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ABSTRACT
Researchers have shown that the retrieval effectiveness of queries
may depend on other factors in addition to the semantics of the
query. In other words, several queries expressed with the same in-
tent, and even using overlapping keywords, may exhibit completely
different degrees of retrieval effectiveness. As such, the objective
of our work in this paper is to propose a neural disentanglement
method that is able to disentangle query semantics from query
difficulty. The disentangled query semantics representation pro-
vides the means to determine semantic association between queries
whereas the disentangled query difficulty representation would al-
low for the estimation of query effectiveness. We show through our
experiments on the query performance prediction; and, query simi-
larity calculation tasks that our proposed disentanglement method
is able to show better performance compared to the state of the art.
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1 INTRODUCTION
Deep neural networks have been increasingly used for various tasks
in information retrieval and have shown impressive performance
improvements over traditional retrieval methods [5, 26, 28, 34, 37].
This is primarily due to their ability to learn latent distributions of
data through dense representations. For instance, in the context of
ad hoc retrieval, dense neural rankers learn representations that
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effectively connect the query space to the document space and
facilitate the retrieval of relevant documents for an input query [21,
35, 41]. Researchers have already shown that learnt representations
encode a range of information without discriminating between
them as long as the final representation is effective for the task at
hand [12, 45]. In many cases, it is not immediately clear what each
sub-part of the representation stands for andwhether they carry any
semantics independently. It is likely, as shown by earlier work, that
representations of queries and documents may be amalgamating
different attributes such as style, content semantics, tense, among
others, without distinguishing between them [19, 20, 43].

Existing research has explored ways through which intertwined
attributes in neural representations are separated. This process is
referred to as disentanglement and has found application in areas
such as controlled text generation [18], and style transfer [46], to
name a few. The neural disentanglement process appears to be
especially relevant to the task of ad hoc retrieval and how neural
representations of queries are used [17, 25, 30]. There have been
several studies showing similar queries that carry similar semantics
or even at times are expressed using overlapping terminology, but
with different ordering or tone, may end up producing completely
different retrieval outcomes and hence have different retrieval effec-
tiveness. For instance, the Matches Made in Heaven (MMH) dataset
shows that there are over 180k queries in the 500k queries of the
MSMARCO passage retrieval dataset where a small variation of the
query can change retrieval effectiveness of wide range of queries
from a mean average precision of 0.139 to 1 [1]. While query and
document semantics are key in the retrieval process, the effective-
ness of the query relies on additional factors that determine how
difficult it is for the retrieval method to satisfy the query. This
work is motivated by the evidence observed in at least 180𝑘 queries
in MMH where the semantics of the queries are comparable yet
the queries show disparately differing retrieval effectiveness. We
are interested in disentangling a query representation into two
independent representations one capturing query semantics and
the other potentially capturing query difficulty. Ideally, once query
representations are disentangled, the semantic component of the
disentangled representations of similar queries would be similar.
Additionally, one would expect that the difficulty component of the
disentangled representations would enable us to discriminatively
determine which query is more difficult for the retrieval method to
satisfy, regardless of whether the compared queries have similar
semantics or not. The benefit of this proposed query disentangle-
ment approach is that it enables us to perform the pre-retrieval
Query Performance Prediction (QPP) task in which the retrieval
effectiveness of a query is determined prior to retrieval. Most QPP
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Figure 1: The overall architecture of our proposed method.

methods [2, 3, 6–8, 11, 14, 22, 23, 31, 36, 38] rely either on the sta-
tistical relation between the query terms and the document corpus,
or on the relation between query terms within the geometric space
produced by neural embedding models. However, in our work, we
produce an explicit representation of query difficulty as a result
of the disentanglement process, which can be directly used for
performing QPP.

Through experiments on four widely used datasets, namely MS
MARCO dev set, TREC DL 2019, TREC DL 2020, as well as TREC
DL-Hard, and based on three evaluation metrics including Kendall
and Spearman Correlations as well as the scaled Mean Absolute
Ranking Error (sMARE) metric [13], we show that the proposed dis-
entanglement approach is able to effectively capture query difficulty
in isolation. Furthemore, and in order to show that the proposed ap-
proach is also able to isolate query semantics, we evaluate how well
the disentangled representations are able to compute the associa-
tion between semantically similar query pairs released by Nogueira
and Lin [33]. We show that the disentangled representations of
content are more effective in capturing query semantics compared
to various state of the art large language models.

2 PROPOSED METHOD
Our method aims to disentangle query representations into distinct
representations for query semantics and difficulty.

2.1 Representation Disentanglement
Let us assume a set of query pairs 𝑄𝑃 = (𝑞𝑖 , 𝑞′𝑖 ) |𝑖 = 1, ..., 𝑁 , where
N is the total number of query pairs. In each pair, the two queries
can be defined in relation to each other as follows:
- Query Semantics: The queries in each pair could either be dis-
cussing different semantics or maybe the formulation of the same
query but using different terms. For example, the two queries ‘what
does dse stand for’ and ‘what is display screen equipment’ are both
semantically similar and convey the same intent. In contrast, for
another pair of queries such as ‘average dishwasher life expectancy’
and ‘life expectancy in canada’, the intent is completely different
and their semantics are not comparable. As such, for any given
pair, if the two queries share the same semantics, we label them as
being similar (𝑙 = 1), otherwise, we label them as being dissimilar
(𝑙 = −1).
- Query Difficulty: Regardless of query semantics, a pair of queries
can be compared with each other based on their retrieval effective-
ness. Queries with lower retrieval effectiveness are more difficult
queries to satisfy. We define function𝜓 , which measures the per-
formance of a query q over a collection D with a ranking model

M. Therefore, q could be considered as a measure for difficulty of
a query; The lower the performance of the query q as measured
by 𝜓 (𝑞), the higher its level of difficulty. For example, consider
the previous example pairs: ‘what does dse stand for’ and ‘what is
display screen equipment’. The first query has an average precision
of 0.05 while the second has an average precision of 1. Regardless of
whether a pair of two queries are semantically comparable or not,
we assign the pair a label of 1 if the first query 𝑞 is more difficult
than 𝑞′, and 0 otherwise.

For this purpose of representation disentanglement, we further
extend the 𝑄𝑃 set into 𝑄 as follows:

𝑄 = {(𝑞𝑖 , 𝑞′𝑖 , 𝑙, 𝑦) |𝑙 ∈ {−1, 1}, 𝑦 ∈ {0, 1},𝜓 (𝑞) ≠ 𝜓 (𝑞′), 𝑖 = 1, ..., 𝑁 }
(1)

We note that 𝜓 (𝑞) ≠ 𝜓 (𝑞′) indicates that query pairs in Q do not
have the same retrieval effectiveness.

2.2 Model Architecture
The architecture of our proposed model is depicted in Figure 1. The
model focuses on decomposing the query representation into non-
overlapping sub-representations of query semantics and difficulty.
Query Representation Encoding. Our architecture initially en-
codes each query q into latent space through Λ(𝑞;Θ) where the
vector representation 𝑣 of query 𝑞 is denoted as 𝑣𝑞 = Λ(𝑞;Θ). Let us
assume the vector representation 𝑣 is an h-dimensional vector. As
illustrated in Figure 1, vector 𝑣 would ideally be decomposed into
two non-overlapping vectors 𝑣𝑞𝑐 and 𝑣𝑞

𝑑
with𝑚, and 𝑝 dimensions,

respectively, such that ℎ =𝑚 + 𝑝 . The idea is to consider the first
part of the vector 𝑣𝑞𝑐 to represent query semantics and the second
part 𝑣𝑞

𝑑
as the query difficulty. Given the set of query pairs defined

in Equation 1, the vector representations of each of the queries 𝑞,
and 𝑞′ can be calculated as 𝑣𝑞 = Λ(𝑞;Θ) and 𝑣𝑞′ = Λ(𝑞′;Θ).
Query Semantics. To disentangle query semantics, we train our
architecture through a Cosine Embedding Loss function through
which query pairs with similar and dissimilar semantics will have a
1 and -1 label respectively. More specifically, the architecture would
only consider a subset of the original query representation for
capturing query semantics, namely 𝑣𝑞𝑐 and 𝑣𝑞

′
𝑐 . Intuitively speaking,

the training process would need to accumulate all query semantic
information from the original query representation and squash
them into a subset of the representation. The specific loss function
for ensuring query semantics are captured in 𝑣

𝑞
𝑐 and 𝑣

𝑞′
𝑐 can be

defined as follows:

𝐿𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

[ 1 + 𝑙
2

(1 − cos (𝑣𝑞𝑖𝑐 , 𝑣
𝑞′𝑖
𝑐 ))

+ 1 − 𝑙

2
𝑚𝑎𝑥 (0, cos (𝑣𝑞𝑖𝑐 , 𝑣

𝑞′𝑖
𝑐 ))] (2)

where cos(𝑣𝑞𝑐 , 𝑣
𝑞′
𝑐 ) is the cosine similarity between the two vectors

𝑣
𝑞
𝑐 ,𝑣

𝑞′
𝑐 . The embedding network Λ is fine-tuned such that it learns

a compact yet rich representation for the semantics of each query.
Representations learnt based on the embedding network will place
queries with similar semantics closer to each other in the embedding
space and distant semantically dissimilar queries from each other.
Query Difficulty.We tend to ensure that the disentangled repre-
sentation is able to distinctly capture query difficulty in isolation
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from query semantics. As such, the remainder of the query rep-
resentation in each query, namely 𝑣

𝑞

𝑑
would need to capture the

difficulty of each query based on 𝜓 (𝑞) and in relation to another
disentangled query representation such as 𝑣𝑞

′

𝑑
. In order to train a

model to be able to predict whether 𝑞 is more difficult than 𝑞′ or
not solely based on their disentangled representation, we define
a classification task. We note that the classification task needs to
be cognizant of query pair ordering. More specifically, depending
on the order in which we place the pair of queries in relation to
each other, the difficulty relation would be reversed. In order to
capture both the query difficulty relation and ordering, we work
with the difference between the vector representation of the two
disentangled queries in the classification task. We feed the differ-
ence of the two vectors 𝑣𝑞

𝑑
− 𝑣

𝑞′

𝑑
to a prediction network Π(𝑥 ;Φ)

and train it to classify this vector based on the labels 𝑦 ∈ {0, 1}. The
loss function for such a network is defined as Binary Cross Entropy
Loss as follows:

𝐿𝐷𝑖𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 =
1
𝑁

𝑁∑︁
𝑖=1

[−𝑦𝑙𝑜𝑔(Π(𝑣𝑞𝑖
𝑑

− 𝑣
𝑞′𝑖
𝑑
))

+(1 − 𝑦)𝑙𝑜𝑔(1 − Π(𝑣𝑞𝑖
𝑑

− 𝑣
𝑞′𝑖
𝑑
))] (3)

Overall Disentanglement Loss. The overall loss function of the
network is defined as a linear interpolation of the two losses:

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠 + 𝐿𝐷𝑖𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 .

3 EXPERIMENTS
Experimental Setup.Weutilized themodel in [16] as our transformer-
based encoder model to map the queries into a 768-dimensional
space. These representations were subsequently disentangled into
query semantics and query difficulty vectors, which were chosen to
be 500 and 268 dimensional, respectively. The fully connected layer
had a size of 512. We found this architecture most robust to model
performance during validation. We split our dataset to 80% train
and 20% validation. We used the stochastic gradient descent opti-
mization approach with the learning rate set to 10−3 and trained
our model for 5 epochs with Batch size of 32.
Datasets.We constructed a dataset consisting of query pairs along-
side their corresponding Mean Average Precision at 1000 perfor-
mance values. We utilized query pairs sourced from the MMH
dataset [1], which encompasses over 400, 000 query pairs and their
relative performance in relation to each other. We have also incorpo-
rated the MS MARCO [32] V1 train queries and their performance
metrics. This integration resulted in a final dataset comprising
420, 000 query pairs with similar content (labeled as 1) and an equal
number of pairs with different content (labeled as −1), along with
their respective performance values. To assess the performance
of our approach under varying distributions of −1 and 1 labeled
pairs, we conducted validation experiments using datasets with
different label proportions. Notably, the results revealed that a
dataset distributed evenly with 50% of each label type yielded the
best performance overall. Our dataset is available to download
on our GitHub repository (https://github.com/sara-salamat/query-
disentanglement).
Evaluation. We conducted experiments on MS MARCO v1 pas-
sage collection and four of its accompanying query sets[32]. We

Table 1: The List of QPP Baselines.
Category Methods and Citation
Term Importance IDF , ICTF [24]
Specificity SCS [15], IEF [6], CC and DC [7]
Similarity SCQ [44]
Term Relatedness PMI [14]
Coherency VAR [44]

compare the performance of our proposed method as well as the
baselines on MS MARCO small development set which comprises
6, 980 queries, most of which have only one relevant judgement. We
also consider TREC DL 2019 [10] (43 queries), TREC DL 2020 [9]
(53 queries) and DL-Hard [29] (50 queries) which all include com-
prehensive judgements on a non-binary graded scale. By testing
our proposed method on these different query sets, we can compare
the robustness of our approach as well as the baselines in terms
of query size and the number of relevant documents per query.
We evaluate the QPP effectiveness by two widely used evaluation
strategies. First, we compute the Kendall and Spearman correlation
between the predicted performance given by our method and the
actual performance of the queries over the BM25 implemented by
Anserini [42] quantified by the official evaluation metric for each
query set, i.e., MRR@10 for MS MARCO dev set and nDCG@10
for the other three datasets. A higher correlation value indicates
a more accurate prediction of query performance. In addition, we
adopted the scaled Mean Absolute Relative Error (sMARE) eval-
uation metric which is a recently proposed metric for assessing
the performance of QPP methods [13]. It measures the accuracy of
predicted scores or rankings compared to the ground truth scores
or rankings. sMARE has shown to be useful in quantifying the
performance of QPP methods, providing a measure of how closely
the predicted scores or rankings align with the ground truth. A
lower sMARE value indicates better prediction accuracy.

To measure the impact of our method on capturing query se-
mantics, we use four pre-trained models, namely RoBERTa [27],
MPNet[39], MiniLM [40], BERT [12], and perform the disentan-
glement process on each of them. We then compare how well the
disentangled portion of the query representation that captures
query semantics is able to grasp query semantics compared to the
original query representation prior to the disentanglement pro-
cess. For this purpose, we adopt a subset of the dataset released by
Nogueira and Lin [33] which consists of a set of original queries
and 25 semantically similar yet alternatively expressed queries for
each of the original queries. We compute the similarity between the
original query and its 25 alternatives using the original query rep-
resentation as well as our disentangled representation based on the
Cosine Similarity function. An accurate representation would be
one that would show higher semantic similarity when comparing
these pairs.
Baselines For the QPP Task. We have adopted widely used pre-
retrieval query performance prediction methods that have demon-
strated promising performance on various popular corpora and
query sets [6, 8]. The list of these baselines are included in Table 1.
Hyperparameter Setting. All baselines are reported based on
their best-performing hyperparameters as reported in their original
paper.
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Table 2: Performance Comparison. Italic values indicate not statistically significant correlation with p-value of 0.05.

MS MARCO Dev set TREC DL 2019 TREC DL 2020 TREC DL Hard
Kendall 𝜏 Spearman sMARE Kendall 𝜏 Spearman sMARE Kendall 𝜏 Spearman sMARE Kendall 𝜏 Spearman sMARE

SCQ 0.011 0.014 0.334 0.116 0.162 0.387 0.076 0.132 0.365 0.127 0.179 0.369
SCS 0.037 0.049 0.333 0.194 0.287 0.316 0.272 0.397 0.333 0.106 0.140 0.326
VAR 0.062 0.083 0.333 0.107 0.152 0.290 0.059 0.077 0.318 0.016 0.035 0.349
PMI 0.017 0.023 0.323 0.009 0.017 0.341 0.040 0.056 0.344 0.022 0.031 0.349
IDF 0.116 0.154 0.330 0.158 0.245 0.321 0.245 0.353 0.374 0.111 0.125 0.255
ICTF 0.114 0.152 0.330 0.153 0.240 0.360 0.345 0.330 0.330 0.107 0.115 0.314
CC 0.065 0.085 0.333 0.099 0.055 0.319 0.106 0.026 0.290 0.103 0.141 0.310
DC 0.107 0.144 0.333 0.095 0.053 0.293 0.091 0.035 0.327 0.123 0.165 0.335
IEF 0.094 0.104 0.330 0187 0.166 0.387 0.064 0.081 0.334 0.140 0.191 0.377
Ours 0.24 0.359 0.259 0.2 0.3 0.273 0.274 0.385 0.248 0.171 0.257 0.271

3.1 Results and Findings
Query Difficulty Prediction. Table 1 shows a comparison of our
approach and the baselines. Based on the results in this table, we
make several observations: (1) Our proposed method consistently
achieves a statistically significant correlationwith a 𝑝−𝑣𝑎𝑙𝑢𝑒 < 0.05,
outperforming all the baselines across all datasets in terms of re-
ported rank-based correlations. Our proposed method exhibits a
lower sMARE value compared to the baselines. This is a strong
advantage of our work since sMARE measures the discrepancy be-
tween the rankings of queries in actual and predicted ranks. Thus,
a lower sMARE indicates superior performance. (2) Among these
baselines, the ones based on term-importance, specifically IDF and
ICTF, demonstrate superior performance compared to the others.
However, when gauged on the sMARE metric, their efficacy is not
as impressive. (3) Generally, the performance of the methods is
significantly higher on the TREC DL datasets compared to the MS
MARCO dev set. This may be due to the more comprehensive rele-
vance judgements of the TREC DL 2019, 2020, and Hard datasets.
The availability of more relevant judgments per query allows for a
more precise performance evaluation, thus, more reliable perfor-
mance prediction on these datasets. In contrast, the MS MARCO
dev set typically contains an average one relevance judgment per
query. Previous studies have indicated that incomplete judgements
in such cases could lead to less accurate performance [4]. (4) Our
proposed method showed better performance than all the baselines
on the four corpora in terms of all three evaluationmetrics. In TREC-
DL 2020, SCS achieved a Spearman 𝜌 of 0.397 while our method
yielded a correlation of 0.385 (second best). On TREC DL-Hard,
we obtained an sMARE of 0.271 (runner up), while IDF managed
a lower sMARE of 0.255. However, upon a more in-depth exam-
ination of these cases, we found that these differences were not
statistically significant based on a paired t-test with a p-value of
less than 0.05. Furthermore, neither SCS nor IDF demonstrated con-
sistent effectiveness across the four different query sets. In contrast,
our method achieved 0.24 in terms of Kendall 𝜏 and 0.359 in terms
of Spearman 𝜌 , representing a substantial boost in performance on
the MS MARCO dev set. Overall, our method exhibits the highest
consistency and overall performance, indicating its robustness in
relation to varying query subsets and evaluation strategies.
Query Semantics Performance.We assess the effectiveness of
our disentanglement process for capturing query semantics by com-
paring query representations before and after the disentanglement
process for various models including RoBERTa [27], MPNet [39],
MiniLM [40], and BERT [12]. To ascertain how well each disentan-
gled representation encapsulates query semantics, we visualize the

Figure 2: The semantic similarity histograms.

distributions of similarities between the query pairs in the dataset
proposed by Nogueira and Lin [33]. Given this dataset consists
of matches between original queries with another 25 correspond-
ing queries, it is possible to compute the similarity between these
pairs. An effective query representation that has accurately cap-
tured query semantics would embed each of the query pairs closer
to each other within the embedding space. Figure 2 shows the his-
togram of similarities between 5, 000 randomly chosen query pairs
from the Nogueira and Lin dataset [33]. A histogram skewed to-
wards the right shows higher similarity values between query pairs
indicating that the model has been able to position similar queries
in closer proximity (a desirable outcome). As depicted in the figure,
the disentanglement process has made all four language models
to show higher skewness to the right showing that our proposed
approach will enable a more accurate capture of query semantics.

4 CONCLUDING REMARKS
The objective of our work in this paper has been to design a neu-
ral disentanglement method that is able to capture and isolate the
representation of query semantics from that of query difficulty. We
achieve this objective by fine-tuning portions of query representa-
tions to capture the similarity and dissimilarity between relevant
and non-relevant queries, respectively. Furthermore, we fine-tune a
non-overlapping portion of the query representation to effectively
capture the retrieval effectiveness of queries. We have shown that
our approach has been able to show strong performance on the
QPP task compared to the state of the art and also show better
performance on query similarity calculation compared to various
language models.
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