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The varying performance of information retrieval (IR) methods, including state-of-the-art transformer-based neural retrievers,
across diverse queries poses a significant challenge for achieving robust and reliable retrieval effectiveness. Query Performance
Prediction (QPP) seeks to estimate the effectiveness of a retrieval method for individual queries, enabling adaptive strategies
to improve retrieval outcomes, particularly for challenging queries. However, existing QPP approaches face fundamental
challenges: pre-retrieval methods often rely on surface-level query features that fail to capture the nuanced relationship
between queries and retrieval effectiveness, while post-retrieval methods depend heavily on the quality of retrieved documents,
which can be unreliable for difficult queries. To this end, we propose theQuery Space Distance-Based QPP (QSD-QPP) framework,
which leverages the deterministic and consistent behavior of retrieval methods to estimate query performance by referencing
historical queries with known effectiveness. The approach is motivated by the observation that semantically or syntactically
similar queries often exhibit consistent retrieval performance, a property that can be exploited to make reliable predictions
for unseen queries. QSD-QPP operates in two modes: (1) a lightweight pre-retrieval instantiation that dynamically constructs
a query subspace based on embedding distances to interpolate the performance of proximate historical queries, and (2) an
enriched post-retrieval instantiation that incorporates contextualized embeddings, document interactions, and historical query
associations to enhance prediction accuracy. By utilizing large-scale contextualized embeddings derived from pre-trained
language models, QSD-QPP efficiently identifies semantically similar queries and leverages their performance for robust
predictions. By addressing the inherent limitations of prior approaches, QSD-QPP achieves a balanced trade-off between
computational efficiency, prediction accuracy, and scalability. We evaluate QSD-QPP on four benchmark datasets, including MS
MARCO Dev and TREC Deep Learning tracks (2019, 2020, and DL-Hard), demonstrating its superior accuracy and robustness
compared to state-of-the-art baselines in both pre-retrieval and post-retrieval QPP tasks. To ensure reproducibility and
encourage further research, we publicly release the implementation of our work.

Authors’ Contact Information: Amin Bigdeli, University ofWaterloo,Waterloo, ON, Canada, abigdeli@uwaterloo.ca; Sajad Ebrahimi, University
of Guelph, Guelph, ON, Canada, sebrah05@uoguelph.ca; Negar Arabzadeh, University of Waterloo, Waterloo, ON, Canada, Narabzad@
uwaterloo.ca; Sara Salamat, Toronto Metropolitan University, Toronto, ON, Canada, sara.salamat@torontomu.ca; Shirin SeyedSalehi, Toronto
Metropolitan University, Toronto, ON, Canada, shirin.seyedsalehi@torontomu.ca; Maryam Khodabakhsh, Shahrood University of Technology,
Shahrood, Iran, m_khodabakhsh@shahroodut.ac.ir; Fattane Zarrinkalam, University of Guelph, Guelph, ON, Canada, fzarrink@uoguelph.ca;
Ebrahim Bagheri, Toronto Metropolitan University, Toronto, ON, Canada, bagheri@torontomu.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: December 2018.

HTTPS://ORCID.ORG/0009-0003-8977-9312
HTTPS://ORCID.ORG/0009-0003-1630-3938
HTTPS://ORCID.ORG/0000-0002-4411-7089
HTTPS://ORCID.ORG/0009-0007-3676-6023
HTTPS://ORCID.ORG/0009-0006-1467-1659
HTTPS://ORCID.ORG/0009-0009-8631-8872
HTTPS://ORCID.ORG/0000-0002-2102-9190
HTTPS://ORCID.ORG/0000-0002-5148-6237
https://orcid.org/0009-0003-8977-9312
https://orcid.org/0009-0003-1630-3938
https://orcid.org/0000-0002-4411-7089
https://orcid.org/0009-0007-3676-6023
https://orcid.org/0009-0006-1467-1659
https://orcid.org/0009-0009-8631-8872
https://orcid.org/0000-0002-2102-9190
https://orcid.org/0000-0002-5148-6237
https://doi.org/XXXXXXX.XXXXXXX


48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

2 • Bigdeli et al.

CCS Concepts: • Information systems → Information retrieval; • Computing methodologies → Machine learning
approaches; Nearest neighbor algorithms; • General and reference → Performance.

Additional Key Words and Phrases: Query Performance Prediction, Information Retrieval, Pre-retrieval Prediction, Post-
retrieval Prediction, Contextualized Representations, Query Space

ACM Reference Format:
Amin Bigdeli, Sajad Ebrahimi, Negar Arabzadeh, Sara Salamat, Shirin SeyedSalehi, Maryam Khodabakhsh, Fattane Zarrinkalam,
and Ebrahim Bagheri. 2018. Estimating Query Performance Using Neural Query Space Proximity. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,
25 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Researchers in the field of Information Retrieval (IR) are focused on designing methods that achieve both
high effectiveness and robustness. A key objective is to ensure that these methods consistently deliver strong
performance across a wide range of queries, as highlighted by recent studies [4, 13, 48]. Transformer-based
neural retrieval methods have been a strong step in this direction [26, 65]. In practice, even advanced IR methods,
including powerful transformer-based neural retrievers, often exhibit inconsistent effectiveness, excelling with
certain queries while struggling with others [4]. As such, identifying difficult queries allows the use of alternative
strategies on these queries, such as query routing [58], query reformulation [55], and asking users to clarify their
intents, to improve their performance [1, 5]. The task of Query Performance Prediction (QPP) plays a crucial role
in addressing this challenge by estimating how well a retrieval method is likely to perform on a given query.
Accurate QPP enables retrieval methods to optimize their processing and prioritization of queries, improving
both their efficiency and effectiveness. This, in turn, enhances the overall user experience by delivering more
reliable and relevant results [15].
QPP methods can essentially be categorized into two classes: pre-retrieval and post-retrieval methods [9].

Pre-retrieval methods estimate query performance before any documents are retrieved, relying on features
such as query term statistics, geometric properties of the query in embedding space, and corpus-level statistics
[6, 8, 15, 23, 28, 57, 60]. These methods are computationally efficient as they do not need the retrieval method to
be executed on the query, making them valuable for early performance predictions and resource conservation. On
the other hand, post-retrieval methods predict query performance after the initial retrieval stage by leveraging
additional information, such as retrieval scores of the retrieved documents [3, 20, 27, 36, 67]. By leveraging richer
data, these methods generally provide more accurate predictions compared to pre-retrieval methods.

Recent advances in both pre-retrieval [6–8, 66] and post-retrieval [3, 20, 27, 67] QPP methods have significantly
improved the prediction effectiveness. However, to the best of our knowledge, existing approaches have not fully
utilized large-scale labeled query collections to predict the performance of incoming queries. Our work builds
on the deterministic nature of retrieval methods, which exhibit consistent behavior when processing similar
queries. This observation leads to an effective intuition: the performance of an unseen query can be estimated by
referencing a set of past queries with known effectiveness that are semantically or syntactically similar. Simply
put, when a query that is identical to an already processed query is encountered, the performance of the retrieval
method on the same query will remain consistent, and hence predicting its performance again will become
trivial for such situations. This idea can be generalized to cases when a new query is observed that has not been
observed in the past. In such situations, the performance of the new query could potentially be estimated based
on its association with the performance of similar, previously observed and processed queries.
We note that strong empirical support for our intuition can be found in the query set of the MS MARCO

Development set (Dev small) [44]. Specifically, for each query, we measured the embedding distance between
its representation and the 10 historical queries with the closest proximity. Subsequently, we interpolated the
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EstimatingQuery Performance Using Neural Query Space Proximity • 3

Fig. 1. Relationship between query distances and their retrieval effectiveness, demonstrating that smaller distances are
associated with lower MSE in predicting query performance.

performance of these 10 queries to estimate the target query’s performance. Analyzing the relationship between
these distance scores and theMean Squared Error (MSE) of the predicted versus actual query performance revealed
a clear trend, as depicted in Figure 1. This figure illustrates the relationship between the embedding distances of
Dev small queries, divided into five query buckets based on their average distance scores to proximate queries,
and the average MSE between their retrieval effectiveness and that of the 10 most proximate historical queries.
The results show that as the embedding distance between the target query and queries within its approximate
proximity decreases, the MSE also decreases, indicating improved accuracy in query performance prediction.

We believe that our intuition, supported by preliminary empirical evidence, is grounded in the fact that retrieval
methods produce deterministic retrieval outcomes. In other words, regardless of how many times a query is
submitted to a retrieval method, the retrieved set of documents will remain the same and hence their retrieval
effectiveness will not change1. This deterministic and consistent retrieval behavior in retrieving and ranking
documents for queries can be generalized and employed for estimating the performance of future-yet-unobserved
queries based on their proximity to historical queries within a shared query space. On this basis, we propose
the Query Space Distance-Based QPP (QSD-QPP) framework, inspired by the deterministic nature of retrieval
methods.
Our QSD-QPP framework offers two instantiations tailored for pre-retrieval and post-retrieval scenarios: In

the pre-retrieval QPP setting, predictions are made without access to retrieved documents. Through searching
the Query Space, the method dynamically constructs a query subspace comprising historical queries with the
shortest distances to the input query and interpolates their known performance to estimate the effectiveness of
the input query. Our post-retrieval QPP setting incorporates additional information from the retrieved documents.
It refines predictions by combining the query’s contextualized representation, document characteristics, and
associations with historical queries. To efficiently create a query subspace for each input query, our QSD-QPP
approach uses contextualized representations derived from large language models (LLMs), which map queries
into a high-dimensional representation space. Historical queries within the subspace are identified by measuring
the distance between their embeddings in this space, enabling accurate performance estimation for both seen
and new queries.

We evaluate our framework on four widely-used query collections, including theMSMARCO passage collection
and TREC Deep Learning (DL) query sets from 2019, 2020, and DL-Hard. The experimental results demonstrate

1We note that work on personalized search, which may return different results for the same query depending on contextual information, is
not the subject of this paper. This paper focuses on ad hoc retrieval [54].
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that our approach significantly outperforms state-of-the-art methods in both pre-retrieval and post-retrieval QPP
tasks, achieving robust and accurate query performance predictions.
The key contributions of this work can be enumerated as follows:

• We introduce a novel Query Space Distance-Based QPP (QSD-QPP) framework that leverages historical
query performance data for both pre-retrieval and post-retrieval predictions, enabling robust performance
estimation for diverse query scenarios.

• We offer a lightweight pre-retrieval instantiation of QSD-QPP that efficiently predicts query performance
by interpolating effectiveness of relevant queries in close proximity to the input query within the Query
Space.

• We propose a post-retrieval variation of QSD-QPP that enriches query representations by incorporating
contextualized embeddings, document interactions, and historical query associations for more precise
predictions.

• We present extensive experiments conducted on diverse datasets, including MS MARCO and the TREC
Deep Learning tracks (2019, 2020, and DL-Hard), showcasing the superior performance of our methods
compared to state-of-the-art baselines.

• We publicly release the code and models to foster reproducibility and enable further research in query
performance prediction tasks2.

The remainder of this paper is organized as follows: In Section 2, we review existing QPP methods and
discuss their limitations. Section 3 introduces our Query Space Distance-Based QPP framework, detailing the
methodologies for both pre-retrieval and post-retrieval settings. We further describe the experimental setup,
datasets, and evaluation metrics, followed by the results and analysis of our approach compared to state-of-the-art
methods in Sections 4 and 5. Finally, Section 6 concludes the paper with a summary of our contributions and
potential directions for future research.

2 Related Work
QPP methods can be broadly categorized into pre-retrieval and post-retrieval techniques. In the following, we
will cover pertinent methods in each of these two classes of QPP methods.

2.1 Pre-retrieval QPP
Pre-retrieval QPP methods can be classified into statistical-based and neural-based methods. Traditional statistical-
based techniques such as SCS, IDF, ICTF, VAR, PMI, and SCQ, mainly operate based on the query term distribution
within the document collection [28, 29, 40, 68]. These methods can be further classified according to the query
aspects they incorporate for prediction such as term importance, specificity, similarity, term-relatedness, and
coherency [29–31, 49].

Recent advancements in pre-retrieval QPP methods incorporate external resources, such as neural embeddings
and corpus-level statistics, to significantly enhance the accuracy and reliability of query performance predictions
[3, 6, 8, 17–19, 27, 57, 61, 67]. For example, the 𝑃𝑐𝑙𝑎𝑟𝑖𝑡𝑦 method uses word embeddings to measure the ambiguity of
each query term [57]. It estimates a Gaussian Mixture Model (GMM) from the distribution of the representations
of the most similar words to the query terms and uses the posterior probabilities from this GMM to quantify
the query’s ambiguity. This method works based on the assumption that ambiguous queries encompass several
senses and each sense a word carries roughly corresponds to a Gaussian mixture component. In another work,
Arabzadeh et al. [6–8] proposed a set of neural-based pre-retrieval QPP metrics that assess query specificity by
constructing an ego network based on the query term and its closest neighbors in the embedding space. They use
graph centrality and density metrics as indicators of query difficulty. The premise behind these neural-based
2https://github.com/sadjadeb/QSD_QPP
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QPP methods is that a more specific term is typically surrounded by more closely related concepts, while a more
generic term will have more distant neighbors.

Other pre-retrieval QPP studies have primarily focused on leveraging neural query representations to address
the QPP task. Zamani et al. [66] proposed an innovative multivariate representation learning framework that
utilizes LLMs to generate both mean and variance vector representations for queries and documents. They
subsequently employed these vectors to train a retrieval model. Their study revealed a compelling correlation
between the learned vector representations of the queries and the corresponding ranking performance of
those queries. Furthermore, the BertPE method [38] fine-tuned pre-trained language models to directly predict
query performance, utilizing synthetic relevance judgments to overcome the scarcity of labeled training data.
Using BERT-based neural embeddings, this method achieves competitive performance across various datasets,
showcasing the potential of integrating Transformer architectures for robust pre-retrieval predictions.
Our work distinguishes itself from existing approaches by proposing a novel pre-retrieval QPP methodology

that creates a Query Space from queries with known performance metrics. By dynamically constructing a
subspace of queries with shortest distance to the input query, our method leverages their performance data
to accurately predict the potential effectiveness of the new query. Our proposed approach benefits from the
semantic neural-based representation of the queries while also maintaining a very low cost, making it applicable
to real-world scenarios for pre-retrieval QPP methods.

2.2 Post-retrieval QPP
Post-retrieval methods can be divided into unsupervised [2, 16, 43, 60, 63, 69] and supervised [3, 27, 36, 67]
methods. These methods typically exhibit a stronger correlation with retrieval performance compared to pre-
retrieval approaches. This is because they utilize additional information from the retrieved documents, combined
with insights from the query and corpus, to enhance prediction accuracy.

Traditionally, unsupervised methods predict the effectiveness of queries by analyzing the statistical charac-
teristics of the query, the retrieved documents, and the corpus itself. Their primary advantage is that they do
not require labeled data for training. Many traditional post-retrieval QPP methods utilize the distribution of
retrieval scores for the retrieved documents as indicators of retrieval performance. For example, Clarity [15]
measures the divergence between the language models induced by the retrieved documents and the collection as
a whole. Similarly, Weighted Information Gain (WIG) [69] evaluates the disparity between the average retrieval
score of the top-ranked documents and the average score of the entire collection. The underlying assumption is
that the closer these documents are to the query, in comparison to a typical non-relevant document from the
corpus, the more successful the retrieval process will be. The variation in retrieval scores has proven to be an
effective indicator of query performance. For instance, the Normalized Query Commitment (NQC) [60] predicts
retrieval performance by calculating the standard deviation of scores among the top-retrieved documents. A
higher standard deviation suggests that relevant and non-relevant documents are more distinct, indicating better
query performance. Similarly, other methods such as SMV [63] and 𝑛(𝜎𝑥 ) [16] operate on the same principle,
taking advantage of the divergence of scores to assess the effectiveness of the query.
Some models focus on the robustness of the ranking of retrieved documents. For instance, Query Feedback

(QF) predicts query performance based on the overlap between the documents retrieved for the original query
and those retrieved for a perturbed query derived from pseudo-relevance feedback. Singh et al. [61] also explored
this idea by comparing the retrieved document lists for the original query with a reranked list using a pairwise
neural-based ranker. Recently, Arabzadeh et al. [2] proposed a similar concept tailored for dense retrievers.
However, QPP methods specific for dense retrievers are beyond the scope of our paper [24].
Thanks to large-scale relevance judgment collections, such as MS MARCO [45], researchers have explored

supervised post-retrieval QPP methods more extensively [3, 17, 27, 67]. For instance, NeuralQPP [67] is one
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of the pioneering neural frameworks that use unsupervised QPP methods as weak signals to develop a more
effective supervised approach. There has also been growing interest in employing contextualized pre-trained
language models [21] for the QPP task. These models estimate the performance of a query by fine-tuning a
language model [3, 19, 27]. As the pioneer in this group, NQA-QPP [27] integrates three key components to
predict query performance: (1) a score-based component to analyze the distribution of retrieval scores, (2) a
representation of the query, and (3) interactions between the representations of the query and the top retrieved
documents. More recently, Khodabakhsh et al. [37] proposed a method where ranking and QPP tasks are learned
together, enhancing each other. As other examples, BERT-QPP [3] and qpp-BERT-pl [19] focus on estimating
query performance by fine-tuning language models such as BERT, aiming to learn the effectiveness of the query
from the interactions between the query and retrieved document tokens. Building upon this group of studies,
Ebrahimi et al. [22] proposed enhancing BERT-QPP by incorporating relevance scores to improve the effectiveness
of query performance prediction.
Our approach distinguishes itself from other post-retrieval QPP methods by leveraging information from

previously submitted queries that are in close proximity within the Query Space. The proposed method benefits
from the enriched representation of the inputs provided by a neural-based model by encoding the performance
of these queries, identified based on their distance. We show that the accuracy of query performance estimation
improves significantly by incorporating contextual information from nearby queries, as opposed to relying solely
on individual query characteristics.

3 Proposed Approach
The primary hypothesis underlying our work is that the deterministic nature of retrieval systems enables the
generalization of query performance across similar queries within a structured representation of query space.
Specifically, we posit that historical query performance data can effectively serve as a proxy for estimating the
performance of new, unobserved queries when contextual and semantic similarities are adequately modeled. To
this end, we introduce a Query Space Distance-Based Query Performance Prediction (QSD-QPP) framework, which
systematically constructs a high-dimensional Query Space where queries are embedded. This space is enriched by
incorporating historical query performance measures, allowing for the quantification of relationships between
new queries and their nearest neighbors in this space.
By leveraging this structured representation, QSD-QPP facilitates robust performance prediction for two

scenarios: (1) Pre-retrieval QPP, which interpolates performance estimates based on query-level distances and
performance trends from similar historical queries, and (2) Post-retrieval QPP, which augments the prediction
process with contextual embeddings of retrieved documents and query associations. The hypothesis behind our
work asserts that our approach not only capitalizes on the deterministic characteristics of retrieval methods but
also exploits the inherent continuity in the performance of queries in the query space, enabling accurate and
generalizable predictions across diverse query sets.

3.1 ProposedQuery Space Distance-Based QPP Framework
A general QPP framework can be formulated as a function 𝜇, which takes four key arguments: the input query 𝑞,
the retrieval method 𝑅, the collection of documents 𝐶 , and the ranked list of documents 𝐷𝑞 retrieved by 𝑅 in
response to 𝑞. The function 𝜇 predicts the retrieval effectiveness𝑀𝑞 for query 𝑞, given the quintuple as follows:

𝑀𝑞 = 𝜇 (𝑞, 𝑅,𝐶, 𝐷𝑞)

In a pre-retrieval QPP setting, the set of retrieved documents 𝐷𝑞 is not available since performance prediction is
done prior to retrieval. Thus, the function 𝜇 can only process a triple 𝜇 (𝑞, 𝑅,𝐶), relying solely on the input query
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𝑞, the retrieval method 𝑅, and the document collection 𝐶 . In contrast and within the context of post-retrieval
QPP, the ranked list of documents 𝐷𝑞 retrieved by 𝑅 is available; hence, 𝜇 (𝑞, 𝑅,𝐶, 𝐷𝑞).
The fundamental concept underlying our proposed QSD-QPP method is that both sparse and dense retrieval

methods exhibit deterministic behavior, meaning they consistently retrieve and rank documents in a similar
manner for queries with shared characteristics. This deterministic property allows the generalization of query
performance by leveraging similarities between new and past queries. The main premise is that queries that lie
within the same subspaces will exhibit similar retrieval effectiveness. Therefore, the performance of a new query
can be inferred based on the performance of queries within that query’s subspace.
Our hypothesis spans two extremes in the query space spectrum: (1) Exact Matches: At one extreme, a query

can be identical to some query that has already been observed in the historical data, and its retrieval performance
is precisely known. In such cases, the prediction process simplifies to a deterministic retrieval from the query
space, where the precomputed performance metric for the exact match can be directly leveraged. This scenario
underscores the deterministic nature of retrieval systems, as identical queries inherently produce identical
outcomes under fixed retrieval settings. (2) Unobserved Queries: At the other extreme, a query is entirely new,
residing in an underpopulated or unpopulated region of the query space. Such queries often arise in dynamic
contexts, such as emerging real-world events or unconventional information needs, where no proximal neighbors
exist within their query subspace. In such cases, the prediction process is inherently probabilistic and relies
on extrapolation. Specifically, retrieval effectiveness can be inferred by taking the performance metrics of the
most semantically proximate queries available in the query space into account. These neighbors, though distant,
provide the basis for approximating performance trends by leveraging the continuity and structural coherence of
the query space. This process must account for diminishing confidence with increasing distance, ensuring that
the estimation reflects the uncertainty inherent in extrapolating from distant points in the query space.

In pre-retrieval QPP, the challenge will be to estimate the performance of the retrieval method based solely on
the input query 𝑞, the retrieval method 𝑅, and the collection𝐶 without having access to any retrieved documents.
Within our proposed framework, the goal will be to predict query performance by interpolating the effectiveness
of past queries that reside within a similar subspace, comprising queries in the proximity of the input query. We
denote the variation of our proposed framework for pre-retrieval QPP as QSD-QPPPre.
For post-retrieval QPP, the objective is to obtain a more accurate prediction of query performance using

additional information from the set of retrieved documents𝐷𝑞 . The quality and characteristics of these documents
provide valuable signals about potential retrieval performance. Hence, post-retrieval QPP exploits the relationship
between the query and the retrieved documents, as well as the historical performance of queries within similar
query subspaces to estimate query performance. We refer to the variation of our proposed framework for
post-retrieval QPP as QSD-QPPPost.

In both scenarios, the effectiveness of the input query can be generalized by utilizing past performance data. In
the pre-retrieval setting, this involves leveraging the query’s representation alone, while in the post-retrieval
setting, additional contextual information from the retrieved documents is also incorporated.
To effectively predict query performance, we introduce the concept of a Query Space, a high-dimensional

embedding space derived from a set of historical queries and their associated retrieval effectiveness measures. The
Query Space facilitates search by identifying a dynamically constructed subspace of queries within a given distance
threshold from the input query. Let us define 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛} to be a list of 𝑛 previously retrieved queries
and𝑀𝑄 = {𝑀𝑞1 , 𝑀𝑞2 , ..., 𝑀𝑞𝑛 } to be a list of computed retrieval effectiveness measures where𝑀𝑞𝑖 represents the
effectiveness score of query 𝑞𝑖 with respect to a chosen evaluation metric𝑀 . In order to build the Query Space, a
translation function T is used to map each query 𝑞𝑖 ∈ 𝑄 into a fixed-length vector representation (𝑑) within a
high-dimensional embedding space, denoted as the embedding vector e(.) as defined below:

T (𝑞𝑖 ) = e(𝑞𝑖 ), T : 𝑄 → R𝑑 . (1)
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Query Space
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𝛾
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𝑀𝑞𝑖

𝒯
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Ψ
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𝑒 𝑞𝑖 ∈ 𝒮𝑞
γ

γ

Input query (q)

Fig. 2. The overview of the pre-retrieval instantiation of our QSD-QPP method, i.e., QSD-QPPPre.

The Query Space QS is constructed by applying the translation function T to map all past queries in 𝑄 into a
𝑑-dimensional vector space, as defined below:

QS =
{(
T (𝑞𝑖 ), 𝑀𝑞𝑖

)
| 𝑞𝑖 ∈ 𝑄, 𝑀𝑞𝑖 ∈ 𝑀𝑄

}
, QS ⊆ R𝑑 × R. (2)

For a new query 𝑞, represented as e(𝑞), we dynamically construct a subspace S𝛾
𝑞 by identifying all queries in

QS whose distance from e(𝑞) is below a specified distance threshold 𝛾 . Formally:

S𝛾
𝑞 =

{(
e(𝑞𝑖 ), 𝑀𝑞𝑖

)
∈ QS | 𝜓 (e(𝑞), e(𝑞𝑖 )) ≤ 𝛾

}
, (3)

where𝜓 (e(𝑞), e(𝑞𝑖 )) is a distance function defined as:

𝜓 (e(𝑞), e(𝑞𝑖 )) =
(

𝑑∑︁
𝑗=1

(e(𝑞) [ 𝑗] − e(𝑞𝑖 ) [ 𝑗])2
) 1

2

. (4)

The parameter 𝛾 , referred to as the distance threshold, determines the maximum permissible proximity between
the input query 𝑞 and past queries in the Query Space for inclusion in the subspace S𝛾

𝑞 . This ensures that only
queries that are within the vicinity of 𝑞 in the query space to be considered relevant for query performance
prediction.

Let 𝑘 = |S𝛾
𝑞 | represent the number of queries in the subspace S𝛾

𝑞 . We show how these 𝑘 previously retrieved
queries in S𝛾

𝑞 for query 𝑞 can be incorporated into both QSD-QPPPre and QSD-QPPPost scenarios to effectively
estimate𝑀𝑞 of query 𝑞. The details of how our main hypothesis is applied in pre-retrieval and post-retrieval QPP
scenarios are explained in Sections 3.2 and 3.3, respectively.

3.2 Pre-retrieval Instantiation
Within the context of a pre-retrieval QPP scenario, the pre-retrieval instantiation of our proposed framework,
QSD-QPPPre, follows two steps for each input query (see Figure 2):

(1) Dynamic Subspace Construction: The input query 𝑞 is embedded into the high-dimensional Query Space
QS as e(𝑞), which captures both semantic and syntactic features of the query. To localize the inference
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process, a query subspaceS𝛾
𝑞 is dynamically constructed, comprising historical queries within a predefined

distance threshold 𝛾 from e(𝑞) as described in Equation 3. By filtering queries based on their geometric
distances in QS, S𝛾

𝑞 provides a focused subspace conducive to robust prediction.
(2) Performance Prediction: Once the subspace S𝛾

𝑞 is constructed, the retrieval effectiveness of 𝑞, denoted
as𝑀𝑞 , is estimated by aggregating the effectiveness scores𝑀𝑞𝑖 of the queries in S𝛾

𝑞 , weighted by their
respective proximities to e(𝑞). This process is guided by an interpolation function I(e(𝑞),S𝛾

𝑞 ), defined as:

𝑀𝑞 = I(e(𝑞),S𝛾
𝑞 ) =

∑︁
(e(𝑞𝑖 ),𝑀𝑞𝑖 )∈S𝛾

𝑞

𝜔 (e(𝑞), e(𝑞𝑖 ))𝑀𝑞𝑖 . (5)

Here, 𝜔 (e(𝑞), e(𝑞𝑖 )) represents a weighting function that assigns importance to each historical query 𝑞𝑖
based on its distance to e(𝑞). A common choice for 𝜔 (·) is an inverse distance-based weighting scheme
[11], expressed as:

𝜔 (e(𝑞), e(𝑞𝑖 )) =
1

1 +𝜓 (e(𝑞), e(𝑞𝑖 ))
. (6)

In the absence of weighting (uniform interpolation), the predicted retrieval effectiveness can be simplified to
the arithmetic mean of the effectiveness scores within S𝛾

𝑞 :

𝑀𝑞 =
1

|S𝛾
𝑞 |

∑︁
(e(𝑞𝑖 ),𝑀𝑞𝑖 )∈S𝛾

𝑞

𝑀𝑞𝑖 , (7)

where𝑀𝑞 is the predicted score for the performance of 𝑞 based on the average performance of the past queries
inside its query subspace S𝛾

𝑞 . The principles underpinning QSD-QPPPre resonate with other tasks within the
context of machine learning, where task-specific predictions are often derived by leveraging geometric proximity
in a learned representation space. For instance, in semi-supervised regression [39, 70], methods like embedding
space mapping and pseudo-label smearing [25, 41] have been proposed to ensure that unlabeled data contribute
positively to the prediction process. Similarly, studies on unsupervised feature selection [62] exemplify the
concept of learning based on similar subspaces. Our proposed QSD-QPPPre builds upon these ideas by dynamically
constructing a focused query subspace for each input query, enabling localized inference based on historical
query performance.

3.3 Post-retrieval Instantiation
In the post-retrieval QPP scenario, our proposed method, QSD-QPPPost, extends the pre-retrieval approach by
integrating additional layers of contextual and historical information to refine the estimation of query effectiveness
(see Figure 3). This approach incorporates three core components into an enriched query representation:

(1) Contextualized Query Representation: The individual characteristics of the input query 𝑞 are captured
through its contextualized embedding representation e(𝑞). This ensures that queries with similar semantic
subspaces are mapped to proximate regions in the high-dimensional embedding space.

(2) Document Characteristics: Information about the documents retrieved for𝑞, denoted as𝐷𝑞 = {𝑑1, 𝑑2, . . . , 𝑑𝑚},
is incorporated through their contextualized embeddings. These embeddings represent the properties of
the retrieved documents, which serve as critical signals for inferring the effectiveness of the query.

(3) Historical Query Association: The relationship between 𝑞 and previously observed queries is captured by
measuring the geometric distance between e(𝑞) and the embeddings of historical queries {e(𝑞𝑖 ) | 𝑞𝑖 ∈ 𝑄}
in the Query Space QS. Queries with smaller distances to e(𝑞) are considered more relevant, and their
known effectiveness scores𝑀𝑞𝑖 contribute significantly to the prediction of 𝑞’s retrieval effectiveness.
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Model Input

Model
[𝐶𝐿𝑆]

෢𝑀𝑞

𝑞 + Concat 𝑞𝑖, 𝑀𝑞𝑖 𝑞𝑖 ∈ 𝒮𝑞
γ

+ Concat 𝑑𝑖 𝑑𝑖 ∈ 𝐷𝑞

Fully Connected Layer

Query Space

γ

𝑆𝑞
𝛾

𝒯

Input query (q)

foods that naturally detox the liver

Fig. 3. The overview of the post-retrieval instantiation of our QSD-QPP method, i.e., QSD-QPPPost.

In particular, for an input query 𝑞, we let the cross-encoder architecture estimate the performance of 𝑞, through
regression, based on the contextualized representation of 𝑞, 𝐷𝑞 , and a set of top-𝑘 historical queries retrieved from
the Query Space QS with known effectiveness. The historical queries are selected based on their proximity to
e(𝑞) within the query subspace S𝛾

𝑞 , as described in Equation 3. We encode 𝑞, 𝐷𝑞 , and queries within S𝛾
𝑞 and their

known retrieval effectivness by concatenating them using a special separator token. This concatenated vector is
then passed through a linear transformation to estimate the retrieval effectiveness. Formally, the prediction of
the retrieval effectiveness𝑀𝑞 is defined as follows:

𝑀𝑞 = Linear
(
T

(
Concat

(
𝑞,Concat

({
𝑞𝑖 , 𝑀𝑞𝑖 | 𝑞𝑖 ∈ S𝛾

𝑞

})
,Concat

({
𝑑𝑖 | 𝑑𝑖 ∈ 𝐷𝑞

}) ) ) )
. (8)

For training QSD-QPPPost, we leverage a sigmoid activation layer and optimize the model with a one-class
binary cross-entropy loss function. Let𝑀𝑞 denote the target ranking metric, such as average precision, which
serves as the ground-truth effectiveness score for query 𝑞. To minimize the prediction error, we define the
following loss function for training the model to predict query performance:

ℓ (𝑀𝑞, 𝑀𝑞) = −𝑤
[
𝑀𝑞 · log

(
𝜎 (𝑀𝑞)

)
+ (1 −𝑀𝑞) · log

(
1 − 𝜎 (𝑀𝑞)

)]
, (9)

where 𝜎 (·) represents the sigmoid function. This loss function effectively guides the model to learn a fine-grained
regression of query performance based on historical query information.
In the context of QSD-QPPPost, the reliance on historical queries aligns with the broader concept of subspace-

based learning [10, 32], where the predictive power stems from modeling relationships between a target and
its most relevant neighbors. It closely resembles methods that maximize the likelihood of correct predictions
by leveraging neighborhood samples, aligning the latent space structure with task-specific similarities [64] or
techniques such as Elastic Net Subspace Clustering (ENSC) [47, 52], which represent each data point as a sparse
combination of its neighbors, enabling more robust modeling of relationships within local subspaces. As such,
QSD-QPPPost goes beyond existing post-retrieval QPP methods by enabling the post-retrieval model to learn not
only the association between the query and its relevant retrieved document but also its relationship with other
historical queries within similar query subspaces.
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4 Experiments

4.1 Dataset
For evaluation purposes, we use the widely adopted MS MARCO passage collection dataset [45] that consists
of 8.8 million documents and over 500k queries with at least one relevance judgments. We used these 500k
queries to build our Query Space QS introduced in Section 3.1 using different language models to implement
T (.). The MS MARCO collection also includes a Dev query set containing 6,980 queries on which we test the
performance of our proposed QSD-QPPPre and QSD-QPPPost methods. Besides, we use three other TREC Deep
Learning track query sets, namely (1) TREC DL 2019 [14] that consists of 43 queries, (2) TREC DL 2020 [12]
consisting of 54 queries, and (3) DL-Hard, which includes 50 queries [42]. The main differences between these
three TREC datasets and the MS MARCO Dev set are (1) the number of queries included in each dataset; (2) the
number of available relevance judgments per query and (3) the binary vs. graded levels of judgments. While most
of the MS MARCO Dev set queries have sparse relevance judgments (almost one relevant document per query),
queries of the other three Deep learning Tracks have numerous relevance judged documents. Therefore, testing
our proposed methods on this range of datasets can show the robustness of our approach in terms of both the
query size and the number of relevant documents per query.

4.2 Evaluation Methodology and Metrics
We evaluate the performance of our proposedmethods using a commonQPP evaluation strategy, that is, computing
the linear and ranked-based correlation between the predicted performance given by our methods and the actual
performance of queries over the list of documents. For comparison, we measure linear correlation by Pearson’s 𝜌 ,
rank correlation by Kendall’s 𝜏 , and rank correlation coefficient by Spearman 𝜌 . As a common practice [9, 28], we
predict the performance of the widely used BM25 retriever for each query using the metrics reported in [9] for
the pre-retrieval setting and [37] for the post-retrieval setting. A higher correlation value shows more accurate
query performance prediction.

4.3 Baselines
To evaluate the performance of our proposed pre-retrieval and post-retrieval QPP methods, we compare them
against a variety of established baselines in each category.

4.3.1 Pre-retrieval Baselines. We adopt widely used pre-retrieval query performance prediction baselines that
have shown promising performance on various well-known corpora and query sets [6, 9]. These baselines can be
categorized into two categories as follows:
(1) Traditional Baselines: The majority of pre-retrieval QPP methods that belong to this group rely on term
frequencies, index statistics and analyze how query terms are distributed within a collection. Two commonly
used statistics in this context are the inverse document frequency (IDF) and the inverse collection term frequency
(ICTF) of the query terms [40]. These statistics are widely recognized as measures of query terms’ relative
importance. The simplified clarity score (SCS) [29] is a metric that measures query specificity based on the
Kullback-Leibler divergence between the query language model and the collection language model. Zhao et al.
[68] proposed SCQ in which they calculate the vector-space-based query similarity by treating the collection as
a single document composed of concatenated individual documents. PMI (Pointwise Mutual Information) is a
term-relatedness based predictor, which analyzes the co-occurrence statistics of terms [28]. These predictors
assume that frequent co-occurrence of query terms in the collection indicates good performance, assuming that
all query terms are related to the same topic. We also consider VAR [68], which is a coherency-based method that
works based on the variance of the term weight distribution over documents containing that term.
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(2) Neural-embedding based Baselines: Closeness Centrality (CC), Degree Centrality (DC) and Inverse Edge
Frequency (IEF) are based on the idea that a query term surrounded by many other similar terms in the embedding
space is more specific, while a term with fewer closely surrounded terms is more generic and a more specific
query is easier to address than a more generic one since a generic query might have several aspects to satisfy
[6–8]. In these baselines, an ego network representation helps capture the context of a term using neural
embedding representations and by considering other similar terms as alter nodes. These metrics helps determine
the specificity of the represented term, which can indicate the difficulty of a query as well. Another neural-based
metric is 𝑃𝑐𝑙𝑎𝑟𝑖𝑡𝑦 which works based on the idea that the number of clusters around the neighborhood of a query
term is a potential indicator of its specificity [57]. MRL is another pre-retrieval QPP method that utilizes the
learned multivariate vector representations of a query for predicting its performance [66]. We also included the
most recently proposed baseline by Khodabakhsh et al. [38], the BertPE method, which utilizes a cross-encoder
architecture to fine-tune a pre-trained language model for directly predicting query performance.

We note that for all baselines, we used the best-performing hyperparameters on reported in the original papers
usually tuned on other TREC collections such as Robust04 and Clueweb09 and 12 and Gov2 as reported in [6, 9].
Additionally, some baselines works on per query term level. In such cases and where required, the maximum
aggregation function over all query terms has been applied to achieve the predicted performance.

4.3.2 Post-retrieval Baselines. We evaluate our post-retrieval QPP model against the leading baselines. Similar to
pre-retrieval baselines, these methods can be categorized into traditional baselines as well as neural-embedding
based baselines as follows:
(1) Traditional Baseline: This group of baselines mostly rely on the statistical features of the retrieved document
and the query. For example, Clarity, has been proposed based on the KL-divergence between language models
derived from retrieved documents and the overall corpus. We also consider a variety of score-based methods
such as WIG [69], NQC [60], 𝑛(𝜎%) [16], RSD [56], and SMV [63], which predict query performance by analyzing
various statistics of the retrieval scores of top-ranked documents. In addition, we consider the Utility Estimation
Framework (UEF) [59] which is designed to complement robust QPP baselines such as NQC [60].
(2) Neural-embedding-based Baselines: NeuralQPP [67] is a supervised QPP method that leverages existing
unsupervised QPPmethods as signals for weakly-supervised learning. Additionally, NQA-QPP [27] employs a BERT
model to learn representations of queries and documents, while BERT-QPP [3] fine-tunes BERT to directly predict
query retrieval scores. QppBERT-PL[20], a recent BERT-based method, uses point-wise training on individual
queries and list-wise training over top-ranked pseudo-relevant documents. Furthermore, we include QPP-PRP
[61], which assesses the performance of neural rankers by evaluating the agreement level between a pairwise
neural reranker, such as DuoT5 [50], and the ranked list generated by the neural ranker for a given query.

4.4 Experimental Setup and Hyperparameters
In this section, we provide a detailed description of our configurations and hyperparameters used in our exper-
iments. In order to index the queries within the Query Space, we adopt an inverted model with asymmetric
distance computation [33]. This enables the dynamic construction of a subspace comprising queries that are
within a defined proximity to an input query 𝑞 with e(𝑞) ∈ 𝑅𝑑 . We leveraged the implementation provided by
FAISS [34] which offers efficient mechanisms for searching over high-dimensional vectors. For each target query,
we adopt the 𝐿2 distance function for𝜓 (., .) as recommended in [35] to identify and locate queries within the
Query Space with the closest proximity, forming a dynamically constructed subspace.
We used a 24GB NVIDIA GeForce RTX 3090 GPU to train the QSD-QPPPost and to create the embeddings

that were needed for building QS. It took approximately 90 minutes for our QSD-QPPPost model to be fine-
tuned on the training set. For the purpose of creating vector representations and searching the Query Space
to construct the subpace, we use four language models including (1) all-mpnet-base-v2, (2) all-MiniLM-v2,
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(3) paraphrase-MiniLM-v2, and (4) deberta-v3-base. The first three language models are trained based on a
Sentence Transformer [53], while deberta-v3-base introduces disentangled attention and an enhanced mask
decoder to improve over BERT and RoBERTa. To predict the performance of a query based on 𝑘 queries within
its constructed subspace, we investigate the impact of hyperparameter 𝑘 with different values in range of 1 to 10.

Additionally, in the Ablation Study section, we investigate the impact of Query Space size by building Query
Space with varying numbers of queries included in them. This analysis allows us to assess how the size of Query
Space affects the performance of QSD-QPPPre and QSD-QPPPost methods.

4.4.1 Expanding Relevance Judgements. One of the difficulties is ensuring a balance in relevance judgements
between Query Space and various test sets. Given that TREC DL 2019, TREC DL 2020, and DL-Hard query sets
have several relevant documents for each query, whereas other query sets like MS MARCO training queries and
the dev set in MS MARCO have an average of only 1.06 relevant documents per query, it is necessary to close
this gap between Query Space and the test sets. Therefore, we increase the number of relevant documents for the
queries in Query Space. For this purpose, as suggested in the literature [51], top-1000 BM25 documents are first
re-ranked using a neural-based pointwise reranker, i.e., MonoBERT [46] and then DuoT5 [51] is used for re-ranking
the top-50 ranked documents returned by MonoBERT. Finally, the top-50 documents are selected and added to the
existing list of relevant documents.

4.4.2 Subspace Construction. To construct the subspace for each query, we utilized the weights of the afore-
mentioned models and defined the distance threshold 𝛾 to ensure that each query retrieves 10 queries with
the smallest distances from the Query Space. This approach has been applied to all sets of the queries we had.
By providing our Query Space as a FAISS index, we were able to search over it and create a subspace with 10
queries for each input query. We cached all 10 queries within the subspace of each query to make the pipeline
cost-efficient and prevent running the retriever every time we changed a parameter (i.e., number of the queries
within the subspace of each query that has been fed to our model).

4.5 Comparison with Baselines
In the following subsections, we report the performance of our QSD-QPPPre and QSD-QPPPost methods in compar-
ison with the baselines.

4.5.1 Pre-retrieval Model. We compare the performance of QSD-QPPPre with the baselines over four different
datasets and three correlation measures. Table 1 presents the results of our experiments. To implement QSD-QPPPre
in Table 1, we used the paraphrase-MiniLM-v2 language model to obtain contextualized representations of the
query while considering 𝑘 = 10 queries within the subspace for each input query. The performance of other
variations of QSD-QPPPre based on different 𝑘 values and other language models are reported in Section 5 of this
paper.
Based on the results in Table 1, we find that our method consistently outperforms the baselines across all

correlation measures and datasets. A notable observation is that, in general, the query performance predictors
exhibit inferior performance on the MS MARCO Dev set compared to the other three TREC datasets. For instance,
IDF, one of the top-performing baselines, and our proposed method register a Pearson correlation of 0.117 and
0.219, respectively, on the MS MARCO Dev set. In contrast, these methods achieve a Pearson correlation of 0.440
and 0.483, respectively, on TREC DL 2019. A similar trend is noticeable across the other three DL datasets. We
speculate that this may be due to incomplete relevance judgements on the MS MARCO Dev set. Given that
queries in this dataset have, on average, only one relevant judged document, while judgements for the other three
query sets are extremely thorough, these incomplete judgements might introduce noise into the performance,
which may consequently affect the QPP performances.
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Table 1. Performance comparison between our QSD-QPPPre method and various pre-retrieval QPP baselines over MS MARCO
Dev small and TREC DL 2019 (Upper Table) and Trec DL 2020 and TREC DL HARD (Lower Table) in terms of Pearson 𝜌 ,
Kendall 𝜏 , and Spearman 𝜌 . The highest value in each column is marked in bold and superscript † denotes that the correlation
values obtained by QSD-QPPPre are statistically significant with p-value of 0.05 using a paired t-test.

MS MARCO Dev small TREC DL 2019
QPP
Method

Pearson Kendall Spearman Pearson Kendall Spearman

SCS 0.021 0.058 0.085 0.471 0.262 0.354
𝑃𝑐𝑙𝑎𝑟𝑖𝑡𝑦 0.052 0.007 0.009 0.109 0.119 0.139
VAR 0.067 0.081 0.119 0.290 0.141 0.187
PMI 0.030 0.033 0.048 0.155 0.065 0.079
IDF 0.117 0.138 0.200 0.440 0.276 0.389
SCQ 0.029 0.022 0.032 0.395 0.114 0.157
ICTF 0.105 0.136 0.198 0.435 0.259 0.365
DC 0.071 0.044 0.065 0.132 0.083 0.092
CC 0.085 0.066 0.076 0.079 0.068 0.023
IEF 0.110 0.090 0.118 0.140 0.090 0.134
MRL 0.022 0.046 0.067 0.176 0.079 0.140
BertPE 0.010 0.003 0.004 0.255 0.190 0.281
QSD-QPPPre 0.219† 0.214† 0.309† 0.483† 0.349† 0.508†

TREC DL 2020 DL Hard
QPP
Method

Pearson Kendall Spearman Pearson Kendall Spearman

SCS 0.447 0.310 0.448 0.247 0.159 0.240
𝑃𝑐𝑙𝑎𝑟𝑖𝑡𝑦 0.069 0.052 0.063 0.095 0.209 0.272
VAR 0.047 0.051 0.063 0.023 0.014 0.001
PMI 0.021 0.012 0.003 0.093 0.027 0.042
IDF 0.413 0.236 0.345 0.200 0.197 0.275
SCQ 0.193 0.005 0.004 0.335 0.106 0.152
ICTF 0.409 0.236 0.348 0.192 0.195 0.272
DC 0.100 0.118 0.150 0.155 0.091 0.115
CC 0.172 0.065 0.089 0.155 0.093 0.111
IEF 0.110 0.025 0.037 0.018 0.071 0.139
MRL 0.093 0.078 0.117 0.046 0.052 0.038
BertPE 0.013 0.031 0.038 0.054 0.025 0.050
QSD-QPPPre 0.452† 0.319† 0.457† 0.364† 0.234† 0.340†

Furthermore, SCS and IDF show superior performance compared to the rest of the baselines, but still trail our
proposed QSD-QPPPre method by a significant margin. We posit that this is because both metrics operate based
on term importance signals, such as inverse document frequency (IDF) and inverse collection term frequency
(ICTF) in SCS. As a result, we can conclude that these two signals perform best for these query subsets, as they
have previously demonstrated promising performance on other TREC collections [9].
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Moreover, two neural-based baselines, 𝑃𝑐𝑙𝑎𝑟𝑖𝑡𝑦 and DC, did not yield impressive results on the four query sets
under study. These methods work by identifying terms in the embedding space that are most similar to individual
query terms. We hypothesize this is because these methods operate at the level of individual query terms. The
queries in our study, which are generated by real users, lack structured form and are heavily dependent on
context. Consequently, the signals for term relatedness are weaker compared to those from the more structured
queries previously experimented within TREC collections where these two methods exhibited robust performance.
In contrast, our approach embeds the entire query into one representation, taking into account the context
and all query terms as a unified whole. Two other neural-based baselines, MRL and BertPE, exhibited subpar
performance on three of the query sets, showing adequate effectiveness only on TREC DL 2019. The performance
of MRL has been extensively evaluated on TREC DL 2019 in its original paper [66], but the method struggles to
generalize effectively across other query sets. Similarly, while BertPE demonstrates reasonable effectiveness
when evaluated on a combination of datasets as shown in [38], its performance on individual query sets reveals
significant weaknesses. However, QSD-QPPPre demonstrates consistently superior and stable performance across
all four query sets, excelling in making accurate predictions regardless of the query difficulty level.
We also observe that, unlike some of the baselines that achieve satisfactory Kendall correlation but poor

Pearson correlation, our model consistently delivers strong performance across all three correlations on all four
datasets. This demonstrates the robustness of our method. For instance, when considering the correlation metrics
of 𝑃𝑐𝑙𝑎𝑟𝑖𝑡𝑦 on DL-Hard or PMI on TREC DL 2019, it is evident that these methods perform well on either Pearson
or Kendall correlations, but not on both. However, in contrast, our proposed method exhibits strong performance
across all three correlation metrics and all four datasets. This underscores the robustness and consistency of our
proposed QSD-QPPPre method, further distinguishing it from the baselines.

4.5.2 Post-retrieval Model. Before presenting our findings, we highlight that the influence of hyperparame-
ters—such as k, which specifies the number of queries considered within the subspace of 𝑞—and the choice of
language models is thoroughly analyzed in Section 5. Here, and in Table 2, we focus on the results of QSD-QPPPost
using the deberta-v3-base language model with 𝑘 = 1, comparing its performance against state-of-the-art
post-retrieval QPP baselines.
Neural-based methods have demonstrated significant improvements over traditional models, showcasing

notable advancements in predictive performance. For instance, starting from NeuralQPP, more recent neural
models, such as BERT-QPP and qpp-BERT-PL, achieve a substantial boost in Pearson correlation, improving
by approximately 0.37 on the Dev small dataset. Despite these advancements, many baseline methods exhibit
inconsistencies across datasets. For example, SMV, while excelling in rank correlation on DL 2020, fails to maintain
competitive performance on MS MARCO Dev. Similarly, qpp-BERT-PL, which outperforms others on MS MARCO
Dev, struggles on DL-Hard, and qpp-PRP, despite strong performance elsewhere, performs poorly on DL 2019.
In contrast, our proposed QSD-QPPPost delivers consistently robust results across all datasets and metrics. This
reliability highlights its adaptability to varying data distributions, ensuring steady performance even in the face
of diverse and challenging conditions.
Despite the demonstrated strengths of neural-based methods, including their ability to significantly improve

predictive performance, our experiments with the TRECDL 2020 dataset reveal that achieving universal dominance
across all metrics remains elusive. While models like BERT-QPP and qpp-BERT-PL show remarkable progress, no
single approach consistently excels across Pearson, Kendall, and Spearman correlations. For example, NQA-QPP
performs well in Pearson correlation, while SMV leads in Kendall and Spearman correlations, underscoring
the fragmented nature of current state-of-the-art baselines. In this context, our proposed QSD-QPPPost offers a
competitive alternative, delivering results on par with supervised baselines that fine-tune contextual embedding
models, such as BERT-QPP, qpp-BERT-PL, and qpp-PRP. Interestingly, traditional non-contextualized models
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Table 2. Performance comparison between our QSD-QPPPost method and various post-retrieval QPP baselines over MS
MARCO Dev small and TREC DL 2019 (Upper Table) and Trec DL 2020 and TREC DL HARD (Lower Table) in terms of
Pearson 𝜌 , Kendall 𝜏 , and Spearman 𝜌 . The highest value in each column is marked in bold and superscript † denotes that
the correlation values obtained by QSD-QPPPost are statistically significant with p-value of 0.05 using a paired t-test.

MS MARCO Dev small TREC DL 2019
QPP
Method

Pearson Kendall Spearman Pearson Kendall Spearman

Clarity 0.149 0.258 0.345 0.149 0.099 0.126
WIG 0.154 0.170 0.227 0.331 0.260 0.348
QF 0.170 0.210 0.264 0.210 0.164 0.217
NeuralQPP 0.193 0.171 0.227 0.173 0.111 0.134
n(𝜎%) 0.221 0.217 0.284 0.195 0.120 0.147
RSD 0.310 0.337 0.447 0.362 0.322 0.469
SMV 0.311 0.271 0.357 0.375 0.269 0.408
NQC 0.315 0.272 0.358 0.384 0.288 0.417
UEF𝑁𝑄𝐶 0.316 0.303 0.398 0.359 0.319 0.463
NQA-QPP 0.451 0.364 0.475 0.386 0.297 0.418
BERT-QPP 0.517 0.400 0.520 0.404 0.345 0.472
qpp-BERT-PL 0.520 0.413 0.522 0.330 0.266 0.390
qpp-PRP 0.302 0.311 0.412 0.090 0.061 0.063
QSD-QPPPost 0.573† 0.434† 0.561† 0.434† 0.412† 0.508†

TREC DL 2020 TREC DL Hard
QPP
Method

Pearson Kendall Spearman Pearson Kendall Spearman

Clarity 0.360 0.215 0.296 0.271 0.229 0.332
WIG 0.204 0.117 0.166 0.310 0.158 0.226
QF 0.358 0.266 0.366 0.295 0.240 0.340
NeuralQPP 0.248 0.129 0.179 0.289 0.159 0.224
n(𝜎%) 0.480 0.329 0.478 0.371 0.256 0.377
RSD 0.426 0.364 0.508 0.460 0.262 0.394
SMV 0.450 0.391 0.539 0.495 0.289 0.440
NQC 0.464 0.294 0.423 0.466 0.267 0.399
UEF𝑁𝑄𝐶 0.511 0.347 0.476 0.507 0.293 0.432
NQA-QPP 0.507 0.347 0.496 0.348 0.164 0.255
BERT-QPP 0.467 0.364 0.448 0.491 0.289 0.412
qpp-BERT-PL 0.427 0.280 0.392 0.432 0.258 0.361
qpp-PRP 0.189 0.157 0.229 0.321 0.181 0.229
QSD-QPPPost 0.462 0.318 0.448 0.519† 0.318† 0.459†

like SMV and RSD still outperform neural-based methods in rank correlation metrics for this dataset, further
highlighting the challenges in achieving consistent and universal superiority.
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Table 3. Comparing our QSD-QPPPre and QSD-QPPPost methods with various pre-retrieval and post-retrieval QPP baselines
based on their run time per query in seconds.

Pre-retrieval Method SCS 𝑃𝑐𝑙𝑎𝑟𝑖𝑡𝑦 VAR PMI IDF SCQ ICTF DC CC IEF MRL BertPE QSD-QPPPre
Run Time (sec) 0.006 1.966 0.031 0.009 0.001 0.002 0.001 0.556 0.344 0.531 0.008 0.003 0.009

Post-retrieval Method Clarity WIG NeuralQPP NQC UEF_NQC NQA-QPP BERT-QPP qpp-PRP qpp-BERT-PL QSD-QPPPost

Run Time (sec) 1.130 0.017 0.213 0.003 0.088 0.025 0.003 0.827 0.435 0.003

4.6 Query Latency
In this section, we evaluate the efficiency of our proposed methods by comparing their query latency with that of
baseline methods. In order to run all methods and calculate inference time, we used an RTX 3090 GPU and an
AMD EPYC 7662 CPU. For the sake of the experiments, we first measured the time taken to index all 500k MS
MARCO queries using the paraphrase-MiniLM-v2 language model on the GPU, which amounted to a total of
97 seconds. Subsequently, we proceeded to compute the time needed for the subspace construction and query
performance prediction using the QSD-QPP methods. Therefore, we measured both the time necessary for the
subspace construction process and query performance prediction using our pre-retrieval and post-retrieval QPP
methods as follows:

4.6.1 Pre-retrieval Model. Our findings are presented in Table 3 where we also provide comparisons with the
baseline methods. As shown in this table, it is evident that the QSD-QPPPre method not only outperforms the
baselines in terms of performance but also demonstrates remarkable efficiency. These characteristics make it
well-suited for real-world applications.

4.6.2 Post-retrieval. The running time per query for our post retrieval QPP method and the baselines are also
presented in Table 3. By comparing the runtime of our method with baseline supervised methods, we can observe
that our method, QSD-QPPPost, takes slightly more time to process each query compared to BERT-QPP. This is
because, as explained in Section 3.3, we augmented the input of our method by concatenating the queries within
the subspace of each query and their performance, resulting in a longer input length. As a result, our method
should process more input in comparison with BERT-QPP. However, it is still much faster than other models such
as NeuralQPP and NQA-QPP, which are neural-based models as well.

5 Ablation Studies
The performance of our proposed QSD-QPPPre and QSD-QPPPost methods may be impacted by the choice of (1) the
base language model used for creating the Query Space, (2) the subspace size, defined as the number of queries
or samples inside the subspace during inference, (3) the size of the Query Space, which determines the pool of
previously retrieved queries available for performance prediction, and (4) the impact of maximum token length
on QSD-QPPPost. To better understand these effects, we investigate their impact on the overall performance of our
proposed methods in the following sections.

5.1 Impact of Choice of Language Model and Subspace Size
In this section, we first investigate the impact of the base language model and the size of subspace represented as
𝑘 . To explore the impact of the base language model, we adopt four different large language models, namely (1)
all-mpnet-base-v2, (2) all-MiniLM-v2, (3) paraphrase-MiniLM-v2 and (4) deberta-v3-base and build the
Query Space independently for each of them and measure the performance of QSD-QPPPre and QSD-QPPPost. These
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Fig. 4. Impact of Subspace Size and Choice of Language Model across all four datasets on QSD-QPPPre method.

language models were selected because they have demonstrated effective performance in various downstream IR
and NLP tasks, ensuring the generalizability of our findings.

Further, to investigate the impact of subspace size on our proposed methods, we evaluate varying numbers of
queries within the subspace, selecting 𝑘 = {1, 3, 5, 7, 9, 10} based on their distance scores relative to the input query,
across all four datasets. We limit our analysis to 𝑘 ≤ 10 to maintain cost-effectiveness, as our experiments showed
that including more than 10 queries in the subspace does not result in significant performance improvements.
The results of the variations based on differing language models and subspace size are reported in Figure 4 for
QSD-QPPPre and Figure 5 for QSD-QPPPost respectively. The figures include performance based on Kendall 𝜏 and
Pearson 𝜌 , and Spearman correlations. The predicted performance and run files of each model have been included
on our Github repository at https://github.com/sadjadeb/QSD_QPP.

5.1.1 Pre-retrieval Model. Based on Figure 4, our QSD-QPPPre method demonstrates stability and robustness
across all four datasets, irrespective of the subspace size 𝑘 or the choice of language model. Among the evaluated
models, Paraphrase-MiniLM-v2 stands out as the most consistent and stable, exhibiting reliable performance
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Fig. 5. Impact of Subscpace Size and Choice of Language Model across all four datasets by QSD-QPPPost.

across various configurations. While it does not always achieve the highest scores, its robustness makes it a
particularly suitable choice for our purposes. As such, we selected this model for comparison with the baselines
in Table 1. We hypothesize that its enhanced reliability stems from being fine-tuned for a relevant task, as
Paraphrase-MiniLM-v2 is specifically optimized for paraphrase mining. An exception to this overall robustness
is observed with the deberta-v3-base model, which underperforms relative to others when 𝑘 is below 5 on the
TREC DL 2019 and DL Hard datasets. However, as 𝑘 increases and approaches 10, its performance aligns with
that of the other models, demonstrating its ability to adapt to larger subspace sizes.

5.1.2 Post-retrieval Model. Similarly, Figure 5 highlights the robustness of QSD-QPPPost across various config-
urations. Interestingly, we observed no significant correlation between increasing the subspace size and the
performance of our method across all language models. Notably, augmenting the model’s input with more similar
queries proved beneficial only when deberta-v3-base was employed.
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Table 4. Performance of the QSD-QPPPre method when various percentage of queries were used forQuery Space Construction
on MS MARCO Dev queries.

Percentage of Queries Pearson Kendall Spearman
50% 0.200 0.191 0.278
60% 0.200 0.197 0.286
70% 0.196 0.199 0.290
80% 0.216 0.209 0.302
90% 0.215 0.207 0.299
100% 0.219 0.214 0.309

Table 5. Performance of the QSD-QPPPost method when various percentages of queries were used for Query Space Construc-
tion on MS MARCO Dev queries.

Percentage of Queries Pearson Kendall Spearman
50% 0.549 0.421 0.546
60% 0.546 0.426 0.552
70% 0.559 0.426 0.552
80% 0.563 0.429 0.555
90% 0.565 0.429 0.555
100% 0.573 0.434 0.561

5.2 Impact of Query Space size
The performance of our proposed QSD-QPPPre and QSD-QPPPost methods may also be impacted by the size of Query
Space used for constructing the subspace. Thus, to explore the impact of Query Space size on the performance
of our proposed approaches, we employ a random sampling approach to select various percentages of queries
from the pool of 500k MS MARCO queries. For each subset of queries, we construct distinct versions of the
Query Space using the paraphrase-MiniLM-v2 language model. Subsequently, we evaluate the performance of
QSD-QPPPre and QSD-QPPPost methods on the MS MARCO Dev query dataset.

5.2.1 Pre-retrieval Model. Table 4 illustrates the impact of Query Space size on the performance of our QSD-QPPPre
method. The results indicate that enlarging the Query Space leads to a slight improvement in performance.
Notably, even when utilizing only 50% of QS, our method outperforms all baselines. This demonstrates that,
regardless of the size of QS, our approach consistently achieves higher performance than the current baselines.

5.2.2 Post-retrieval Model. Similarly, Table 5 reveals the same pattern for QSD-QPPPost. This model shows similar
performance to the pre-retrieval approach and manages to outperform all baselines even when we cut the Query
Space in half. This demonstrates that our method is robust and effective across different configurations of the
Query Space size, maintaining superior performance compared to existing baselines. This consistency highlights
the strength of our approach in achieving high correlation metrics, regardless of the Query Space size.

Overall, we observe that both QSD-QPPPre and QSD-QPPPost show stable and robust performance regardless
of the adopted language model, the subspace size 𝑘 , and the size of constructed Query Space and hence can be
reliably used for performing QPP on a range of different query datasets including those with sparse labels (MS
MARCO), extensive labels (DL 2019 and 2020), and difficult queries (DL-Hard).
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Fig. 6. Impact of Max Token Length across all four datasets by QSD-QPPPost.

5.3 Impact of Maximum Token Length on QSD-QPPPost
In this section, we examine the impact of varying the maximum token lengths by concatenating the top retrieved
documents and training and testing our QSD-QPPPost model with different token configurations. Specifically, we
expand the size of 𝐷𝑞 from one to ten while ensuring that the input does not exceed 512 tokens, the maximum
length processable by our base models. As illustrated in Figure 6, our method’s performance on the MS MARCO
Dev set decreases as the number of processed tokens increases. For example, the Pearson correlation drops
from 0.458 to 0.399 when the maximum token length is increased from 50 to 500. These results suggest that
the optimal configuration for |𝐷𝑞 | is 1, as increasing it results in weaker performance compared to the default
setting. Nevertheless, this impact is not the same on the TREC DLs. We see improvement over all of these sets
the maximum token lengths became larger. This trend has been repeated over all 4 base language models that we
used. The performance of our QSD-QPPPost increases from 0.332 to 0.396, from 0.279 to 0.347, and from 0.315 to
0.478 on the TREC DL-2019, TREC DL-2020, and TREC DL-Hard, respectively.
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We note that given our QSD-QPPPre method is an unsupervised method and only relies on out-of-the-box
language models for building QS, we were only able to evaluate the effect of changing the maximum token
numbers that our model used for the QSD-QPPPost model.

6 Concluding Remarks
This paper introduced the Query Space Distance-Based QPP (QSD-QPP) framework, a novel approach to query
performance prediction that leverages the deterministic behavior of retrieval methods and historical query
performance data. By referencing semantically similar queries, QSD-QPP provides robust predictions through
both lightweight pre-retrieval and enriched post-retrieval modes, significantly outperforming state-of-the-art
methods on multiple benchmark datasets. The results demonstrate the practical utility of embedding historical
query knowledge into QPP tasks, achieving a balance between computational efficiency and prediction accuracy.
Building on this work and as future work, we will explore dynamic query subspace construction techniques

that adaptively select and weigh historical queries based on their contextual relevance and domain-specific
characteristics, enabling more accurate predictions in heterogeneous datasets. Additionally, we aim to develop
cross-domain QPP transfer learning methods, leveraging shared embedding spaces and pre-trained models to
adapt QSD-QPP for domains with limited labeled query data, ensuring broader applicability and robustness across
diverse information retrieval tasks especially for low-resource domains.
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