 41.2 96.1
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