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Ad hoc retrieval, a cornerstone task in Information Retrieval (IR), aims to rank documents in response to a user’s query, often without

prior knowledge of the user’s specific information need. While transformer-based neural rankers have achieved state-of-the-art

performance in ad hoc retrieval, their effectiveness varies significantly across queries. Certain queries—commonly referred to

as hard queries—remain particularly challenging, highlighting critical gaps in retrieval models. Identifying these hard queries

is essential for improving retrieval systems, motivating the task of Query Performance Prediction (QPP), which aims to estimate

the effectiveness of a query without requiring access to relevance judgments. In this paper, we propose Context-Aware Query

Performance Prediction (CA-QPP), a novel post-retrieval QPP method, which builds on the foundations of perturbation-based QPP

methods that hypothesize a relationship between query sensitivity to small perturbations and query retrieval effectiveness. Building

on this foundation, our approach exposes the given query to perturbations by constructing two query variations: an effective
variation emphasizing terms that enhance retrieval and an ineffective variation accentuating terms that hinder it. By contrasting the

retrieval outcomes of these variations using a cross-encoder model, CA-QPP captures the interplay of term contributions and predicts

the performance for the given query. We evaluate CA-QPP on the widely used MS MARCO datasets and their associated query

sets, including TREC DL 2019, TREC DL 2020, DL-Hard, TREC DL 2021, and TREC DL 2022, which feature extensive human-labeled

relevance judgments. Our experiments demonstrate that CA-QPP consistently outperforms traditional and neural-based QPP

baselines across standard correlation metrics, including Pearson’s 𝜌 , Kendall’s 𝜏 , and Spearman’s 𝜌 . Through a detailed case study,

we further illustrate the mechanics of CA-QPP and provide empirical evidence for its ability to model the contextual impact of

individual query terms, making it a robust framework for query performance prediction.
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Bi-encoder

ACM Reference Format:
Abbas Saleminezhad, Negar Arabzadeh, Soosan beheshti, and Ebrahim Bagheri. 2018. Learning Context-aware Term Importance for

Query Performance Prediction. In Proceedings of Make sure to enter the correct conference title from your rights confirmation emai (ACM
Transactions on Intelligent Systems and Technology). ACM, New York, NY, USA, 26 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The ad hoc retrieval task is a fundamental problem in Information Retrieval (IR) that involves retrieving a ranked

list of documents from a collection in response to a user’s query, without any prior knowledge of the user’s specific

information need [38]. Ad hoc retrieval is the cornerstone of many IR applications, such as web search engines,

digital libraries, and recommendation systems, and its effectiveness is essential for meeting diverse and dynamic

user requirements [13]. Transformer-based neural rankers, also known as dense retrievers [3, 30], have significantly

advanced the performance of ad hoc retrievers in the past few years compared to traditional sparse retrievers [10].
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These dense retriever methods capture complex semantic relationships between query terms and document content,

allowing for more precise ranking of documents in response to an input query. Their ability to generate contextualized

word representations and model hierarchical patterns has established new benchmarks in retrieval effectiveness

[32, 58].

While transformer-based neural rankers have significantly improved ad hoc retrieval performance, empirical

evidence has shown that not all queries have benefited from this performance improvement equally [2, 36]. For

instance, the MS MARCO Chameleons study introduced the concept of Chameleon queries—subsets of queries that
demonstrate high variability in retrieval performance across different retrieval models [8]. These queries expose

weaknesses in retrieval systems, as they remain challenging to handle despite advancements in ranking techniques.

For example, this study identified a query subset from the MS MARCO development set, comprising hundreds of

queries, which exhibits mean average precision (MAP) scores as low as 0.0286 even using more advanced dense

retrievers like ColBERT [44]. This highlights that even state-of-the-art methods struggle with these hard queries,
which often involve ambiguous phrasing, domain-specific knowledge, or multiple facets of intent.

Identifying such hard queries is critical for improving retrieval systems, as it enables targeted strategies like

re-ranking, query reformulation, or enhanced model training for specific subspaces [54, 63]. The task dedicated to

this is known as Query Performance Prediction (QPP), which aims to estimate the effectiveness of a query’s retrieval

outcome without access to relevance judgments [13, 69]. QPP methods can be broadly categorized into two main

types: pre-retrieval and post-retrieval approaches. Pre-retrieval methods rely on query-level features, such as query

length, term frequency, or collection statistics, to estimate retrieval performance without requiring the results of an

actual retrieval process [34]. Such as a recent work [45] that uses language model perplexity scores of query rewrites

as a proxy for predicting retrieval performance. These methods are computationally efficient, making them suitable

for scenarios requiring real-time predictions. However, they often lack the granularity needed to capture complex

interactions between the query and the document collection, limiting their accuracy for more difficult or ambiguous

queries. Post-retrieval methods, on the other hand, operate on the results returned by a retrieval system, leveraging

retrieval-specific signals such as score distributions, rank positions, or term overlaps between the query and retrieved

documents [37, 40]. These methods provide more accurate predictions by directly analyzing the retrieved content and

its relevance to the query. However, they come with increased computational costs since they require executing the

retrieval process and processing the results.

Our work in this paper is situated within the realm of post-retrieval QPP methods, which leverage retrieval

outcomes to estimate query effectiveness. We are specifically inspired by perturbation-based approaches [3, 67]

that identify a correlation between a query’s robustness to slight perturbations and its retrieval effectiveness. These

methods suggest that degrees of change in retrieval outcomes caused by query perturbations can be meaningful

indicators of a query’s retrieval effectiveness. The underlying hypothesis of these methods is that queries that are

robust to perturbations are likely to exhibit higher retrieval effectiveness. Building on this underlying hypothesis

from perturbation-based methods, we extend this idea by considering three key premises in our work: First, as has
been widely documented already [2], there are many different ways through which the same information need can be

expressed by the users. This reflects the natural variability in how users articulate their search intent, with differences

arising from language choice, phrasing, or emphasis on specific aspects of the information need. Second, while all
these different formulations of the same information need is possible, not all of these query formulations achieve

the same level of retrieval effectiveness [8]. Queries that consist of terms that closely align with the vocabulary

and context of relevant documents significantly enhance retrieval outcomes, whereas ambiguous or general query

terms introduce noise or misalignment. Finally, as shown in perturbation-based QPP methods, the contrast between

different query formulations of the same information need can provide a structured framework for estimating query

performance. In other words, by systematically comparing variations of the same query and their outcomes, it may

be possible to estimate a query’s retrieval effectiveness.

Building on these premises, our approach introduces a systematic method for estimating query performance by

constructing and contrasting deliberate variations of the original query. We are particularly interested in building two

specific types of query variations: an effective variation, which emphasizes terms that enhance retrieval effectiveness,

and an ineffective variation, which amplifies terms that hinder retrieval effectiveness. These variations provide a

structured contrast that allows us to analyze how term-level contributions shape retrieval outcomes. This perspective
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aligns with prior work by Zendel et al. [68], who showed that incorporating multiple formulations of a query tied to

the same information need can enhance QPP accuracy. To estimate the performance of the original query, we analyze
the retrieval results of these variations using a cross-encoder model that processes each query variation alongside its

corresponding retrieved documents. By contrasting the outcomes of the effective and ineffective variations, the model

learns to predict a continuous score representing the query’s overall effectiveness. This contrast-based framework,

inspired by the principles of robustness and variation sensitivity [41], provides a structured and context-sensitive way

to estimate query performance.

To evaluate the effectiveness of our approach, we conduct experiments using the widely adopted MS MARCO

datasets V1 and V2 and their associated query sets [50]: TREC DL 2019 [44], TREC DL 2020 [16], DL-Hard [44]

TREC DL 2021[17], and TREC DL 2022[18]. These datasets provide extensive human-labeled relevance judgments,

enabling robust evaluation across a diverse range of query difficulties. Our experiments include comparisons with

traditional and neural-based baselines, focusing on both statistical and embedding-based QPP methods. We employ

standard correlation metrics such as Pearson’s 𝜌 , Kendall’s 𝜏 , and Spearman’s 𝜌 to measure the alignment between

predicted and actual query performance. Additionally, we analyze the robustness of our approach with respect to key

components, such as term weight estimation, query expansion strategies, and aggregation functions. We show that

our approach exhibits stable and more effective performance compared to existing state of the art. In summary, the

contributions of our paper can be enumerated as follows:

• We propose CA-QPP, a method that uses a contrastive strategy for estimating query performance. CA-QPP
generates two deliberate variations for a given input query: one emphasizing terms that enhance retrieval

effectiveness and another amplifying terms that hinder it. By contrasting the retrieval outcomes of these

variations, our method provides a systematic approach to understand and predict the effectiveness of the

original query.

• We introduce a method to generate effective and ineffective variations of the original query by estimating the

impact of individual query terms on retrieval performance. By learning a term-weighting method, we assess

the contributions of each query term on the query’s retrieval effectiveness and construct query variations that

reflect opposing ends of retrieval effectiveness.

• We perform extensive experiments on the MS MARCO datasets and their associated query sets, comparing

our method against both traditional and neural-based QPP baselines. These evaluations demonstrate the

effectiveness and stability of our approach compared to the state of the art.

2 Related Works
Query Performance Prediction has proven effective in the design of complex information seeking systems, particularly

in balancing the trade-off between efficiency and effectiveness [64]. A recent overview by Arabzadeh et al. [6, 7]

further emphasizes the growing importance of QPP in practical IR scenarios, highlighting its role not only in ad-hoc

retrieval but also in emerging applications like conversational and multi-agent search systems. For instance, QPP has

been instrumental in query routing, where the system determines whether to employ a more complex and resource-

intensive retriever for challenging queries or a lightweight retrieval strategy for easier ones [62]. Additionally, QPP

methods have been applied in scenarios such as asking clarifying questions when user intent is predicted to be

ambiguous, thereby enhancing system interaction quality [9]. In [28], a framework for QPP in conversational search

was introduced, highlighting the need for models and evaluation protocols tailored to multi-turn interactions. Also,

the QPP++ 2025 workshop [48] outlined new directions for QPP in the era of large language models, pointing to

broader opportunities and challenges.

Depending on when in the retrieval pipeline QPP is conducted, methods are broadly categorized into pre-retrieval

and post-retrieval approaches. Pre-retrieval methods operate before document retrieval, relying solely on query and

corpus data [1, 64], while post-retrieval methods incorporate additional information from the retrieved documents,

alongside query and corpus statistics. Post-retrieval QPP generally achieves higher predictive accuracy due to the

availability of richer retrieval signals. Consequently, our work focuses on post-retrieval QPP methods, which have

shown to be particularly effective in this domain.
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Post-retrieval QPP methods often rely on statistical properties of document scores. For instance, Clarity [20]

measures the divergence between the language models of the top-ranked documents and the overall collection,

providing an estimate of query difficulty. Similarly, Weighted Information Gain (WIG)[69] assesses the difference

between the average scores of top-ranked documents and the collection as a whole. Another class of metrics, such

as NQC and SMV [60, 63], focuses on the variance of retrieval scores among the top-retrieved documents. The

underlying assumption is that higher variance in these scores indicates a clear distinction between relevant and

non-relevant documents, making the query easier to satisfy. Conversely, low variance suggests that all retrieved

documents have similar relevance levels, making it harder to differentiate between them [69]. While these methods

are computationally efficient, their heavy reliance on the distribution of retrieval scores limits their applicability

across different types of retrievers. Variations in score distributions between retrieval models, particularly between

sparse and dense retrievers, often render these methods ineffective [30, 61].

Another class of QPP methods focuses on query robustness as a predictor of performance. These methods operate

on the premise that more robust queries are likely to perform better. For instance, prior work [3, 69] injects noise into

query representations in both lexical and semantic spaces to assess the stability of retrieval results. The degree of

overlap between the results retrieved by the original query and the perturbed query serves as an indicator of robustness.

Queries with higher overlap are deemed more robust and thus are expected to yield better retrieval performance. In

addition, Nascimento et al. [49] introduced a risk-sensitive evaluation framework for QPP, emphasizing the importance

of assessing predictor stability across queries and complementing traditional correlation-based evaluations. Our

proposed method, CA-QPP, also builds on the concept of query robustness but takes a more targeted approach. Instead

of introducing random noise into the query, we inject goal-oriented perturbations, specifically generating query

variations with intentionally different levels of effectiveness. By comparing the retrieval results of the original

query and its perturbed counterparts—where the perturbation represents either an effective or ineffective query—our

approach learns to predict query performance. This structured framework enables CA-QPP to assess query effectiveness
with greater precision, advancing the robustness-based QPP paradigm.

Another group of QPP methods focuses on comparing the retrieved list of results to an ideal reranker. Shtok et al.

[60] proposed a reference list-based framework that estimates query performance by comparing the retrieved list to

pseudo-effective and pseudo-ineffective result lists. Similarly, Datta et al. [23] propose a framework that predicts query

performance by measuring the relative information gain between a query and its automatically generated variants. In

[61], the authors propose two frameworks: one comparing the similarity of the retrieved list with a pseudo-relevance

feedback (PRF) model, and the other comparing it with a reranked list produced by a strong pairwise ranker such as

DuoT5 [52]. These methods are unsupervised and have demonstrated strong performance among unsupervised QPP

approaches.

Recent advancements in neural-based post-retrieval QPP methods have demonstrated superior predictive accuracy

by leveraging both static and contextualized representations of queries and documents. NeuralQPP [66] utilizes

traditional statistical-based QPP metrics as weak signals to train a supervised model using static embeddings. Similarly,

NQA-QPP [33] fine-tunes a transformer model by integrating contextual query embeddings, document embeddings,

and document-query interactions into a unified framework to predict query performance. BERT-QPP [5] takes a

slightly different approach, employing a cross-encoder architecture focused solely on query-document interactions to

fine-tune a contextualized transformer model for performance prediction. However, a limitation of BERT-QPP is its

inability to handle long texts or multiple passages due to token length restrictions. To address this, QPP BERT-PL [24]

proposes a solution by chunking the text into smaller sections and using a sliding window over the top-retrieved

documents to overcome token limit constraints. Another variation of BERT-QPP is proposed in [27], where the

retrieval scores are integrated into the BERT-QPP framework, combining score-based metrics with neural-based

metrics. This hybrid approach has been shown to outperform both individual approaches.Faggioli et al. [29] proposed

a unified framework for QPP in neural IR, showing how predictive features can be derived at different stages of the

retrieval pipeline. Most recently, Meng et al. [47] introduced QPP-GenRE, a novel framework that estimates query

performance by using large language models to generate pseudo-relevance judgments for top-ranked documents,

enabling the prediction of various evaluation metrics and improving interpretability through fine-grained relevance

modeling.
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While these methods have advanced the field, challenges remain in effectively predicting query performance

in ad hoc retrieval settings. Our work builds on these efforts by introducing CA-QPP, which combines contextual

embeddings with a score-based setup. Recognizing that transformer models are particularly adept at learning term

weightings [43], we first identify which terms contribute positively to query performance and which terms detract

from it. Instead of directly learning query performance, we decompose the problem into two steps: (1) learning the

term importance of individual query terms using contextualized transformer models, and (2) leveraging these term

importance weights to predict overall query performance. This additional step, compared to methods that solely

fine-tune a transformer model to predict performance, adds an interpretive layer and simplifies the prediction task.

We show that this refinement could enhance the accuracy of QPP.

3 Methodology

3.1 Problem Definition
In the context of information retrieval, the Query Performance Prediction (QPP) task aims to estimate the effectiveness

of a retrieval method 𝑅 in addressing the information need behind a given query 𝑞, without relying on relevance

judgments. For a query 𝑞, a retrieval method 𝑅 produces a ranked list of documents 𝐷𝑞 , expressed as 𝐷𝑞 ← 𝑅(𝑞,𝐶).
Here:

• 𝐶 represents the document corpus from which documents are retrieved and ranked.

• 𝑅(·) is a retrieval function that takes a query 𝑞 and the corpus𝐶 as input and outputs a ranked list of documents

𝐷𝑞 , ordered by their relevance to 𝑞.

The effectiveness of 𝑅(𝑞,𝐶) is determined by its ability to place the most relevant documents at the top of the

ranked list𝐷𝑞 . If relevance judgments are available for query 𝑞, the quality of the retrieval results is measured using an

evaluation function 𝜇 (𝑞,𝐶, 𝑅). Common evaluation metrics 𝜇 include Mean Average Precision (MAP), Mean Reciprocal

Rank (MRR), and normalized Discounted Cumulative Gain (nDCG). In QPP, the goal is to estimate the effectiveness of

the retrieved list 𝐷𝑞 , denoted as 𝜇 (𝑞,𝐶, 𝑅), using a QPP method 𝜙 (𝐷𝑞, 𝑞,𝐶) without access to relevance judgments.

The predicted performance 𝜇 (𝑞,𝐶, 𝑅) is then compared to the actual performance 𝜇 (𝑞,𝐶, 𝑅) to assess the accuracy
of the QPP method across a set of queries. Ultimately, the objective is to evaluate how well 𝜇 (𝑞,𝐶, 𝑅) approximates

𝜇 (𝑞,𝐶, 𝑅), enabling better prediction of retrieval effectiveness for unseen queries.

3.2 Foundations of Our Approach
Our work in this paper is built on three key premises:

(1) The same information need can be expressed through different query formulations: In information retrieval,

users often express their search intent in multiple ways, reflecting natural variability in language and search

behavior [2]. This variability is critical to consider because different formulations of the same information

need interact differently with the underlying retrieval system and document collection. For example, the

queries “is sinus infection contagious” and “is sinusitis contagious” convey the same user intent but vary in

their phrasing and term usage.

(2) Not all query formulations achieve the same retrieval effectiveness: Query terms play differing roles in directing

the retrieval system toward relevant documents. Terms that align closely with the vocabulary and context

of relevant documents can significantly improve retrieval performance, while ambiguous or general terms

may lead to irrelevant or suboptimal results [8]. For instance, in the previous example, the query “is sinusitis

contagious” outperforms “is sinus infection contagious” on a BM25 ranker because the term sinusitis is more

specific and semantically aligned with relevant documents. This variability demonstrates that even slight

changes in query formulation can have substantial effects on retrieval performance.

(3) Sensitivity to query perturbations can correlate with query difficulty: Previous work on perturbation-based

query performance prediction has explored how small perturbations to a query can lead to changes in retrieval

effectiveness for that query [3, 67]. These methods rely on the idea that less robust queries—those whose

performance varies significantly with perturbations—tend to be more difficult, while highly robust queries

are generally more effective. The notion of robustness suggests that examining variations of the same query
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can reveal how specific changes impact retrieval effectiveness, making it a plausible strategy for estimating

performance.

Our work is particularly inspired by the observation that the same information need can be expressed through

different query formulations, each exhibiting varying levels of retrieval effectiveness. We examine whether the

contrast in retrieval effectiveness between these variations can serve as a reliable indicator of query performance.

This approach is motivated by earlier research that has explored the impact of query perturbations as a means to

estimate query performance, leveraging robustness to modifications as a proxy for retrieval effectiveness. More

specifically in our work, we create two variations of the original query, each designed to exhibit differing levels of

retrieval effectiveness—one exhibiting a higher retrieval effectiveness and the other showing less effectiveness. By

contrasting these variations and their retrieval outcomes, we systematically investigate whether contrast between

query variations can be used to effectively estimate retrieval effectiveness.

3.3 EstimatingQuery Performance
We are inspired by methods that adopt robustness to query perturbations for estimating query performance, which

typically evaluate performance by introducing small modifications to the original query and analyzing the retriever’s

sensitivity to these changes [3, 67]. These methods operate on the assumption that lower robustness (higher sensitivity)

to perturbations indicates a more difficult query. Similar to existing perturbation-based methods, which estimate

query performance by contrasting the original query with amodified variation, our approach constructs two deliberate

variations of the original query: one that represents a potentially more effective version by emphasizing terms likely to

enhance retrieval effectiveness and another that represents a potentially less effective version by amplifying terms that

may hinder retrieval. By contrasting the retrieval outcomes of these two variations, we estimate the performance of

the original query in a systematic manner.

More specifically our objective is to estimate query performance by contrasting two variations of the initial query:

one designed to represent an effective query in which focus is given to query terms that enhance retrieval effectiveness,

and the other representing an ineffective query by emphasizing query terms that hinder retrieval effectiveness. To

construct these variations, we first perform a context-specific classification of the terms in the query, categorizing

them based on their contributions to retrieval effectiveness. This systematic approach unfolds in three steps:

(1) Classifying Terms: For a given input query, we first categorize each of the query terms into one of three types:

promotive terms that enhance retrieval effectiveness, demotive terms that degrade effectiveness, and neutral
terms that have negligible or mixed impact on retrieval effectiveness. This classification uses a term-weighting
function that evaluates the influence of each term within the query’s retrieval context.

(2) Creating Query Variations: Using the classified terms, we generate two contrasting variations of the query. The

promotive-dominant variation emphasizes promotive terms to simulate a highly effective retrieval scenario,

while the demotive-dominant variation focuses on demotive terms to reflect a less effective retrieval scenario.

These variations are deliberately constructed to reflect opposing ends of the query effectiveness spectrum.

(3) Predicting Query Performance: The retrieval outcomes of the two query variations are contrasted using a cross-

encoder model, which processes each variation along with its associated retrieved document. By analyzing

the differences between the effective and ineffective query variations, the model learns to predict a continuous

score representing the performance of the original query.

Based on Figure 1, each step of our proposed CA-QPP is detailed in the following.

3.3.1 Step 1: ClassifyingQuery Terms. The first step in CA-QPP is to classify query terms based on their context-specific

contributions to retrieval effectiveness. We categorize query terms into three types:

• Promotive terms: These terms enhance retrieval effectiveness by aligning the query with relevant documents.

• Demotive terms: These terms hinder retrieval effectiveness by introducing ambiguity or misalignment with

relevant documents.

• Neutral terms: These terms have negligible or mixed effects, often playing syntactic or contextually insignificant

roles.
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Fig. 1. The overview of our proposed CA-QPP method.

The classification of terms into these three types is achieved using a term weighting function,𝑇𝑊 (𝑡𝑖 ), which assigns

a continuous weight to each term 𝑡𝑖 in a query 𝑞. This weight reflects the term’s influence on retrieval performance

within its specific context. Promotive terms are assigned positive weights, demotive terms are assigned negative

weights, and neutral terms receive weights near zero. The method for learning this function will be detailed later in

the paper; however, we note that the term weighting function is both context-aware and performance-driven; hence,
assigns weights to terms depending on the context they appear in and the impact they have on the performance of

the query.

3.3.2 Step 2: ConstructingQuery Variations. Using the classifications of query terms, we construct two query variations

from the original query, each of which represents contrasting degrees of retrieval effectiveness:

• The promotive variation (E+𝑞 ): This variation amplifies the presence of promotive terms to simulate an effective

retrieval scenario. Demotive and neutral terms are included without modification.

• The demotive variation (E−𝑞 ): This variation amplifies the presence of demotive terms to simulate an ineffective

retrieval scenario. Promotive and neutral terms are included as they are.

In each variation, promotive or demotive terms are amplified through an expansion process where these terms are

repeated based on an expansion factor 𝑅(𝑡𝑖 ), defined as:

𝑅(𝑡𝑖 ) = ⌊𝛼 · |𝑇𝑊 (𝑡𝑖 ) |⌋, |𝑇𝑊 (𝑡𝑖 ) | > 0,

where 𝛼 ∈ {10, 20, . . . , 100} is an expansion factor that controls the expansion. Using this factor, the query variations
can be formally defined as:

Definition 3.1 (Promotive Expansion (E+𝑞 )). The promotive expansion of a query 𝑞 is:

E+𝑞 =
⋃
𝑡𝑖 ∈𝑞


{𝑡𝑖 , 𝑡𝑖 , . . . , 𝑡𝑖 }︸         ︷︷         ︸

𝑅 (𝑡𝑖 ) times

if 𝑇𝑊 (𝑡𝑖 ) > 0,

{𝑡𝑖 } if 𝑇𝑊 (𝑡𝑖 ) ≤ 0.

Definition 3.2 (Demotive Expansion (E−𝑞 )). The demotive expansion of a query 𝑞 is:

E−𝑞 =
⋃
𝑡𝑖 ∈𝑞


{𝑡𝑖 , 𝑡𝑖 , . . . , 𝑡𝑖 }︸         ︷︷         ︸

𝑅 (𝑡𝑖 ) times

if 𝑇𝑊 (𝑡𝑖 ) < 0,

{𝑡𝑖 } if 𝑇𝑊 (𝑡𝑖 ) ≥ 0.

These two variations represent effective and ineffective formulation of the same initial query by only changing the

frequency of how promotive and demotive terms appear in each.

3.3.3 Step 3: Contrasting Query Variations with a Cross-Encoder. The final step involves contrasting the two query

variations to estimate the performance of the original query. In order to provide broader context for each query

variation, each variation is appended with a corresponding document that represents the retrieval outcome of that

variation. The promotive variation (E+𝑞 ) is paired with the expanded version of the relevance judgment document

(E+
𝐷ideal

). An expanded version of a document is constructed in the same way as the query. This provides additional
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context by indicating that the promotive variation is likely to lead to the retrieval of the relevance judgment document.

Conversely, the demotive variation (E−𝑞 ) is paired with the expanded version of the top-1 document retrieved by

the demotive query (E+
𝐷1

). This indicates that the demotive variation of the query is likely to retrieve less desirable

documents represented by the top-1 document for that demotive query.

A cross-encoder model is then trained to compare these two contrasting pairs (i.e., the first pair being [E+𝑞 , E+𝐷ideal

],
and the second pair being [E−𝑞 , E−𝐷1

], in order to predict a continuous performance score for the original query 𝑞:

𝜇 (𝑞,𝐶, 𝑅) = 𝐶𝐸 ( [E+𝑞 , E+𝐷ideal

], [E−𝑞 , E−𝐷1

]),
where 𝐶𝐸 is the cross-encoder model. The output 𝜇 (𝑞,𝐶, 𝑅) is a continuous scalar score representing the predicted
performance of the original query. The cross-encoder learns to predict this score by minimizing a cross-entropy loss:

𝐿 = −
∑︁
𝑞∈Q
[𝜇 (𝑞,𝐶, 𝑅) · log 𝜇 (𝑞,𝐶) + (1 − 𝜇 (𝑞,𝐶, 𝑅)) · log(1 − 𝜇 (𝑞,𝐶))] ,

where Q is the set of queries in the training set, 𝜇 (𝑞,𝐶, 𝑅) is the true performance and 𝜇 (𝑞,𝐶) is the predicted

performance for the query 𝑞 on corpus 𝐶 .

This contrastive approach enables our method to explicitly learn how individual terms contribute to the retrieval

process by analyzing their roles in two opposing retrieval scenarios. By comparing the retrieval outcomes of a

promotive-dominant query variation, paired with an ideal relevance judgment document, and a demotive-dominant

variation, paired with its top-1 retrieved document, the model is exposed to the full spectrum of how different query

terms influence retrieval effectiveness. This structured contrast allows the model to differentiate between terms that

align queries with relevant documents and those that degrade retrieval effectiveness by introducing ambiguity or

noise. By systematically examining these opposing query variations, the method captures the context-dependent

impact of query term composition on retrieval performance, which as we will show in our experiments is both robust

and accurate in learning to estimate query performance.

3.4 Context-aware Term Weights
To effectively classify query terms based on their contributions to retrieval performance, we had introduced and

adopted a term-weighting function 𝑇𝑊 (𝑡𝑖 ) in Section 3.3. This function assigns continuous weights to individual

query terms, reflecting their specific impact within the context of the query and the retrieved documents. In this

section, we describe the process for learning this function, including the estimation function and the construction of

labeled datasets.

3.4.1 Learning the Weighting Function. To learn the term weighting function, we require a training dataset consisting

of labeled query terms, where each term is classified as promotive, demotive, or neutral. For the purpose of explaining
how the term weighting function is trained, we assume that the required labeled dataset is already available. The

process of constructing this labeled dataset will be detailed in the subsequent section. Within the labeled dataset, term

weights 𝑇𝑊 (𝑡) are provided for each query term of all included queries. The term weights are assigned as follows:

𝑇𝑊 (𝑡) =

1 if 𝑡 ∈ P (Promotive term set),

−1 if 𝑡 ∈ D (Demotive term set),

0 if 𝑡 ∈ N (Neutral term set).

Simply put, promotive terms receive a positive weight of 1, demotive terms are assigned a negative weight of -1,

and neutral terms are associated with 0. The labeled dataset has assigned these weights to each of the query terms

by considering the context in which they appear in the query and the impact their presence in the query has on

retrieval effectiveness. Using the labeled terms, we train a regression model to predict term weights𝑇𝑊 (𝑡) for unseen
contexts. The inputs to the regression model are contextual embeddings of terms, which represent the semantic

and positional relationships of terms within the query and its retrieved documents. The regression model learns to

map these embeddings to continuous term weights, approximating the true weights 𝑇𝑊 (𝑡). The model is trained to
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minimize the Mean Squared Error (MSE) loss:

MSE Loss =
∑︁
𝑡 ∈𝑞

(
𝑇𝑊 (𝑡) −𝑇𝑊 (𝑡)

)
2

.

To ensure that term weights reflect not only individual term characteristics but also their contextual interactions,

the regression model incorporates an attention mechanism. This mechanism allows the model to evaluate how

terms influence one another within the query or retrieved document. By attending to important contextual signals,

the model produces term weights 𝑇𝑊 (𝑡) that capture both term-level and context-dependent contributions to

retrieval effectiveness. In the next subsection, we explain how the labeled dataset required for this training process is

constructed.

3.4.2 Dataset Construction for Learning Term Weights. For the sake of creating the dataset, assume that we are given

a specific information need and two queries that express this need: one that achieves perfect retrieval effectiveness

(𝑞𝑝 ) and another that is ineffective (𝑞𝑑 ). Given the perfect retrieval effectiveness of 𝑞𝑝 , the top-1 retrieved document

for 𝑞𝑝 is equivalent to the relevance judgment document (𝐷ideal) for that query. In contrast, for the ineffective query

(𝑞𝑑 ), the top-1 retrieved document (𝐷1) is irrelevant to the information need. We use the pairing of 𝑞𝑝 with 𝐷ideal

and 𝑞𝑑 with 𝐷1 to provide labels for the query terms, identifying their types as promotive, demotive, or neutral. We

propose that the labeling of term types can be achieved using two different strategies, namely Query-Aware and

Query-Agnostic.
The Query-Aware strategy examines term occurrences across the effective and ineffective queries and their

associated documents. In this strategy, terms are labeled as follows:

• Promotive Terms: Present in 𝑞𝑝 and 𝐷ideal but absent in 𝑞𝑑 and 𝐷1.

• Demotive Terms: Present in 𝑞𝑑 and 𝐷1 but absent in 𝑞𝑝 and 𝐷ideal.

• Neutral Terms: Common across 𝑞𝑝 , 𝑞𝑑 , 𝐷ideal, and 𝐷1, with mixed or negligible impact.

The rationale behind the Query-Aware strategy is that it directly incorporates query context, allowing the model

to capture how terms behave differently in effective and ineffective queries. By focusing on the interplay between

terms in queries and their retrieved documents, this method ensures that term labels reflect their context-specific

roles in retrieval effectiveness.

In contrast, in the Query-Agnostic strategy, the focus is on term overlaps between retrieved documents and the

relevance judgment. In the Query-Agnostic strategy, terms are labeled as follows:

• Promotive Terms: Shared between 𝐷ideal and 𝐷1, contributing positively to alignment.

• Demotive Terms: Exclusive to 𝐷1, introducing noise or reducing alignment with 𝐷ideal.

• Neutral Terms: Exclusive to 𝐷ideal, representing missed opportunities for alignment.

The rationale behind the Query-Agnostic method is that it emphasizes document alignment as a measure of

retrieval effectiveness. By abstracting away from query-specific details, this method provides a more generalizable view

of term contributions, focusing on how terms align the retrieved document 𝐷1 with the ideal document 𝐷𝑖𝑑𝑒𝑎𝑙 . This

approach is particularly useful for analyzing retrieval performance when query context is less critical or unavailable.

The two proposed strategies, Query-Agnostic and Query-Aware, can produce gold standard labels for query term

under the assumption that we are given an information need along with two competing query variations: one effective

(𝑞𝑝 ) and one ineffective (𝑞𝑑 ). However, in practice, creating such competing queries is not straightforward, as we

must ensure that both queries seek to address the same information need but vary in their retrieval effectiveness.

To address this, we introduce an inverse process of generating queries from a given passage. Specifically, given a

passage, we generate a set of queries that seek to retrieve that passage. This approach leverages the fact that all

queries generated from the same passage inherently address the same information need, providing a natural basis for

constructing competing query pairs. The process unfolds as follows:

(1) Passage Selection: We begin with a collection of passages C = {𝑝1, 𝑝2, . . . , 𝑝𝑚}, where each passage 𝑝 ∈ C
represents a document fragment associated with a specific information need. In our work, these passages

come from the MS MARCO dataset [50].
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Fig. 2. The proposed process for dataset construction and learning the term weighting function.

(2) Query Generation: For each passage 𝑝 , we use a translation function T to generate multiple queries Q𝑝 =

{𝑞1, 𝑞2, . . . , 𝑞𝑘 } that attempt to retrieve 𝑝 . The translation function T can be implemented using a fine-tuned

T5 transformer model as already shown in [53]). These generated queries vary in phrasing, term usage, and

specificity, reflecting natural variability in user search behavior.

(3) Query Pair Selection: From the generated queries Q𝑝 , we identify two competing queries: one effective query

(𝑞𝑝 ) that achieves near-perfect retrieval effectiveness and one ineffective query (𝑞𝑑 ) that performs poorly. The

effectiveness of a query is determined by its retrieval performance, measured in terms of metrics such as

nDCG@10. The query 𝑞𝑝 is paired with its relevance judgment document (𝐷ideal), while 𝑞𝑑 is paired with its

top-1 retrieved document (𝐷1).

(4) Term Labeling: Once the competing queries and their associated documents are identified, we apply the

Query-Agnostic and Query-Aware strategies to label the terms. These labels serve as gold standard anno-

tations, capturing the types of each term as promotive, demotive, or neutral based on their contributions to

retrieval performance.

This process, as outlined in Figure 2, ensures that our dataset consists of competing queries that share the same

information need along with appropriate types for each of their terms. This dataset is used for effectively training the

term weighting function 𝑇𝑊 (𝑡).

4 Experimental Setup

4.1 Dataset
We evaluate our proposed approach using two widely adopted benchmark corpora, namely MS MARCO V1 and MS

MARCO V2 [50]. The MS MARCO datasets have been extensively utilized for large-scale training and evaluation

of various IR and NLP tasks [12, 39]. While MS MARCO V1 is characterized by a smaller collection of passages

and queries, MS MARCO V2 expands significantly upon its predecessor, providing a larger and more diverse set of

passages, queries, and additional metadata such as document titles and URLs. By incorporating both versions in our

experiments, we aim to demonstrate the robustness and generalizability of our method across datasets of varying

complexity and scale. We further evaluate our approach on three query sets associated with the MS MARCO V1

passage collection and two query sets associated with the MS MARCO V2 passage collection. Each of these query sets

has been comprehensively annotated using a four-level graded relevance scale:

MS MARCO V1 Passage Collection: This collection comprises 8.8 million passages extracted from real web

documents, paired with over 500,000 real anonymized Bing queries. We utilized the TREC Deep Learning Tracks from

2019 and 2020, as well as the DL-Hard dataset:

• TREC DL 2019 (DL-2019) [19]: A set of 43 queries from the TREC Deep Learning Track 2019.

• TREC DL 2020 (DL-2020) [16]: A set of 54 queries from the TREC Deep Learning Track 2020.
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• DL-Hard [44]: A set of 50 most challenging, unlabeled, and poorly performing queries from TREC 2019

and 2020. This dataset includes higher number of relevance judgments per query compared to DL-2019 and

DL-2020 datasets, focusing on those that are harder to satisfy. This focus is particularly important for the QPP

task, as it is crucial to accurately predict queries that are more likely to fail.

MS MARCO V2 Passage Collection: A corpus containing 138 million passages derived from approximately 11.9

million documents. The passages were generated using a query-independent algorithm, enhancing the diversity and

scale of the dataset. For evaluation, we utilized the TREC Deep Learning Tracks from 2021 and 2022. We utilized the

TREC Deep Learning Tracks from 2019 and 2020, as well as the DL-Hard dataset:

• TREC DL 2021 (DL-2021) [17]: This dataset includes 53 queries from the TREC Deep Learning Track 2021,

specifically designed to evaluate passage retrieval methods. Queries were selected to represent realistic search

tasks and are annotated with relevance judgments gathered through a pooling strategy, ensuring high-quality,

reusable test collections.

• TREC DL 2022 (DL-2022) [18]: This dataset comprises 76 queries from the TREC Deep Learning Track 2022.

The queries were carefully curated to challenge retrieval systems by focusing on more complex information

needs. Extensive pooling was used to generate robust relevance judgments, aiming to enhance the long-term

reusability and comparability of the evaluation data.

These datasets were selected for their extensive human-labeled relevance judgments per query, providing a robust

basis for evaluating our approach’s performance. They have all been used in many QPP baselines [5, 27, 30, 57].

4.2 Aggregation Strategy
For each query 𝑞, performance predictions are derived using the two labeling methods described in Section 3.4. The

model outputs a predicted performance score for each query in the test set:

L𝜇𝑞
= {𝜇 (𝑞) | 𝑞 ∈ QT},

where QT is the set of all test queries, and L𝜇𝑞
represents the predicted scores for 𝑞 under a specific labeling

method. To combine the performance scores from the two labeling methods into a single prediction, we define an

aggregation function 𝑔, which takes the score lists L𝑄−𝑎𝑤𝑎𝑟𝑒𝑞
and L𝑄−𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑞 and produces the final aggregated

predicted performance. The L𝑄−𝑎𝑤𝑎𝑟𝑒𝑞
and L𝑄−𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑞 are the predicted list of queries under Query-Aware and

Query-Agnostic labeling strategy respectively. The following aggregation functions are considered, each with a

practical rationale:

• Maximum Value: Selects the higher of the two scores. This approach is conservative, assuming that the best

labeling method provides the most accurate reflection of query performance. It is useful when overestimating

performance is less risky than underestimating it.

• Minimum Value: Selects the lower of the two scores. This method is risk-averse, ensuring that the most

challenging scenario (as judged by either labeling method) dominates. It is appropriate when avoiding overly

optimistic predictions is critical.

• Mean Value: Computes the average of the two scores. This balanced approach assumes both labeling methods

contribute equally to the final prediction, smoothing out any biases introduced by a single method.

• Reciprocal Rank Fusion (RRF) [15]: This fusion method combines the score lists L𝑄−𝑎𝑤𝑎𝑟𝑒𝑞
and L𝑄−𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑞

using rank-based weighting. RRF emphasizes highly ranked scores from both lists, making it effective when

leveraging complementary strengths of the two labeling methods.

The aggregated score list L𝑔 (𝜇𝑞) serves as the final performance prediction. By integrating predictions from both

labeling perspectives, the aggregation strategy ensures the model considers both Query-Agnostic and Query-Aware
approaches in its final performance prediction.

4.3 Evaluation
A common way for evaluating the QPP task is by measuring the correlation between the predicted and actual query

performance on a set of queries. Given two lists of query performances—the actual performance and the predicted
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performance—the correlation between these lists quantifies the quality of the prediction. A higher correlation indicates

a more accurate prediction of retrieval effectiveness [13]. As such, we report the most commonly used linear and

rank-based correlation metrics used earlier in QPP baselines [46]. Pearson’s 𝜌 is a linear correlation metric that

measures the degree of the linear relationship between the predicted and actual query performance scores. Kendall’s 𝜏

and Spearman’s 𝜌 are rank-based correlation metrics that quantify the similarity between the orderings of the queries

when ranked by their actual and predicted performance. We note that, from this point forward, we refer to Pearson’s

𝜌 as 𝑝-𝜌 , Kendall’s 𝜏 as 𝑘-𝜏 , and Spearman’s 𝜌 as 𝑠-𝜌 throughout the paper. To determine statistical significance, we

computed correlations using scipy.stats library, which returns both the correlation coefficient and the corresponding

p-value. All reported correlations achieved statistical significance with p < 0.05, indicating a probability of less than

5% that these correlations occurred by chance under the null hypothesis.

For all query sets introduced in Section 4.1, we predict the actual performance of two widely used IR models: the

BM25 ranker, implemented using Pyserini [42], and a dense retriever built on a pre-trained SBERT model
1
. In our

setup, SBERT is used as a bi-encoder to independently encode queries and documents into dense vectors, and retrieval

is performed via cosine similarity using the FAISS
2
library [4? ]. The effectiveness of these IR models is evaluated

using the official metric for the aforementioned datasets, i.e., nDCG@10.

4.4 Implementation Details
In this section, we explain the details of the training and inference phases of CA-QPP.

Dataset for Weight Estimation. In order to generate the required queries in Section refsec::classifying-terms, we

adopt the method in [51] where we fine-tune the T5 transformer using its default settings to develop the translation

function T [53]. Using T , we generate queries for passages from the MS MARCO passage collection. Additionally,

we focus on generated queries with performance below the threshold of 0.25, considering these as hard queries. We

further retain queries that have a perfect retrieval with a performance of 1, which denote easy queries. This ensures

the dataset captures the distinction between hard and easy queries. The final dataset contains 151,652 query pairs

constructed on top of the MS MARCO V1 collection. This dataset is used to generate labeled data for the regression

model, enabling the prediction of term weights.

Term Weight Estimation Model. We adopted the BERT-base-uncased architecture [25] and fine-tuned it for the

term weight prediction task as a regression problem. The model was trained for 12 epochs with a learning rate of

2 × 10−5. The maximum input length was set to 95, and the batch size was set to 16.

Performance Prediction Model. We utilized a cross-encoder architecture implemented with the SentenceTrans-

former library [55]. This architecture was trained for two epochs on the input pairs generated using the fine-tuned T5

transformer (T ), with a batch size of 16. We experimented with three pre-trained LLMs for the cross-encoder, namely

ms-marco-MiniLM-L-12-v23 [65], bert-base-uncased4 [26], and deberta-v3-base5 [35], whose performances we

report in the experiments section.

Expansion Function Parameters. Toweigh the terms based on their assigned weights, we adopted the mechanism

described in [22]. The 𝛼 scaling factor was used to scale the term weights during the expansion process. We conducted

an analysis to evaluate the impact of 𝛼 on the performance of our proposed approach.

Codebase.We note that for reproducibility purposes, our code and data are publicly available at https://github.

com/Saleminezhad/CA-QPP

4.5 Baselines
We evaluate our post-retrieval QPP model against established post-retrieval baselines. These baselines are categorized

into traditional and neural-embedding-based approaches. We note that, following previous work [5, 27], if the QPP

method has any hyperparameters, such as the cutoff on which the prediction is estimated, we have tuned the results

for DL-2020 and DL-Hard on DL-2019. Conversely, we have tuned the results for DL-2019 on DL-2020.

1
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b

2
https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models/msmarco-v3.md

3
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2

4
https://huggingface.co/google-bert/bert-base-uncased

5
https://huggingface.co/microsoft/deberta-v3-base
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Table 1. Comparison of CA-QPP Trained on MS MARCO V1 vs state-of-the-art baselines methods across datasets TREC DL 2019,
TREC DL 2020, and DL-Hard in terms of 𝑝 − 𝜌 , 𝑘 − 𝜏 and 𝑠 − 𝜌 . The IR model here is BM25. The highest value in each column is in
bold.

TREC DL 2019 TREC DL 2020 DL-Hard TREC DL 2021 TREC DL 2022
𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌

Clarity [20] 0.271 0.229 0.332 0.360 0.215 0.296 0.149 0.099 0.126 0.243 0.191 0.283 0.141 0.069 0.108

WIG [69] 0.310 0.155 0.226 0.204 0.117 0.166 0.331 0.260 0.348 0.162 0.140 0.203 0.248 0.198 0.299

QF [69] 0.295 0.240 0.340 0.358 0.266 0.366 0.210 0.164 0.217 0.05 0.052 0.076 0.217 0.152 0.226

n(𝜎𝑥) [21] 0.371 0.256 0.377 0.429 0.298 0.478 0.195 0.120 0.147 0.298 0.258 0.372 0.142 0.196 0.274

RSD [56] 0.460 0.262 0.394 0.426 0.364 0.508 0.362 0.322 0.469 0.250 0.144 0.204 0.029 0.105 0.157

SMV [63] 0.495 0.289 0.404 0.424 0.391 0.539 0.375 0.269 0.408 0.252 0.192 0.278 0.330 0.157 0.232

NQC [60] 0.466 0.267 0.399 0.464 0.294 0.423 0.384 0.288 0.417 0.271 0.201 0.292 0.337 0.157 0.235

UEF𝑁𝑄𝐶 [59] 0.507 0.293 0.432 0.470 0.365 0.482 0.359 0.319 0.463 0.274 0.252 0.385 0.311 0.274 0.383

NeuralQPP [66] 0.289 0.159 0.224 0.283 0.163 0.259 0.173 0.111 0.134 0.177 0.143 0.198 0.159 0.090 0.130

NQA-QPP [33] 0.348 0.164 0.255 0.350 0.125 0.307 0.386 0.297 0.418 0.250 0.223 0.323 0.256 0.213 0.314

BERT-QPP [5] 0.491 0.289 0.410 0.467 0.364 0.448 0.404 0.345 0.472 0.254 0.207 0.302 0.294 0.229 0.316

qpp-PRP [61] 0.321 0.181 0.229 0.189 0.157 0.229 0.090 0.061 0.063 0.004 0.009 0.002 0.136 0.069 0.081

NN-QPP [27] 0.519 0.318 0.459 0.462 0.318 0.448 0.434 0.412 0.508 0.217 0.171 0.226 0.307 0.229 0.316

CA-QPP 0.583 0.377 0.541 0.531 0.334 0.471 0.545 0.452 0.600 0.379 0.297 0.412 0.430 0.279 0.391

4.5.1 Traditional Baselines. Traditional baselines rely on the statistical features of the retrieved documents and

the query. For example, Clarity [20] measures the KL-divergence between the language models of the retrieved

documents and the entire collection. Other methods, such as WIG [69], NQC [60], 𝑛(𝜎%) [21], RSD [56], and SMV [63],
use retrieval score statistics to predict query performance. These methods assume the distribution of the relevance

score among top-k retrieved documents can be an indicator of query effectiveness. For instance, NQC predicts better
performance for queries where the standard deviation of top-ranked retrieval scores is high, as this suggests clear

separation between relevant and non-relevant documents. The Utility Estimation Framework (UEF𝑁𝑄𝐶
) [59] builds

on these ideas in addition to Psuedo-Relevance Feedback (PRF) to improve predictions.

4.5.2 Neural-Embedding-Based Baselines. NeuralQPP [66] was one of the first methods to use unsupervised QPP

scores as weak signals to train a supervised model. Another method, NQA-QPP [33] uses a BERT model to learn

representations of queries and documents, combining score distributions, query features, and query-document

interactions. Similarly, BERT-QPP [5] fine-tunes BERT to predict query retrieval scores directly. Building on BERT-QPP,
more recent approaches, such as qpp-BERT-PL [24], use both pointwise training (focusing on individual queries)

and listwise training (using top-ranked pseudo-relevant documents) to tackle QPP problem. Another recent method,

QPP-PRP [61], evaluates query performance by comparing the ranked list generated by a neural ranker to a re-ranked

list produced by a pairwise neural reranker like DuoT5 [52].

5 Results and Findings
In this section, we compare the performance of our method with state-of-the-art baselines. Additionally, we investigate

the impact of different components of our approach and study how robust our method is with respect to various

choices of hyperparameters and backbone language models. Specifically, we aim to answer the following research

questions:

• RQ1. How does CA-QPP perform compared to the state-of-the-art traditional post-retrieval QPP and neural-

based QPP baselines?

• RQ2. How robust is CA-QPP with respect to the choice of the backbone language model?

• RQ3.What is the impact of each of the expansionmethod components, i.e., Query-Agnostic and Query-Aware?
and How robust is CA-QPP with respect to experimental weighting functions?

• RQ4.What is the impact of the choice of aggregation function on the Query-Agnostic and Query-Aware?

In the following subsections, we explore and answer each of these research questions.
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Table 2. Statistical significance test results comparing the CA-QPP approach against selected baseline methods.

Method TREC DL 2019 TREC DL 2020
SMV 2.15 × 10−3 6.61 × 10−3
NN-QPP 2.00 × 10−3 3.39 × 10−4

5.1 Comparison With Baselines
In this section, we compare the performance of CA-QPP with state-of-the-art baselines, as summarized in Table 1. The

reported results for CA-QPP use DeBERTa as the backbone language model, RRF as the aggregation function, and an

expansion factor of 𝛼 = 50. In the following sections, we examine each of these parameters individually and analyze

the robustness of CA-QPP with respect to each one.

As seen in the table, CA-QPP consistently outperforms all baselines across most datasets and metrics. Specifically,

CA-QPP achieves the highest performance across all correlation metrics (𝑝 − 𝜌 , 𝑘 − 𝜏 , and 𝑠 − 𝜌), showing significant

improvements over both traditional and neural-based baselines on TREC DL 2019, TREC DL 2021, TREC DL 2022,

and DL-Hard. For TREC DL 2020, while CA-QPP outperforms all baselines in linear correlation (𝑝 − 𝜌), SMV achieves

slightly better results for rank-based correlations (𝑘 − 𝜏 and 𝑠 − 𝜌). However, the margin by which CA-QPP leads on
other datasets highlights its overall robustness.

On DL-Hard, CA-QPP demonstrates exceptional performance, surpassing all baselines by a large margin. Many

baselines, such as qpp-PRP and n(𝜎𝑥), exhibit a significant performance drop on DL-Hard. This dataset is particularly

important as it contains challenging queries with practical real-world applications, where accurately predicting query

performance is critical for tasks such as query reformulation and query routing.

Looking at the baselines, among the traditional ones, we observe that while score-based methods such as NQC and

SMV perform reasonably well on easier datasets, their performance diminishes on DL-Hard and varies considerably on

TREC DL 2021 and 2022, showcasing their limitations in handling diverse and challenging scenarios. Neural models,

such as BERT-QPP and NN-QPP, show better consistency across datasets compared to traditional baselines. However,

they still fall short of CA-QPP, particularly on TREC DL 2019 and DL-Hard.

One of CA-QPP’s key advantages is its stability. Unlike baselines such as qpp-PRP, which performs well on TREC

DL 2019 but poorly on DL-Hard and newer datasets, CA-QPPmaintains high performance across all datasets, including

the more recent TREC DL 2021 and 2022.

In response to RQ1, the results demonstrated in Table 1 show that CA-QPP not only achieves the best overall

performance but also addresses the challenges posed by predicting the performance of difficult queries. Its consistency

across datasets and metrics positions it as a robust and reliable approach for post-retrieval QPP.

Figure 3 presents the per-query differences in scaled Absolute Ranked Error (ΔsARE) between our proposed

CA-QPP method and two strong baseline approaches: SMV, a representative score-based model, and NN-QPP, a

leading neural-based model [31]. The ΔsARE for each query 𝑞𝑖 is defined as

ΔsARE𝐴𝑃 (𝑞𝑖 ) = sARE𝐴𝑃 (𝑞𝑖 ; Baseline) − sARE𝐴𝑃 (𝑞𝑖 ; CA-QPP)
where ΔsARE𝐴𝑃 quantifies how accurately a model ranks query performance relative to actual AP-based rankings.

Positive values of ΔsARE indicate that CA-QPP achieves lower ranking error for the given query, reflecting better

predictive performance. As shown, CA-QPP consistently outperforms both baselines across the TREC DL 2019 and

TREC DL 2020 datasets, with most queries exhibiting positive ΔsARE values. Moreover, the positive bars are both

more frequent and generally larger in magnitude than the negative ones, demonstrating that CA-QPP not only

surpasses these baselines on a greater number of queries but also achieves more substantial reductions in ranking

error where it does outperform.

We also performed paired t-tests on the per-query sARE (scaled Absolute Rank Error) values to statistically compare

our proposed method with selected baseline methods. This approach uses the distribution of per-query errors rather

than summary correlation scores, making it suitable for hypothesis testing. To account for multiple comparisons, we

applied the Bonferroni correction. The reported p-values are compared against a Bonferroni-corrected significance

threshold to determine statistical significance. Table 2 presents the results of these comparisons.
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Fig. 3. Per-query differences in scaled Absolute Ranked Error (sARE) with respect to AP values, defined as ΔsAREAP (𝑞𝑖 ) =
sAREAP (𝑞𝑖 ;NN-QPP) −sAREAP (𝑞𝑖 ;Proposed), are shown for each query 𝑞𝑖 . Rows present results on the TREC-DL datasets. Green
bars indicate that the baseline method yields higher error than the proposed method (i.e., the proposed method performs better),
while red bars indicate the opposite. Notably, the green bars are often taller than the red ones, suggesting that the performance
improvements outweigh the degradations in both frequency and magnitude.

5.2 The Impact of Different Types of Information Retrieval Systems
In this section, we examine how our proposed approach performs across different underlying retrieval models. While

the main results in Table 1 were based on BM25, a widely used sparse retrieval method, Table 3 presents a similar

comparative analysis using the SBERT dense retriever. This allows us to assess the generalizability of CA-QPP when

applied to fundamentally different IR systems.

As shown in Table 3, CA-QPP consistently outperforms state-of-the-art baselines across most datasets and metrics

even when paired with the dense SBERT retriever. Specifically, CA-QPP achieves the highest correlation scores across

all three metrics (𝑝 − 𝜌 , 𝑘 − 𝜏 , and 𝑠 − 𝜌) on TREC DL 2019, DL-Hard, and TREC DL 2021, indicating its robustness

in handling both typical and challenging query sets. On TREC DL 2020, while BERT-QPP attains slightly higher

correlations, particularly in 𝑝 − 𝜌 , 𝑘 −𝜏 , and 𝑠 − 𝜌 , CA-QPP still demonstrates competitive performance, outperforming

most other traditional and neural baselines. Similarly, for TREC DL 2022, although qpp-PRP shows the highest 𝑠 − 𝜌 ,
our method maintains leading performance on 𝑝 − 𝜌 and 𝑘 − 𝜏 , underscoring its stable predictive capacity.

When comparing to traditional score-based methods such as NQC and SMV, we observe that while these approaches
can perform adequately on simpler query collections, they struggle considerably on more complex collections such as

DL-Hard. Neural baselines such as BERT-QPP and NN-QPP generally exhibit improved consistency across datasets but

still do not match the comprehensive performance of CA-QPP, especially on harder queries.

Taken together with our earlier results on BM25, these findings illustrate that CA-QPP performs effectively across

both sparse and dense retrieval settings. This highlights its versatility and underscores its value as a robust approach

for post-retrieval QPP, independent of the specific type of IR system employed.

5.3 The Impact of the Choice of Language Model
In this section, we study the impact of different backbone language models on the performance of CA-QPP. To this

end, we replicated our method using three pre-trained language models BERT [25], DeBERTa [35], and MiniLM [65].
These models vary in their architecture, training strategies, and size. We use the BERT-base-uncased version, which

is a bidirectional transformer pre-trained on masked language modeling. Additionally, we use the DeBERTa-v3-base

model, which introduces disentangled attention mechanisms and enhanced pre-training strategies, aiming to improve
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Table 3. Comparison of CA-QPP Trained on MS MARCO V1 vs state-of-the-art baselines methods across datasets TREC DL 2019,
TREC DL 2020, and DL-Hard in terms of 𝑝 − 𝜌 , 𝑘 − 𝜏 , and 𝑠 − 𝜌 . The IR model here is the SBERT dense retriever. The highest value
in each column is in bold.

TREC DL 2019 TREC DL 2020 DL-Hard TREC DL 2021 TREC DL 2022
𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌

Clarity [20] 0.165 0.132 0.193 0.009 0.022 0.026 0.230 0.146 0.226 0.120 0.160 0.221 0.037 0.145 0.209

WIG [69] 0.308 0.152 0.216 0.388 0.227 0.319 0.125 0.087 0.117 0.249 0.147 0.218 0.014 0.028 0.043

QF [69] 0.350 0.185 0.271 0.395 0.231 0.330 0.135 0.096 0.128 0.248 0.149 0.221 0.016 0.025 0.038

n(𝜎𝑥) [21] 0.250 0.178 0.258 0.027 0.017 0.036 0.035 0.020 0.027 0.212 0.138 0.194 0.175 0.147 0.217

RSD [56] 0.400 0.212 0.301 0.227 0.168 0.232 0.030 0.032 0.034 0.152 0.103 0.175 0.156 0.126 0.173

SMV [63] 0.154 0.099 0.137 0.074 0.058 0.062 0.217 0.112 0.149 0.210 0.189 0.265 0.008 0.028 0.047

NQC [60] 0.156 0.099 0.134 0.075 0.055 0.055 0.211 0.110 0.154 0.204 0.179 0.247 0.017 0.036 0.051

UEF𝑁𝑄𝐶 [59] 0.216 0.121 0.18 0.002 0.023 0.029 0.054 0.009 0.027 0.115 0.042 0.067 0.176 0.133 0.202

NeuralQPP [66] 0.243 0.145 0.186 0.225 0.098 0.134 0.219 0.079 0.111 0.211 0.149 0.227 0.062 0.051 0.065

NQA-QPP [33] 0.072 0.039 0.069 0.075 0.08 0.116 0.064 0.058 0.076 0.105 0.055 0.078 0.038 0.006 0.002

BERT-QPP [5] 0.306 0.081 0.151 0.414 0.248 0.374 0.428 0.325 0.480 0.177 0.155 0.230 0.063 0.060 0.087

qpp-PRP [61] 0.107 0.081 0.085 0.208 0.177 0.271 0.042 0.025 0.035 0.103 0.077 0.113 0.235 0.207 0.295
NN-QPP [27] 0.372 0.163 0.260 0.338 0.191 0.274 0.441 0.342 0.450 0.170 0.150 0.226 0.019 0.039 0.080

CA-QPP 0.411 0.230 0.327 0.372 0.209 0.315 0.448 0.347 0.482 0.310 0.237 0.336 0.259 0.218 0.271

Table 4. Performance of CA-QPP using different backbone language models (BERT, DeBERTa, and MiniLM) across five datasets
(TREC DL 2019, TREC DL 2020, DL-Hard, TREC DL 2021, and TREC DL 2022). Results are reported for all three correlation metrics
(Pearson’s 𝜌 , Kendall’s 𝜏 , and Spearman’s 𝜌). The results show that DeBERTa achieves the highest performance on most datasets
and metrics, while MiniLM, despite its smaller size, remains competitive

TREC DL 2019 TREC DL 2020 DL-Hard TREC DL 2021 TREC DL 2022
Model 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌
bert 0.468 0.257 0.382 0.522 0.359 0.521 0.472 0.395 0.544 0.303 0.207 0.302 0.215 0.111 0.163

DeBERTa 0.583 0.377 0.541 0.531 0.334 0.471 0.545 0.452 0.5996 0.397 0.297 0.412 0.430 0.279 0.391

minilm 0.547 0.340 0.504 0.518 0.357 0.522 0.505 0.407 0.564 0.278 0.296 0.429 0.363 0. 210 0.297

language understanding. We also use MiniLM which is a lightweight model with significantly fewer parameters

compared to BERT and DeBERTa, making it computationally efficient. Despite its size, it has shown competitive

performance in ranking tasks due to its distilled architecture [65]. The experiments were conducted using the same

setup and hyperparameters as described in Section 5.1 and Table 1.

The results for each model across the five datasets (TREC DL 2019, TREC DL 2020, DL-Hard, TREC DL 2021, and

TREC DL 2022) are shown in Table 4. We observe that all three models demonstrate strong performance across the

datasets and correlation metrics (𝑝 − 𝜌 , 𝑘 − 𝜏 , 𝑠 − 𝜌), indicating the robustness of CA-QPP. Notably, DeBERTa achieves

the highest performance across most datasets and metrics, including TREC DL 2019, DL-Hard, and also maintains an

advantage on the more recent TREC DL 2021 and TREC DL 2022. This can be attributed to its advanced architecture

and improved contextual representations. On the other hand, MiniLM, despite its smaller size, shows competitive

results, particularly on DL-Hard and TREC DL 2021, confirming that the effectiveness of CA-QPP does not rely on the

scale of the language model to achieve strong performance.

In conclusion, in response to RQ2, we show that all three language models performed well when used in CA-QPP,
showing robustness of our method w.r.t the backbone language model. Among the language models, DeBERTa emerged

as the best-performing backbone language model, and we adopted it for the comparisons against other baselines. The

results also highlight that CA-QPP is adaptable to smaller models like MiniLM, making it flexible for various use cases

and computational environments.

, Vol. 1, No. 1, Article . Publication date: September 2018.



817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

Learning Context-aware Term Importance for Query Performance Prediction • 17

5.4 ChameleonQueries
To rigorously assess the discriminative capacity of our proposed CA-QPP model for low performance queries,

we evaluate its performance on the Chameleon query subset introduced by Arabzadeh et al. [8]. The Chameleon

benchmark isolates a cohort of 6,980 MS MARCO queries that consistently rank among the lowest-performing across

both sparse (e.g., BM25) and neural (e.g., DeepCT, ANCE, RepBERT, DocT5Query, TCT-ColBERT) retrievers. Within

this set, the Lesser Chameleon subset comprises 1,693 queries that fall into the bottom 50% of performance across all

six retrieval models, thereby offering a robust testbed for identifying systematic failure cases in modern IR pipelines.

To evaluate CA-QPP’s sensitivity to query difficulty, we computed predicted performance scores for all 1,693 Lesser

Chameleon queries and compared their distribution against predictions for the remaining 5,287 queries in the MS

MARCO development set. Figure 4 visualizes the distributions of predicted scores across these two groups. The model

assigns significantly lower scores to Lesser Chameleon queries, with a median predicted score of approximately 0.07

and an interquartile range (IQR) of roughly 0.05. In contrast, predictions for the broader development set are centered

around a higher median of approximately 0.30, with a wider IQR close to 0.20. The distinct compression of scores in

the Lesser Chameleon group indicates that CA-QPP consistently identifies these queries as uniformly difficult, and its

narrow variance suggests high confidence in its predictions.

This result is especially important given that Chameleon queries have been shown to defy improvement across

multiple model families and training methods. As noted by Arabzadeh et al. [8], these queries often reflect inherent

ambiguity, lack of grounding in corpus content, or semantic sparsity, factors that are resistant to representation

learning alone. The fact that CA-QPP assigns low confidence to such queries suggests that it encodes features

predictive of retrieval hardness beyond surface-level term statistics. As such, CA-QPP not only achieves accurate

average performance estimation across standard queries but also exhibits calibrated predictions on the hardest known

subsets. Its ability to separate these two difficult and non-difficult query types shows its utility as a robust tool for

predicting query performance.

Fig. 4. The study of the performance of our model on ChameleonQueries

5.5 The Impact of Expansion Methods
In this section, we analyze the impact of different expansion methods on the performance of CA-QPP. Below, we
summarize the configurations of the expansion methods evaluated:

• CA-QPP𝑞 : Only the query terms are expanded, and the document terms are left unchanged.

• CA-QPP𝑑 : Only the document terms are expanded, while the query terms remain unaffected.

• CA-QPP+: Expansion is performed only using positive weights.

• CA-QPP−: Expansion is performed only using negative weights.

• CA-QPP: This is our full model, where both the query and documents are expanded using both positive and

negative weights.
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Table 5. Comparison of the impact of expansion variations on the TREC DL 2019, TREC DL 2020, DL-Hard, TREC DL 2021 and
TREC DL 2022 datasets.

TREC DL 2019 TREC DL 2020 DL-Hard TREC DL 2021 TREC DL 2022
Method 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌 𝑝 − 𝜌 𝑘 − 𝜏 𝑠 − 𝜌
CA-QPP𝑞 0.600 0.398 0.559 0.507 0.323 0.462 0.514 0.413 0.582 0.265 0.235 0.350 0.387 0.190 0.256

CA-QPP𝑑 0.520 0.341 0.492 0.482 0.309 0.442 0.496 0.402 0.566 0.298 0.288 0.403 0.411 0.167 0.253

CA-QPP+ 0.618 0.426 0.582 0.474 0.315 0.440 0.462 0.385 0.529 0.333 0.319 0.465 0.422 0.208 0.297

CA-QPP− 0.590 0.400 0.573 0.492 0.323 0.462 0.431 0.343 0.478 0.286 0.280 0.404 0.429 0.213 0.290

CA-QPP 0.583 0.377 0.541 0.531 0.334 0.471 0.545 0.452 0.600 0.379 0.297 0.412 0.430 0.279 0.391

As shown in Table 5, all expansion methods demonstrate reliable performance across the datasets. However, certain

observations are worth highlighting:

1. Positive vs. Negative Weights: Expanding with only positive or only negative weights generally shows slightly

lower performance than the full model, particularly on more challenging datasets such as DL-Hard. For instance, on

DL-Hard, the full model achieves the highest values across all metrics (𝑝 − 𝜌 of 0.545, 𝑘 − 𝜏 of 0.452, 𝑠 − 𝜌 of 0.600),

outperforming both CA-QPP+ and CA-QPP−. This pattern extends to TREC DL 2021 and TREC DL 2022, where using

both types of weights together consistently results in stronger overall performance.

2. Query vs. Document Expansion: Between CA-QPP𝑞 and CA-QPP𝑑 , we observe that expanding the query terms

is more effective than expanding the document terms. We hypothesize that this is because documents might be noisier

since they might not be exactly relevant to the query. On the other hand, queries although short, they are more

accurate representation of the user’s information need and less noisy. Therefore, although both variations work well,

CA-QPP𝑞 is a slightly more accurate indicator of performance compared to CA-QPP𝑑 .
3. Full Expansion CA-QPP: The full model, which expands both query and document terms using both positive and

negative weights, consistently performs well across all datasets and metrics. Although CA-QPP+may show slightly

better performance in specific cases, such as on TREC DL 2019, our results indicate that CA-QPP provides the most

robust and consistent performance across all datasets.

Additionally, we explore the impact of the weighting function parameter 𝛼 on the performance of CA-QPP. As
discussed in Section 3.4, 𝛼 determines the scaling of term weights during the expansion process, effectively controlling

the influence of expansion terms. To evaluate its effect, we varied 𝛼 in the range {10, 20, . . . , 100} and measured

the performance on all five datasets. The results, summarized in Figure 5, reveal that CA-QPP demonstrates robust

performance across all datasets and metrics, even as 𝛼 varies significantly. This robustness indicates that CA-QPP
is not overly sensitive to the choice of 𝛼 . While the performance remains stable across most values of 𝛼 , tuning its

value can further optimize results. We selected 𝛼 = 50 as the optimal value since it achieves a balanced performance

across all datasets and metrics. For example, on DL-Hard and TREC DL 2020, 𝛼 = 50 maximizes performance across

Pearson (𝑝 − 𝜌), Kendall (𝑘 − 𝜏), and Spearman (𝑠 − 𝜌) correlations. On TREC DL 2019, the performance for 𝛼 = 50 is

comparable to the maximum observed performance (𝛼 = 40). Similarly, for TREC DL 2021 and TREC DL 2022, 𝛼 = 50

yields performance that is close to the respective optima, making it a suitable and balanced choice across all datasets.

5.6 Impact of Aggregation Function
In this section, we investigate the impact of the aggregation function on CA-QPP’s final predictions. As introduced
earlier, the final performance prediction of CA-QPP is derived from an aggregation of two components: Query-Aware
and Query-Agnostic. To understand how robust CA-QPP is to the choice of aggregation function, we evaluate its

performance using different aggregation strategies, minimum, maximum, mean, and Reciprocal Rank Fusion (RRF)

[10, 11, 14, 15].

Our hypothesis is that the minimum function provides a conservative (pessimistic) estimate, as it focuses on the

weakest prediction between the two models. Conversely, the maximum function offers an optimistic estimate by

predicting the highest potential performance among the two components. On the other hand, the mean function
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(a) DL-Hard, TREC DL 2019, and TREC DL 2020 datasets.

(b) TREC DL 2021 and TREC DL 2022 datasets.

Fig. 5. Impact of expansion factor (𝛼) x-axis on the performance of CA-QPP, measured by correlation metrics (Pearson’s 𝜌 , Kendall’s
𝜏 , and Spearman’s 𝜌) across various datasets.

provides a balanced, midpoint perspective. In addition, we leveraged RRF, which has been widely recognized in the

literature for its effectiveness in ranking tasks, especially when fusing results from multiple models.

The results, presented in Figure 6, show that across most datasets and correlation metrics, the choice of aggregation

function does not lead to significant differences in performance, indicating that CA-QPP is generally robust to this

design choice. Notably, on DL-Hard with Pearson correlation, RRF achieves the highest scores among the aggregation

methods. Moreover, RRF consistently delivers slightly better performance across datasets when evaluated using

Pearson’s 𝜌 , whereas for Kendall’s 𝜏 and Spearman’s 𝜌 , no single aggregation function emerges as consistently

superior. These observations suggest that while all aggregation strategies yield comparable results in most cases,

adopting RRF provides a modest advantage without introducing substantial trade-offs.

In response to RQ4, we conclude that while the choice of aggregation function does not have a significant impact

on CA-QPP ’s overall effectiveness, RRF demonstrates marginally better performance and is thus a reliable choice for

combining the outputs of the Query-Aware and Query-Agnostic strategies.

6 Discussion
In this section, we provide an in-depth analysis of the performance of CA-QPP by focusing on its termweight prediction

mechanism. Specifically, Section 6.1 examines the distribution of predicted term weights, comparing groups of queries

that demonstrate high performance with those that perform poorly. This analysis highlights the predictive distinctions

in term contributions between these query groups. In Section 6.2, we present illustrative examples of queries, their

top-retrieved documents, and the associated predicted term weights. These examples showcase the effectiveness of

CA-QPP in providing meaningful and interpretable predictions through actual values and outcomes.

6.1 Distribution of Estimated Weights
In this section, we analyze the predictive behavior of our models in assigning weights to query terms, focusing

on differences between easy and hard queries. The analysis aims to understand how term weights—categorized as
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Fig. 6. Comparison of aggregation methods (Reciprocal Rank Fusion, Maximum Aggregation, Minimum Aggregation, and Mean
Aggregation) on the performance of CA-QPP using Pearson, Kendall, and Spearman correlation metrics across the TREC DL 2019,
TREC DL 2020, DL-Hard, TREC DL 2021 and TREC DL 2022 datasets.

promotive (positive weights) and demotive (negative weights)—vary across queries with significantly different retrieval

outcomes. For this purpose, we categorize queries into two groups based on their Mean Average Precision (MAP)

scores:

• Easy Queries: Defined as queries with nDCG scores ≥ 0.95, representing scenarios where the retrieval system

performs exceptionally well.

• Hard Queries: Defined as queries with nDCG scores < 0.25, representing challenging scenarios with low

retrieval effectiveness.

We randomly selected 5,000 queries from each category, ensuring no overlap with the training data, and analyzed

the distributions of term weights assigned by the Query-Aware and Query-Agnostic. These results are visualized in

Figure 7, which illustrates the distributions of positive and negative term weights for each query group. We present

our observations as follows:

Distribution Trends for Easy Queries: (1) In both the Query-Aware (top row, left column) and Query-Agnostic (bottom
row, left column), easy queries display a dominant frequency of positive term weights. This emphasizes that these

queries primarily consist of promotive terms that enhance retrieval performance. (2) The mean absolute values of

positive weights are significantly higher than those of negative weights, suggesting a strong alignment between query

terms and relevant documents. The distribution of positive weights is concentrated toward higher values, reinforcing

the promotive nature of the terms in easy queries.

Distribution Trends for Hard Queries: (1) For hard queries (right columns), there is a noticeable shift toward more

negative term weights. In both models, the mean absolute values of negative weights exceed those of positive weights.

This indicates that terms in hard queries tend to degrade retrieval performance, either by introducing ambiguity or

misalignment with the underlying document collection. (2) The distributions show a higher presence of demotive
terms in hard queries, highlighting the challenges these terms pose for effective document retrieval.
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Fig. 7. Comparison of the distribution of the absolute average positive and negative weight of the Easy and Hard queries using
the Query-Aware and Query-Agnostic strategies.

Comparison Between Query-Aware and Query-Agnostic: (1) The Query-Aware exhibits more balanced distributions,

with narrower tails for both positive and negative weights. This suggests a more uniform evaluation of term contribu-

tions, likely because this model directly compares terms across retrieved documents and the relevance judgment.

(2) The Query-Agnostic, in contrast, exhibits a longer-tailed distribution, particularly for negative weights. This

suggests that the term importance scores have higher variance, reflecting a greater sensitivity to outlier terms or edge

cases where certain terms drastically hinder retrieval. (3) The observed variability in the Query-Agnostic may stem

from its reliance on retrieved documents without directly incorporating relevance judgments. As retrieved documents

can vary significantly in relevance, structure, and content, the model assigns a broader range of weights to terms,

capturing the diverse roles that terms play in influencing relevance.

Model Robustness: (1) The distinction between positive and negative term weights across easy and hard queries

demonstrates that both models effectively capture query difficulty. For easy queries, the higher emphasis on promotive
terms aligns with their role in retrieving relevant documents. For hard queries, the dominance of demotive terms
reflects the challenges posed by poorly aligned or ambiguous terms. (2) The differences in distribution patterns

between the Query-Aware and Query-Agnostic offer complementary insights. While the Query-Aware provides a
stable, document-alignment-focused perspective, the Query-Agnostic captures a broader, more variable view of

term contributions, potentially offering a richer signal for certain types of queries.

These findings validate the ability of both models to assign meaningful term weights that reflect the underlying

retrieval effectiveness of queries. The visualized trends confirm the robustness of the term weighting process and the

models’ ability to differentiate between easy and hard queries based on term contributions.
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Table 6. Sample queries and their retrieved documents highlighted based on predicted term weights. Darker blue represents
promotive terms and darker red indicates demotive terms.

Query Retrieved Document Relevant?

behaviorism was

the view that

psychology should

scientifically study

behavior without

behaviorism was the view that psychology ( 1 ) should be

an objective science ( 2 ) that studies behavior without

reference to mental processes . onsciousness orignially started

as observations of behavior , the view that psychology ( 1

) should be an objective science that ( 2 ) studies behavior

without reference to mental processes .

Yes

are dogs more

intelligent than

cats

overall , dogs are smarter than cats actually by quite a bit . how-

ever , cats have many more brain cells dedicated to sensory

nerves ( rather than used for storing information like dogs )

. this means that even though dogs are much more intelligent

than cats , cats are able to hear , smell , and see much better

than dogs .

Yes

how long does it take

to get a doctorate in

psychology

thread: how long does it take to get urine pregnancy reults

from the doctor ? how long does it take to get urine pregnancy

reults from the doctor ? just as above really , I was just wondering

how long does it take to get pregnancy results from a doctors

urine test .

No

6.2 Case Study
In this section, we conduct a case study to evaluate the interpretability of term weights predicted by CA-QPP,
particularly focusing on how terms are classified as promotive or demotive. To illustrate this, we present three sample

queries from the MS MARCO dataset in Table 6, highlighting terms and their associated weights as predicted by

CA-QPP. In the visualizations, terms are color-coded based on their weights: blue highlights promotive terms, and

red indicates demotive terms. The intensity of the colors corresponds to the absolute magnitude of the weights,

with darker shades representing higher weights. Importantly, both the term weights and colors are normalized for

comparison. We describe our observations from this case study as follows:

(1) The purpose of the first query sample is to show that our proposed term weighting function is context-

dependent and therefore, the weights that it generates for the same terms may differ across different queries.

As seen in the table, the term psychology appears to be promotive in one query and demotive in another.

(2) The purpose of the query example "are dogs more intelligent than cats" is to illustrate how our method

emphasizes terms that enhance retrieval effectiveness in high-performing queries. As seen in the table, terms

such as intelligent are highlighted as promotive, aligning strongly with the query context. In contrast, terms

like dogs and cats are less distinguishing, reflecting CA-QPP’s focus on identifying contextually relevant

information that contributes to effective retrieval.
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(3) In the last example, its clear that the retrieval method has returned a completely irrelevant document, which

is about ’pregnancy’ rather than being about the length of a PhD program in Psychology. As such, the term

weighting method has identified that pregnancy is an irrelevant term in this context and has assigned a highly

demotive score to this term. On the other hand, it has emphasized the need to promote the term Psychology

in the query itself.

These examples demonstrate how CA-QPP effectively assigns context-sensitive term weights that reflect the

relevance and intent of the query. The contrast between promotive and demotive terms highlights the method’s

ability to adapt dynamically to different query-document contexts. This case study demonstrates how the method

effectively differentiates between terms that enhance retrieval performance and those that hinder it, showcasing its

ability to adapt to varying query contexts.

7 Concluding Remarks
In this paper, we presented CA-QPP, a novel approach for post-retrieval Query Performance Prediction (QPP) that

leverages a contrastive framework to estimate query effectiveness. Building on the premise that the same information

need can be expressed through multiple query formulations with varying levels of retrieval performance, we systemat-

ically construct two deliberate query variations: an effective variation, which emphasizes terms that enhance retrieval,

and an ineffective variation, which amplifies terms that hinder retrieval. By contrasting the retrieval outcomes of

these variations, CA-QPP provides a structured means of analyzing term-level contributions to query performance

and predicting the effectiveness of the original query. Central to our approach is the use of a context-sensitive

term-weighting mechanism to classify query terms as promotive, demotive, or neutral based on their influence on

retrieval outcomes. These classifications form the basis for constructing the query variations, which are subsequently

processed by a cross-encoder model to predict query performance. Our framework not only captures the nuanced

interplay of terms within queries but also highlights the robustness and variability of retrieval systems in handling

different query formulations.

We evaluated CA-QPP on the MS MARCO V1 and MS MARCO V2 datasets and their associated query sets, including

TREC DL 2019, TREC DL 2020, DL-Hard, TREC DL 2021,and TREC DL 2022, which feature diverse query difficulties

and extensive relevance judgments. Through comparisons with both traditional and neural QPP baselines, we

demonstrated the effectiveness and stability of CA-QPP across standard correlation metrics. Additionally, our analysis

of term weights and query-document alignments provides valuable interpretability, showing how individual terms

shape retrieval effectiveness and contribute to query success or failure. The findings of this work emphasize the

importance of understanding term-level contributions to retrieval effectiveness, particularly for queries that pose

challenges to existing retrieval systems. By systematically identifying and contrasting effective and ineffective query

formulations, CA-QPP offers a robust and interpretable framework for estimating query performance.

While CA-QPP demonstrates strong potential in post-retrieval QPP, there are several technical directions to further

refine and expand its capabilities: (1) An interesting direction for future work involves integrating external behavioral

data, such as clickthrough information, into the term-weighting process. Datasets like ORCAS, which include rich

user interaction data, could be utilized to refine the identification of promotive and demotive terms by incorporating

user preferences and relevance feedback. By aligning model predictions with actual user behavior, this approach could

enhance the robustness of term-weight estimation, particularly for queries with ambiguous intent or sparse relevance

judgments. Such integration would also provide insights into how user interactions shape retrieval performance,

allowing for more informed predictions. (2) Another promising avenue is to improve the term-weighting process by

explicitly capturing the interactions between query terms and their relationships with document terms. Instead of

treating terms independently, advanced techniques like multi-headed attention mechanisms or graph neural networks

(GNNs) could be used to model dependencies such as term co-occurrence, positional relationships, and semantic

alignment. This would allow for a deeper understanding of how combinations of terms collectively influence retrieval

effectiveness, enabling the construction of more precise query variations and enhancing performance prediction

accuracy. Incorporating these relationships could lead to more sophisticated models capable of handling complex

query formulations and challenging retrieval scenarios.
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