
DyHNet: Learning Dynamic Heterogeneous Network
Representations
Hoang Nguyen

Ryerson University
Radin Hamidi Rad

Ryerson University
Fattane Zarrinkalam (fzarrink@uoguelph.ca)

University of Guelph
Ebrahim Bagheri

Ryerson University

Research Article

Keywords: Dynamic heterogeneous network, Network representation learning, Random walk

Posted Date: December 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2327811/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2327811/v1
mailto:fzarrink@uoguelph.ca
https://doi.org/10.21203/rs.3.rs-2327811/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous

Network Representations

Hoang Nguyen1, Radin Hamidi Rad1, Fattane Zarrinkalam2

and Ebrahim Bagheri1

1 Toronto Metropolitan University, Toronto, Canada.
2 University of Guelph, Guelph, Canada.

Contributing authors: hoang.cam.nguyen@ryerson.ca;

radin@ryerson.ca; fzarrink@uoguelph.ca; bagheri@ryerson.ca;

Abstract

Many real-world networks, such as social networks, contain structural
heterogeneity and experience temporal evolution. However, while there
has been growing literature on network representation learning, only a
few have addressed the need to learn representations for dynamic hetero-

geneous networks. The objective of our work in this paper is to introduce
DyHNet, which learns representations for such networks and distinguishes
itself from the state-of-the-art by systematically capturing (1) local node
semantics, (2) global network semantics, and (3) longer-range temporal
associations between network snapshots when learning network repre-
sentations. Through experiments on four real-world datasets, we demon-
strate that our proposed method is able to show consistently better and
more robust performance compared to the state-of-the-art techniques∗.

Keywords: Dynamic heterogeneous network, Network representation
learning, Random walk

∗The source code, data, and/or other artifacts have been made available at https:
//github.com/hoangntc/DyHNet

1

https://github.com/hoangntc/DyHNet
https://github.com/hoangntc/DyHNet

Springer Nature 2021 LATEX template

2 DyHNet: Learning Dynamic Heterogeneous Network Representations

1 Introduction

The objective of network (graph)1 representation learning is to encode the
semantic and structural information of a network into low-dimensional space,
which can then be used for downstream tasks such as link prediction, node
classification, information retrieval and recommendation [1, 2]. Existing net-
work representation learning methods can be classified based on whether they
function over heterogeneous or homogeneous networks and whether they are
limited to learning representations for static networks or are also able to
capture the temporal nature of dynamic networks.

Most of existing network representation learning methods have mainly
explored the development of representations for static networks [3]. In this con-
text, earlier works offer intuitive approaches for adapting random walk [4, 5]
and skip-gram [6] methods for learning network representations. These meth-
ods exploit first-order and higher-order proximity to characterize network
structure [7]. Some methods approximate network structure through message
passing schemes in order to capture the notion of node neighborhood [8–10].
More recently, several metapath-based neural network approaches have been
developed that preserve the properties of heterogeneous networks such as the
diversity of node and relation types [11–13]. Although these approaches have
shown a great deal of success in some downstream tasks, they face two main
limitations. First, given their heavy reliance on message-passing schemes, they
seem to be very well equipped to capture local network features for nodes and
edges but fail to preserve global network characteristics [14, 15]. Second, these
methods have only been developed to operate over static networks and hence
cannot be used for dynamic temporally evolving networks.

It is important to capture temporality in dynamic networks as real-world
networks do naturally evolve and change over time and such evolution needs
to be reflected in network representations. Dealing with dynamic networks
has shown to be a challenging task as it requires the models to capture local
and global temporal associations between nodes and edges of different net-
work snapshots [16]. To date, most existing approaches for dynamic networks
have been focused on addressing a specific task such as link prediction [17, 18]
and recommendation [19]. These methods focus on learning features from the
dynamic network that can optimize the task at hand, e.g., defining features
between node pairs that can optimize link prediction. However, there have
been more recent works that learn network representations for dynamic net-
works regardless of the downstream task which are limited to homogeneous
networks. For instance, these methods use exponential distribution of time
to weigh network edges [20] or use stacked graph neural networks (GNNs) or
continuous modelling recurrent neural networks (RNNs) to fuse multiple net-
work snapshots [21–23]. Such approaches are not able to handle heterogeneity
as they assume the dynamic network to consist of only homogeneous nodes.

1We use the terms graph and network interchangeably in this paper.

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 3

To the best of our knowledge, there are only a few works that are able to
explicitly learn network representations for dynamic heterogeneous networks
[24–26]. These works attempt to reduce the complexity of dynamic hetero-
geneous networks through marginalizing either temporality or heterogeneity.
For instance, DHNE [25] proposes that the temporal nature of a dynamic net-
work can be captured by associating each node in a certain snapshot with
the nodes associated with it in the previous or next snapshots. The limita-
tion of this approach is that it is not able to capture longer-range temporal
associations between network snapshots. In contrast, DyHATR [24] proposes to
reduce a heterogeneous network into homogeneous sub-graphs whose nodes are
then associated with each other through a hierarchical attention mechanism.
While the attention mechanism allows for capturing longer-range dependen-
cies between snapshots, the downside of such an approach is that by removing
associations between heterogeneous node types, the model will not be able to
learn explicit interaction dynamics between nodes of different types. In sum-
mary, we find that existing network representation learning methods that deal
with dynamic networks may be limited by at least: (1) being designed specif-
ically for homogeneous networks [27] or reduce a heterogeneous network into
homogeneous subgraphs [28]; hence, potentially forgoing interactions between
heterogeneous types; and/or (2) restricting temporal associations between
dynamic network snapshots to those immediately proceeding or succeeding a
timestamp; therefore, possibly missing longer-range temporal associations.

The objective of our work in this paper is to propose an approach, referred
to as DyHNet, to learn representations for dynamic heterogeneous networks
that would satisfy the following characteristics: (a) capture local and global
network structural characteristics without being limited only to the local fea-
tures of network nodes; (b) incorporate interactions between different node
types without having to model individual node type relations in isolation; and
(c) integrate longer-range temporal associations between network snapshots
by moving beyond immediate neighboring snapshots.

The key contributions of our work are as follows: (1) We propose a neural
architecture that captures local network semantics as well as global network
semantics and effectively integrates them by considering network structure.
(2) We utilize a meta-path neighborhood aggregation method to capture both
network heterogeneity and higher-order proximity information. (3) We adopt
an attention-based temporal encoding mechanism that captures longer-range
graph evolution over several snapshots. (4) We show through our experiments
on four real-world datasets that our proposed approach is able to show better
performance compared to a range of state-of-the-art network representation
learning methods.

2 Related work

Depending on whether they are limited to learning representations for static
networks or are also able to capture the temporal nature of dynamic networks,

Springer Nature 2021 LATEX template

4 DyHNet: Learning Dynamic Heterogeneous Network Representations

we can divide related work into two categories: static network representation
learning and dynamic network representation learning.

2.1 Static Network Representation Learning

Most existing network representation learning methods have mainly focused
on representation learning for static graphs [3]. Some earlier studies proposed
to utilize random walks to preserve the local and global graph structure. For
example, DeepWalk [4] and Node2Vec [5] learn feature representation of nodes
by applying the skip-gram model on the sequences of nodes generated by a
random walk strategy. SDNE [29] and LINE [7] learn feature representation
of nodes by optimizing an objective function that preserves first-order and
second-order proximities of nodes within a graph. Further, due to the power-
ful ability of graph neural networks (GNNs) to learn feature representations,
more recent studies have applied GNN-based methods for graph representation
learning [8, 10]. For example, Graph Attention Network (GAT) [10] leverages
masked self attention layers to learn the importance of nodes by consider-
ing the features of neighbors. Personalized Propagation of Neural Predictions
(PPNP) [30] is derived by incorporating personalized PageRank into graph
convolutional networks (GCNs).

While most network representation learning techniques are designed for
homogeneous graphs and do not consider different types of nodes and rela-
tions, recently, a number of studies have aimed at designing techniques for
heterogeneous graphs [31]. For example, DHNE [32] is a deep hyper network-
based method that considers a non-linear tuple-wise similarity function in its
embedding space while capturing both the local and global structures of a
heterogeneous graph. Metapath2vec [33] uses a meta-path based random walk
technique to build the heterogeneous neighborhood of a node and then applies
a heterogeneous SkipGram model to embed the nodes. MetaGraph2Vec [34]
generates heterogeneous node sequences by applying a meta-graph based ran-
dom walk strategy and then the feature representation of nodes are learned
by employing a heterogeneous skip-gram technique over the node sequences.
HetGNN [35] samples a set of strongly correlated heterogeneous neighbors of
each node by applying a random walk approach to group nodes based on their
type and then applies Bi-LSTM on each group to aggregate feature informa-
tion these groups of nodes. HAN [12] proposes a heterogeneous neural network
based on hierarchical attention to learn the importance between a node and
its metapaths and semantic-level attentions to learn the importance of differ-
ent metapaths. Node embeddings are finally generated by aggregating features
from metapath-based neighbors of each node.

Most network representation learning methods employ paths for capturing
relationships among nodes and overlook the structural and semantic informa-
tion in the subgraphs of a node. To solve this issue, M-HIN [36] proposes a
heterogeneous graph embedding model that generates metagraphs and then
apply the Hadamard function to describe the relationship between nodes
and metagraphs. Recently, to take into account the properties of subgraphs,

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 5

subgraph-based network representation learning has been proposed and has
demonstrated advantages in many important downstream applications like
link prediction and graph classification [15]. For example, SubGNN [15] is a
subgraph-level GNN that propagates neural messages between the subgraph’s
components and randomly samples patches from the whole graph and aggre-
gates their features to learn feature representations of subgraphs. To improve
SubGNN by distinguishing nodes inside and outside the subgraph, GNN with
LAbeling trickS for Subgraph (GLASS) [37] utilizes an expressive and scal-
able labeling trick to enhance GNNs for subgraph representation learning.
Most recently, to address the scalability issue in the subgraph representation
learning problem via GNNs, SUREL [38] reduces the redundancy of subgraph
extraction and supports parallel processing by decoupling the graph structure
into sets of walks and reusing the walks to form subgraphs.

2.2 Dynamic Network Representation Learning

The importance of capturing temporality in dynamic graphs has received
increasing attention in the literature [16]. Most of these studies have been
designed for homogenous graphs. For example, DynamicTraid [39] learns the
embeddings of each node at different time steps by modeling the evolution of a
dynamic graph based on the triadic closure process. DynGEM [40] proposes a
deep autoencoder model to construct stable embeddings for dynamic graphs.
It can handle growing dynamic graphs and incrementally learn embeddings
of each snapshot of the graph from previous time steps. Dyngraph2vec [41]
proposes an LSTM-based model to process the snapshots of dynamic graphs
by representing the graph structure using an adjacency matrix. EvolveGCN
[22] proposes a dynamic network representation learning method by com-
bining the GCN and RNN. To capture the dynamicity of the graph, this
method uses RNNs to evolve the GCN parameters. DySAT [21] proposes a
self-attentional neural network architecture in which dynamic node representa-
tions are captured by applying self-attention over the structural neighborhood
and historical snapshots.

The above-mentioned methods do not capture the heterogeneity of
dynamic networks. Recently, a few studies have focused on designing tech-
niques for dynamic heterogeneous network representation learning. For exam-
ple, change2vec [26] represents a dynamic heterogeneous graph through static
graph snapshots at different timestamps and then instead of processing the
static graphs, it utilizes a change model to only train over their deltas. Fur-
ther, it uses Metapath2vec [33] to model the heterogeneity of each static graph
snapshot. As another method, DHNE [42] captures temporal characteristics
of a dynamic graph by constructing comprehensive historical current graphs
based on subgraphs of snapshots. Then, to learn node embedding, it proposes a
dynamic heterogeneous skip-gram model over node sequences extracted based
on a metapath-based random walk model. DHNE cannot incrementally update
the node embeddings after each change and needs to be retrained which is

Springer Nature 2021 LATEX template

6 DyHNet: Learning Dynamic Heterogeneous Network Representations

time-consuming. To solve this issue, DyHNE [43] proposes a model with meta-
path based proximity in which the change of structure and semantics are
incorporated by metapath augmented adjacency matrices, and perturbation
theory is used to efficiently learn the node embeddings. In contrast, DyHATR
[24] uses a hierarchical attention mechanism to capture the heterogeneity of a
graph and introduces a temporal attentive temporal RNN model to capture
dynamic characteristics of the graph. Most recently, M-DHIN [44] utilizes the
triadic evolution process to represent every snapshot of the dynamic hetero-
geneous graphs. This approach predicts the future of dynamic graphs via an
LSTM-based deep autoencoder.

These methods attempt to reduce the complexity of dynamic heteroge-
neous networks through marginalizing either temporality or heterogeneity.
Nevertheless, there is still lack of work that would take advantage of substruc-
tures of the graph when learning representations. Our proposed approach,
DyHNet, takes such an approach and attempts to generate graph embeddings
which capture different topological substructures while still maintaining both
the heterogeneous and temporal evolutionary patterns of the graph. Specif-
ically, DyHNet captures node-level graph substructures by adopting a GNN
approach. Further, DyHNet enriches the semantics of the node by obtaining
and summarizing the representative information of its graph substructure, i.e.,
subgraphs. DyHNet also preserves heterogeneity through a meta-path based
random walk approach and captures the temporal evolution of the network
through an attention mechanism.

3 Preliminaries

We first introduce notational conventions and then formulate the dynamic het-
erogeneous network representation learning problem. Frequently used symbols
are summarized in Table 1 for reference.

3.1 Notations

Definition 1 (Heterogeneous Information Network (HIN)) A HIN is defined as a
directed graph G(V, E) where V denotes the set of nodes and E denotes the set of
edges between nodes. Each node vi ∈ V and each edge ei ∈ E are affiliated with a
type mapping function ψ : V → A and ψ : E → R, respectively. A and R represent
the set of all possible node types and edge types with ♣A♣ > 1 and ♣R♣ > 1.

A HIN can be extended to support multiple time snapshots in order to
represent a Dynamic HIN, defined as below.

Definition 2 (Dynamic Heterogeneous Information Network (Dynamic HIN)) We

define a dynamic HIN as a series of graph snapshots, G =
{

G1,G2, ...,GT
}

where T

is the number of snapshots. A static HIN at time t is a HIN Gt = (Vt, Et). For two
consecutive timestamps t and t+ 1, the conditions, ♣Vt♣ ̸= ♣Vt+1♣ and ♣Et♣ ̸= ♣Et+1♣,
are satisfied when the nodes and the edges are updated, respectively.

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 7

Table 1 Summary of Frequently Used Notations.

Symbol Meaning
G the dynamic heterogeneous information network
T the number of timestamps (snapshots) in the network G
N the number of nodes in the network G
V the set of nodes in G

E the set of edges in G

Gt the heterogeneous information network at timestamp t

G′ the subgraph of network G

M the number of subgraphs G′ in network G

LGE the local graph encoder
GGE the global graph encoder
SGE the subgraph graph encoder
SE the structural encoder
T E the temporal encoder
AS the set of sampled anchor subgraphs
k the number of sampled anchor subgraphs
m the number of sampled structure subgraphs
lt

i
the local representation for node vi at timestamp t

ht

i
the global representation for node vi at timestamp t

st

i
the fused representation for node vi at timestamp t

zt

i
the final representation for node vi at timestamp t

Most real-world information networks are dynamic and heterogeneous.
They contain more than one type of nodes, edges and each node/edge is asso-
ciated with a certain timestamp. The DBLP bibliographic network is a typical
example of a Dynamic HIN. The network may contain different types of nodes
such as papers, authors, keywords/terms and venues. Many different types
of edges can be formed between these nodes. For example, the relationship
”write” is denoted by an edge between the author and paper nodes, and the
relationship between paper and venue nodes can be described through a ”pub-
lished in” edge type. Further, a graph such as one built based on the DBLP
dataset is a dynamic network as the interactions between its nodes (e.g., pub-
lished papers or publishing authors) evolve over time. Given the heterogeneity
of such networks, semantically meaningful or permissible traversals over the
network are often expressed through metapaths.

Definition 3 (Metapath) A metapath P is defined as a pattern of the form A1
R1−−→

A2
R2−−→ A3 · · ·Ap−1

Rp−1

−−−−→ Ap which represents a composite relation R = R1 ·
R2 · · ·Rp−1 between node types A1 and Ap on a HIN. p is the length of metapath
P and · denotes the relation composition operator.

Considering the DBLP dataset schema, shown in Figure 1, which consists
of four node types, i.e., papers, authors, terms and venues, and three relations,
i.e., papers-authors, papers-terms and papers-venues, it is possible to define
different metapaths, as already suggested in earlier work such as [45, 46].
For example, the metapath ”author-paper-term-paper-author” captures the
relation between papers written by two authors who share similar topics.

Springer Nature 2021 LATEX template

8 DyHNet: Learning Dynamic Heterogeneous Network Representations

(a) Heterogeneous graph. (b) Metapaths (c) Metapath-based subgraph.

Fig. 1 Illustration of definitions on the DBLP dataset.

Definition 4 (Subgraph) Given a network G(V, E), a subgraph of G, denoted by
G′(V ′, E ′), is a graph whose node set is in V (V ′ ⊆ V) and its edge set is a subset of
E (E ′ ⊆ E).

A heterogeneous network can also be defined based on the set of subgraphs
that it contains. There can be many different types of subgraphs depending
on the way we construct them.

A metapath-based subgraph is a subgraph which is generated by a set of
nodes connected by a metapath. This type of subgraph also shares the same
semantics with its corresponding metapath [11, 45]. Figure 1c depicts an exam-
ple of the metapath-based subgraph in the DBLP dataset. In this example,
the subgraph is constructed by the metapath P3 with the length of 9.

4 Proposed Approach

Here, we first give an overview of our approach, namely DyHNet, and then
provide more details about its components.

4.1 Overview

The overview of our proposed approach is shown in Figure 2. In our approach,
we advocate that various characteristics of dynamic heterogeneous graphs need
to be taken into consideration, namely (1) local semantics, (2) global seman-
tics, and (3) temporal semantics, when learning representations. To this end,
we capture local semantics through a local graph encoder (LGE) in each snap-
shot. The global semantics are captured by a global graph encoder (GGE),
which consists of two successive stages. First, multiple structure subgraphs
associated with each node in a single snapshot are sampled and encoded
through a metapath-aware subgraph encoder (SGE); then we learn a structural
encoder (SE) to project subgraph embeddings onto a common latent space
which represents the global semantics of the node. Finally, local and global
semantics are fused in order to provide a unified embedding for every node
in each snapshot. Finally, we incorporate a temporal encoder (T E) to capture
the evolution of the graph over sequential snapshots.

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 9

Fig. 2 Overview of our proposed DyHNet approach.

4.2 DyHNet Components

In this section, we explain the main components of DyHNet in detail.

4.2.1 Capturing Local Semantics

The intuition behind our formulation of local semantics is based on the idea
that nodes and their neighbors are more likely to be correlated with each
other; therefore, for any node, its representation can be determined based on
the representations of its neighbors [9]. Hence, at each timestamp, we define a
local graph encoder LGE : RN×N → R

N×d1 , which takes the structure of the
HIN at each timestamp as input to learn the representation for each node vi

in that timestamp as follows:

ek
i = AGGREGATE(k)

({

l
(k−1)
j : vj ∈ Nvi

})

(1)

lk
i = COMBINE(k)

(

l
(k−1)
i , ek

i

)

(2)

where lk
i is the feature vector of node vi at the kth iteration, Nvi is its neighbor

node set, AGGREGATE(k)(.) and COMBINE(k)(.) are arbitrary differen-
tiable functions. Xu et al. [47] argue that the choice of these two functions is
critical and suggest that AGGREGATE(k)(.) can be operationalized through
element-wise max-pooling and COMBINE(k)(.) as concatenation followed by

Springer Nature 2021 LATEX template

10 DyHNet: Learning Dynamic Heterogeneous Network Representations

a linear mapping, which we adopt in our implementation. The node represen-
tations learned in this approach represent the aggregated combination of the
representations of neighboring nodes around each node; and, hence capture
the local semantics of nodes.

The local graph encoder LGE is adopted for learning the local represen-
tation of each node in every time snapshot Gt ∈ G. We denote the encoded
representation of node vi in Gt as lt

i .

4.2.2 Capturing Global Semantics

We further hypothesize that each node is not only characterized locally within
its surrounding nodes but also by the structure of the subgraphs it belongs
to. Intuitively, the subgraphs which share similar structural characteristics
would have similar representations regardless of the distance between them
within a large network. Therefore, if two nodes experience similar regional
structures, their representations should be close to each other in latent space.
For this purpose, at each timestamp t, we develop a global graph encoder GGE :
R

N×d1 → R
N×d2 which first focuses on the associations between the subgraphs

to learn the subgraph representation and then uses these representations to
encode the global information of the nodes. The global graph encoder (GGE)
consists of two components, metapath-aware subgraph encoder (SGE) and
structural encoder (SE).

At each timestamp, graph G can be represented as a set of subgraphs,
i.e., G = ¶(G′

i)♢. Each node vi ∈ V belongs to a set of subgraphs. In order
to learn global semantics for nodes, the metapath-aware subgraph encoder is
first utilized to obtain the representations of all the subgraphs G′, then the
structural encoder leverages these representations to generate node embedding
vi.
Metapath-aware Subgraph Encoder. We propose to capture network sub-
graph representations based on a metapath-aware subgraph encoder SGE :
R

N×d1 → R
M×d2 , which maps a subgraph into the latent space through a

three-phase graph traversal method. More precisely, in the first phase, namely
anchor subgraph selection, a set of metapath-based subgraphs, referred to as
anchor subgraphs, are randomly sampled using a metapath-guided random
walker [48]. In the second phase, i.e., the anchor subgraph encoder, messages
from these anchor subgraphs are encoded by a K-hop neighborhood model
applied to the sequence of nodes generated in the first phase. In the last phase,
i.e., subgraph encoder, messages from the anchor subgraphs are propagated to
all other subgraphs to produce the subgraph representations. We present the
details of each of these three phases in the following.

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 11

Phase 1. Anchor Subgraph Selection

Let AN t = ¶AN t
1, AN t

2, . . . , AN t
k♢ be a set of k seed nodes in a graph snapshot

Gt. At each timestamp t, we define W t
i =

{

v1
ANt

i
, v2

ANt
i
, . . . , vp

ANt
i

}

as a meta-

path guided random walk of length p starting from node AN t
i ∈ AN t, AN t

i ≡
v1

ANt
i
. The strategy for the walker is as follows:

p
(

vi+1 ♣ vi
a,P

)

=

1
♣Na+1(vi

a)♣

(

vi+1, vi
a

)

∈ E , ψ
(

vi+1
)

= a+ 1

0
(

vi+1, vi
a

)

∈ E , ψ
(

vi+1
)

̸= a+ 1

0
(

vi+1, vi
a

)

/∈ E

(3)

where vi
a denotes the ith node in a given meta-path P with node type a.

The walk W t
i initialized from AN t

i then forms a anchor subgraph ASt
i . We

denote a set of anchor subgraphs corresponding to the set of starting nodes
AN t as ASt = ¶ASt

1, ASt
2, . . . , ASt

C♢. Hence, the size of two sets, AN t and
ASt, are equal.

Phase 2. Anchor Subgraph Encoder

The feature vector at
i of the anchor subgraph ASt

i ∈ ASt at timestamp t can
be obtained by a K-hop Neighborhood Aggregation mechanism (KNG):

at
i = KNG(lv1

ANt
i

, lv2

ANt
i

, . . . , lvp

ANt
i

) (4)

where l
v

j

ANt
i

is the node representation of the jth node in the walk W t
i which

forms the anchor subgraph ASt
i . The representation of each node in the walk is

computed by Equations 1 and 2. The KNG mechanism allows aggregating the
messages sequentially from a node to its neighbors following the semantics of
the meta-path random walk and finally aggregates the messages from all the
neighboring nodes to be used as the anchor subgraph representation. KNG can
be any predefined functions or learnable neural network, which has the ability
to aggregate incremental signals from previously visited nodes [49] such as
an attention mechanism [49] or a Long Short-Term Memory network (LSTM)
[15]. In our work, we learn KNG by adopting a bidirectional long short-term
memory recurrent network and use the SUM operator to aggregate incoming
messages.

Phase 3. Subgraph Encoder

At each graph snapshot, given the graph Gt = ¶(G′t
i)♢, the subgraph encoder

aims to vectorize each subgraph G′t
i. Once we have the anchor subgraphs

and their feature vector (messages), we adopt a message passing model which
computes and gathers the structural similarity between the subgraph G′t

i and
the anchor subgraphs to produce the final subgraph representation. Formally,
subgraph representation gt

i of the subgraph G′t
i ∈ Gt can be calculated as:

Springer Nature 2021 LATEX template

12 DyHNet: Learning Dynamic Heterogeneous Network Representations

g′t
i = γ

({

sim(G′t
i, ASt

j) · at
j , ∀ASt

j ∈ ASt
})

(5)

gt
i = SGE(G′t

i) = σ(Wg′t
i + b) (6)

where γ is a function that gathers messages in regard to the ith subgraph,
sim is a similarity function, and σ is a non-linear activation function. We
adopt the dynamic time warping (DTW) function calculated based on the
connection characteristics between the two subgraphs for sim and SUM for
γ as suggested in [15]. It is worth noting that our model has a separate set
of anchor subgraphs for performing message passing at each snapshot Gt ∈ G
while the parameters of subgraph encoder SGE are shared across all snapshots.
Structural Encoder. Based on the learnt subgraph representations, we now
integrate the information from the subgraph representations to learn node rep-
resentations that capture global semantics. Formally, at each graph snapshot,
given node vi and the m subgraphs ¶(G′

j
t
)♢m

j=1 that it appears in, we adopt a

structural encoder, SE : Rm×d2 → R
d2 , to encode all subgraph representations

into a unified representation to capture the global structural characteristics
of the node. Here, we adopt an attention mechanism to learn the importance
of each subgraph among all subgraphs and then, the output is computed by
taking the weighted average of the subgraphs’ representations. This way, the
latent representation contains the summaries of topology of all subgraphs.
This process can be summarized as follows:

αt
ij = f(G′

j
t
, c) = oT tanh(Wgt

j + Uc) (7)

where tanh(.) is the tanh activation function, o ∈ R
d2 is the weight vector,

c ∈ R
d2 is the learnable context vector, and W , U ∈ R

d2×d2 are the learnable
weight matrices. As such, the final subgraph representation based on global
semantics is computed as follows:

ht
i = SE(¶(G′

j
t
)♢m

j=1) =
m
∑

j=1

αt
ijgt

j (8)

The global information of the node vi in Gt is produced by GGE = SGE◦SE
and it is denoted as ht

i.

4.2.3 Integrating Local and Global Semantics

In order to obtain a latent representation st
i for node vi with dimension d at

timestamp t that can capture both local and global semantics of the given
node, we aggregate the representations trained by the local graph encoder
(LGE) and the global graph encoder (GGE) as follows:

st
i = AGGREGATE(lt

i , ht
i) (9)

where lt
i is the representation obtained by the local graph encoder LGE , ht

i

is the summary representation of all subgraphs of the given node produced

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 13

by GGE ; and AGGREGATE(.) denotes the aggregation operation. In our
proposed model, we adopt concatenation for AGGREGATE(.).

4.2.4 Capturing Graph Dynamics

In order to be able to capture network evolution over different temporal
snapshots, over both closer (shorter-range) and more distant (longer-range)
snapshots, we employ a multi-head attention mechanism to systematically fuse
the representations of all graph snapshots over time. Furthermore, we incorpo-
rate the chronological order of the snapshots by applying a Transformer-like
positional encoder [50] before feeding the input to the temporal encoder.

At timestamp t, the temporal encoder, T E : RT ×N×d → R
N×d′

, produces
the position vector pt

i ∈ R
d as follows:

T E(t) = pt
i =

{

sin(wk · t) if i = 2k

cos(wk · t) if i = 2k + 1
(10)

where wk = 1
100002k/d as indicated by Vaswani et al. [50].

The temporal encoder at the tth graph snapshot takes a sequence of node
representations at the all graph snapshots up to t and each representation is
updated as:

ŝt′

i = st′

i + pt′

i (11)

where 1 ≤ t′ ≤ t.
Given a node vi and the input sequence

{

ŝ1
i , ŝ2

i , ..., ŝT
i

}

across T snapshots
produced by Equation 11, we denote the packed representation of input with
dimensionality d by matrix Ŝi ∈ R

T ×d and output with dimensionality d′ of
node vi by Zi ∈ R

T ×d′

. The input is first transformed into queries Qi = ŜiWq,

keys Ki = ŜiWk and values Vi = ŜiWv by projection matrices Wq ∈ R
d×d′

,

Wk ∈ R
d×d′

, and Wv ∈ R
d×d′

. Then, the temporal-level attention model is
defined as:

Ẑi = softmax(
QiK

T
i√

d2

+ M).Vi (12)

where M ∈ R
T ×T is a mask matrix so that the output only attends to historical

representations up to the tth graph snapshot.

M =

{

0 if i ≤ j

−∞ otherwise
(13)

Given the multi-head attention, the final representation Zi of node vi with
k′ heads is computed as:

Zi =∥k′

j=1 Ẑj
i (14)

Springer Nature 2021 LATEX template

14 DyHNet: Learning Dynamic Heterogeneous Network Representations

4.3 Optimization

For training the overall model, we formulate the training procedure as super-
vised learning. The details on how we obtain the labels for training is described
in Sections 5.4 and 5.5. To optimize our model parameters, we leverage two
loss functions, namely Binary Cross Entropy (LBCE) and Kullback-Leibler
divergence (LKL). The loss L in our work is computed as follows:

L = LBCE + LKL (15)

The cross entropy loss for supervised learning is:

LBCE = −
N
∑

i=1

L
∑

j=1

yij log(σ(q′
ij)) + (1− yij)log(1− σ(q′

ij)) (16)

where L is the number of labels, σ is the sigmoid function and q′ ∈ R
N×L is

the distribution of the linear transformation of Z.
The distribution between the true label and the predicted probabilities to

estimated by the KL divergence:

LKL(p ∥ q) =
∑

i

p(i)log
p(i)

q(i)
(17)

where p is the probability distribution of the target label and q = softmax(Z)
is the distribution of output. BCE loss is used to explicitly capture whether
the model is able to correctly predict positive labels, while the goodness of the
model can be reflected implicitly by measuring the correlation of the cross-
label distribution with KL divergence. Therefore, by jointly learning two loss
functions, the model is trained to ensure the similar embedding features among
the nodes sharing the same characteristics.

4.4 DyHNet Algorithm

In this section, we will outline the training process of DyHNet and discuss its
computational complexity.
The Algorithm. The pseudocode for DyHNet is shown in Algorithm 1. Before
the training stage, the metapath-aware subgraph encoder (SGE) performs the
first phase for anchor node (Line 3) and anchor subgraph (Line 4) sampling,
respectively. At the beginning of the training stage, the local graph encoder
(LGE) computes the local semantic node embeddings at each timestamp in
Line 9. After this, the metapath-aware subgraph encoder (SGE) continues
performing the next two phases, anchor subgraph encoder (Line 11) and sub-
graph encoder (Line 13-14) to compute the representations for the structure
subgraphs. Once the representaions are obtained, the global semantic node
embeddings is calculated in Line 15 by the structural encoder (SE). The final
embeddings containing both local and global semantics are computed in Line

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 15

Algorithm 1: The DyHNet algorithm.

Input:
• A dynamic heterogeneous graph G represented by a sequence of graph snap-

shots G =
{

G1,G2, . . . ,GT
}

.
• Parameters: Random walk length p, Number of anchor subgraphs k, Number

of sampled structure subgraphs m, Number of attention heads k′.

Output: Node embeddings Z =
{

z1, z2, . . . , zT
}

1 begin
2 for each timestamp t from 1 to T do
3 AN t ← Sample a set of k seed nodes in Gt;

4 ASt ← Construct a set of k anchor subgraphs in Gt following
random walker strategy in Equation 3;

5 end
6 for each iteration do
7 for each timestamp t from 1 to T do

/* capture local semantics */

8 foreach node vi in Gt do
9 lt

i ← Obtain the local semantic node embeddings by Eq.
1 and 2;

10 end
/* capture global semantics */

11 ¶at
1, at

2, . . . , at
k♢ ← Generate embedding for each anchor

subgraph in ASt by Equation 4;
12 foreach node vi in Gt do

13 ¶G′t
j♢m

j=1 ← Randomly sample m struture subgraphs of

Gt which vi belongs to;
14 ¶gt

j♢m
j=1 ← Compute structure subgraph representations

by Eq. 5 and 6;
15 ht

i ← Obtain the global semantic node embedding by
Eq. 7 and 8;

16 end
/* integrate local and global semantics */

17 St ← Obtain the fused semantic node embeddings by Eq. 9;

18 end
/* capture graph dynamics */

19 Z ← Obtain the node embeddings by Equation 14;
20 Optimize the loss function L in Equation 15;

21 end

22 end

17. After the node embeddings in all consecutive snapshots are obtained, we
leverage a temporal multiple head self-attention mechanism to compute the
final node embeddings (Line 19). The training stage will optimize the loss

Springer Nature 2021 LATEX template

16 DyHNet: Learning Dynamic Heterogeneous Network Representations

function in Line 20 until the maximum number of iterations is reached or the
early stopping criteria is satisfied.
Complexity Analysis. The complexity of DyHNet can be computed based
on its three main components .

Complexity of LGE. This component adopts a GNN which is based on
message passing mechanisms to extract the local node representations. There-
fore, the computational complexity of one layer of this encoder is O(Ndeg),
where N is the total number of nodes and deg is the average degree of the
node in the input graph.

Complexity of GGE. This is a composite mapping of two separate
encoders, the subgraph encoder (SGE) and the structural encoder (SE). At
each snapshot, the computation for each node embedding is the summarization
of the representations of the sampled subgraphs performed by SE . Further,
SGE obtains the representation of each structure subgraph by summarizing
the similarity between the structure of it and all the anchor subgraphs.

The SGE involves three phases, however, the first phase which is for the
anchor subgraph selection can be computed before the training step. There-
fore, the computation of this component during training is mainly because of
the last two phases, namely the anchor subgraph encoder and the subgraph
encoder. The anchor subgraph encoder is constructed based on an LSTM,
hence, its complexity is O(Np) where p is the length of the metapath ran-
dom walks [51]. The subgraph encoder requires the similarity computation
between the structural information of the subgraph and the anchor subgraphs
(Equation 5). The complexity of this computation is proportional to the num-
ber of the structure subgraphs ♣¶G′♢♣ and the sampled anchor subgraphs k,
which is O(♣¶G′♢♣k). Further, to compute structural similarity, we adopt the
DTW function as mentioned in Equation 5, whose complexity is proportional
to the size of the two structure and anchor subgraphs. The anchor subgraphs
are generated via fixed-length random walks as explained in Equation 3. The
size of the subgraphs as well as the anchor subgraphs are relatively small com-
pared to the total number of node in the graph, so they are constants. Besides,
the similarity computation can be computed before the training phase and the
operator can be parallelized. In summary, the total complexity of the SGE is
O(Np+♣¶G′♢♣k) in the worst case when we have to compute the representations
for all the structure subgraphs.

The SE , for each node in the graph, computes the node embeddings based
on the weighted average of the embeddings of the respective structure sub-
graphs. We employ an additive attention mechanism to calculate the attention
weights. The computation for each node representation only requires the
element-wise product between a global query representation and the represen-
tation of the sampled structure subgraphs it belongs to. It then uses a linear
transformation to scale the attention scores. In this way, the computational
complexity of this component is linear to the total number of nodes and the
maximum number of structure subgraphs m in Equation 8 used to summarize
the global information for the node representation, which is O(Nm). We note

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 17

that the computation of the representation for all nodes in the network can
be parallelized.

Complexity of T E. This encoder is built upon the masked multi-head
self-attention operation over the historical graph snapshots which is paralleliz-
able by different timestamps [52]. From Equation 12, the representation for
each head is computed by the dot-product between the input representation
pairs at each point of time up to the current timestamp; hence, the complexity
is quadratic to the number of timestamps T in the graph which is constant and
can be safely ignored in the complexity analysis. In summary, the complex-
ity of the temporal self-attention mechanism can be expressed as O(Nk′T 2)
where k′ is the number of attention heads.

We also explore the affects of the values k, m and k′ on the performance
of our model in Section 5.7 and the results show that it is not necessary
to set those hyper-parameters to a high value for a reasonable performance.
Therefore, those can be considered as constants independent of N .

Summary. We conclude that the computation of DyHNet is linear to the
number of nodes in the graph.

5 Experiments

In this section, we present our experiments in terms of dataset, setup and
performance compared to the state-of-the-art to demonstrate the efficacy
of DyHNet for dynamic heterogeneous network representation learning. More
specifically, the experiments aim to address the following research questions:

• RQ1: How does DyHNet perform in the link prediction task to predict the
future evolution of a heterogenous information network?

• RQ2: How does DyHNet perform in the node classification task to evaluate
if DyHNet is able to generate proper dynamic node embeddings?

• RQ3: What is the impact of the major components of DyHNet, i.e., LGE
(capturing Local Semantics), GGE (capturing Global Semantics) and T E
(capturing Graph Dynamics) on its overall performance?

• RQ4: Is the performance of DyHNet sensitive to hyper-parameter setting?

5.1 Datasets

To evaluate the performance of DyHNet, we consider two tasks: (1) node clas-
sification; and, (2) link prediction. In each task, we adopt two widely used
dynamic heterogeneous network datasets from various domains.

For the node classification task, we require datasets that include node
labels. The two datasets that are widely used in the node classification task
[53] and consist of appropriate node labels include Yelp and DBLP datasets:
(1) Yelp is a social media dataset provided by Yelp Challenge 2022. Similar
to [54], we extract information related to restaurants of three sub-categories:
American (New) Food, Fast Food and Sushi Bars. After extracting, the dataset
contains 2, 693 business of 968 American Food, 714 Fast Food and 1, 011 Sushi

Springer Nature 2021 LATEX template

18 DyHNet: Learning Dynamic Heterogeneous Network Representations

Table 2 Statistics of datasets used in our experiments. Meta-paths are defined based on
node types in the second column.

Dataset # nodes # edges Time span # labels meta-paths

IMDB

movie: 4,178
director: 2,079
actor: 5,253
genre: 3

movie-director: 4,178
movie-actor: 12,530
movie-genre: 4,178

1916 - 2016 3

movie-director-movie, movie-actor-movie
director-movie-actor-movie-director
actor-movie-director-movie-actor
actor-movie-genre-movie-actor
director-movie-actor-movie-director
director-movie-genre-movie-director

AMiner

author: 1,840
paper: 10,674
term: 2000
venue: 21

paper-author: 26,405
paper-term: 70,809
paper-venue: 10,674

1972 - 2016 5

author-paper-author
paper-term-paper
author-paper-term-paper-author
author-paper-venue-paper-author

Yelp

business: 2,693
user: 2,011
review: 30,593
location: 15
star: 5

business-review: 30,593
business-location: 14,196
review-user: 30,593
review-star: 30,593

2015 - 2021 3

business-location-business
user-review-star-review-user
user-review-business-review-user
business-review-user-review-business
business-review-star-review-business

DBLP

author: 14,475
paper: 14,376
term: 8,920
venue: 20

paper-author: 41,794
paper-term: 114,624
paper-venue: 14,376

1969 - 2020 4

author-paper-author
paper-term-paper
author-paper-term-paper-author
author-paper-venue-paper-author

Bars, 2, 011 users, 30, 0593 reviews, 15 locations and 5 stars. The time span is
from 2015 to 2021. (2) DBLP We use the dataset published by [55, 56] that
contains 14, 475 authors, 14, 476 papers, 8, 920 terms and 20 venues. There
are 4, 057 authors labelled with their main research area and they are catego-
rized into four areas: Database (1, 197 authors), Data Mining (745 authors),
Machine Learning (1, 109 authors) and Information Retrieval (1, 006 authors).
To obtain the temporal information, we crawl the published year of the paper
in DBLP and Google Scholar websites. The time span is from 1969 to 2020.

For the link prediction task and in order to show that the performance of
our proposed approach is consistent across a range of datasets, we adopt two
additional datasets that are often used for the link prediction task [18, 57],
namely the IMDB and AMiner datasets as follows: (1) IMDB is an online
database about movies and television programs, including information such
as cast, production crew, and plot summaries. We use a subset of IMDB
containing 4, 178 movies, 2, 081 directors, and 5, 257 actors. Movies are labelled
as one of three classes (Action (1, 094), Comedy (1, 562), and Drama (1, 522))
based on their genre information. In this dataset, each structure subgraph is
formed by a single movie node and its connected nodes (i.e., directors, actors
and genres). (2) AMiner is a bibliographic dataset in Computer Science.
We only keep the historical records of the authors who have papers published
in the top-5 most popular database venues: KDD, VLDB, CIKM, ICDE and
SIGMOD. This subset contains 10, 674 papers, 1, 840 authors, 2, 000 terms,
and 21 venues. The number of papers published in KDD, VLDB, CIKM, ICDE
and SIGMOD is 1, 269, 1, 212, 970, 949 and 943 respectively. The time span is
from 1972 to 2016. The structure subgraphs in this dataset are formed similar
to the DBLP dataset.

We note that while IMDB and AMiner datasets cannot be used for the
node classification task as they do not have node labels; however, both Yelp
and DBLP dataset can be used for link prediction. However, due to space
limitation, we report the results for link prediction on Yelp and DBLP on our

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 19

online Github repository. The statistics of the real-world datasets used in our
experiments are summarized in Table 2.

5.2 Baselines

We compare our proposed method with state-of-the-art dynamic homogeneous
network representation and dynamic heterogeneous network representation
learning methods.

The selected dynamic homogeneous network representation learning meth-
ods include: (1) Dyngraph2vec (with two variants: DynAE, DynAERNN) [23].
DynAE utilizes the fully connected layers and DynAERNN uses the recur-
rent layers (LSTM [51]) to reconstruct the current adjacent matrices from
historical adjacent matrices through an encoder-decoder architecture. (2)
DynGEM [40]. This method is the extension of SDNE [29] for dynamic graphs.
The model leverages deep auto-encoders for incrementally learning dynamic
network embeddings. (3) DySAT [21]. The method uses the scaled dot-product
form of an attention layer to capture the dynamics of the sequences of net-
works. (4) VGRNN [58]. This approach integrates a variational auto-encoder at
each timestamp which is later fed into the recurrent layer to take into account
the structural evolution of the dynamic network. (5) EvolveGCN [22]. This
technique is a dynamic variant of the GCN method, which is composed of
RNN layers to model the evolution of GCN parameters at each timestamp. (6)
CTGCN-C [59]. This method first employs GCN in k-cores to extract the node
embedding at each timestamp, then utilizes an RNN to model the temporal
dependency of node representations between different timestamps.

The set of baselines for dynamic heterogeneous network representation
learning includes: (7) DHNE [25]. This method performs metapath-based ran-
dom walk between historical snapshots and the current snapshot and benefits
from a dynamic heterogeneous skip-gram model to capture representations of
nodes. (8) DyHATR [24]. The technique uses hierarchical attention to learn het-
erogeneous information and incorporates RNNs with temporal attention to
capture evolutionary patterns between different snapshots.

5.3 Experimental Setup

For each baseline, we adopt the implementation provided by the CTGCN library
[59], and retain the default hyper-parameters as well as the model archi-
tecture in this implementation, which is equivalent to the recommended
hyper-parameters by the authors of each method. More specifically, we set the
learning rate to 10−3, the walk length to 20, the number of negative samples
to 20. We train GNNs for 100 epochs and apply early stopping with a patience
of 30.

In our proposed method (DyHNet), we set the length of random walk to
15, number of layers of Subgraph Encoder to 2, the hidden dimension of local
graph encoder LGE to 128, the hidden dimension of global graph encoder GGE
to 128, and the number of attention heads in temporal encoder T E is set to

Springer Nature 2021 LATEX template

20 DyHNet: Learning Dynamic Heterogeneous Network Representations

4. The learning rate is tuned by grid search within the range [10−3, 10−2]. We
will also report hyper-parameter sensitivity analysis for our proposed approach
later in the experiments. For fair comparison, the dimensions of the final rep-
resentation is set to 128 for all methods. For optimization, we use the Adam
optimizer [60]. The training, validation and test sets are the same for all
methods.

5.4 RQ1. The Link Prediction Task

Given a series of graphs, the link prediction task aims at using the represen-
tation in the current time step t to predict the existence of an edge in the
next time step (t + 1). We conduct experiments on the IMDB and AMiner
datasets to compare the performance of different methods on the link predic-
tion task, which predicts director-genre and actor-genre links in the IMDB
dataset and author-venue link in the AMiner dataset. It is worth noting that
each author (or director/actor) can connect to one or many venue (or genre)
nodes. Further, we assume that the latent space can be inferred from the label
representations. Therefore, in both datasets, the labels for each node are the
labels of all structure subgraphs it belongs to. In the IMDB dataset, each
movie is considered to construct a structure subgraph, and the label of each
subgraph is the genre of the movie. In the AMiner dataset, each paper and
its connected nodes form a structure subgraph and each subgraph is labelled
by the venue that it appears in. As a result, the training procedure for link
prediction task is considered as a multi-label classification problem.

Once we generate the representation for all the nodes, we use the Hadamard
operator on the representation of the node pairs to compute edge feature
vectors. We train a Logistic Regression (LR) classifier to distinguish between
positive and negative edges. We use all nodes in the last snapshot for testing,
the remaining is split into 80%/20% for training and validation. We employ
three popular metrics, Micro F1 (F1), Micro Recall and Micro Precision as
the evaluation metrics for this task as recommended in [61, 62].

The results of our experiments on the IMDB and AMiner datasets are
reported in Tables 3 and 4, respectively, for top-k predicted neighbor nodes.
We report the top-k when k = 1, 2. We make several observations based on
the results: (a) our proposed DyHNet method has been able to consistently
show better performance compared to all baselines and on both datasets (for
K = 1 and 2). The performance improvements are 13% and 15% on F1-score
for the IMDB and AMiner datasets, respectively, over the best performing
baseline method. (b) Our proposed approach shows stable performance over
two different datasets; however, the baseline methods are not comparatively as
robust. For instance, on the IMDB dataset, CTGCN-C is the runner-up baseline
at both k = 1 and k = 2, while this method is not among the top-3 best
baselines on the AMiner dataset. In contrast, DyHATR is the runner-up for k = 1
on the AMiner dataset but not competitive on the IMDB dataset. Based on
the results, we found that compared to the state-of-the-art baselines on both
datasets, our proposed method (i.e., DyHNet) is the most robust method. (c)

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 21

Table 3 Results on the IMDB dataset for link prediction task. Bold is best performance
and underline is runner-up.

@k=1 @k=2

Method F1 Recall Precision F1 Recall Precision

DynAE 0.3705 0.3344 0.4154 0.5141 0.6709 0.4167
DynAERNN 0.3647 0.3291 0.4089 0.5100 0.6656 0.4134
DynGEM 0.4367 0.3941 0.4896 0.5494 0.7170 0.4453
DySAT 0.3717 0.3354 0.4167 0.5052 0.6593 0.4095
VGRNN 0.3949 0.3564 0.4427 0.5084 0.6635 0.4121
EvolveGCN 0.3717 0.3354 0.4167 0.5133 0.6698 0.4160
CTGCN-C 0.4448 0.4015 0.4987 0.5590 0.7296 0.4531
DHNE 0.3577 0.3229 0.4010 0.5116 0.6677 0.4147
DyHATR 0.3438 0.3103 0.3854 0.4956 0.6468 0.4017
DyHNet 0.5029 0.4539 0.5638 0.5831 0.7610 0.4727
∆% over best +13.06% +13.05% +13.05% +4.31% +4.30% +4.33%

Table 4 Results on the AMiner dataset for link prediction task. Bold is best performance
and underline is runner-up.

@k=1 @k=2

Method F1 Recall Precision F1 Recall Precision

DynAE 0.1848 0.1568 0.2250 0.2708 0.3241 0.2325
DynAERNN 0.1972 0.1673 0.2401 0.2708 0.3241 0.2325
DynGEM 0.2609 0.2213 0.3176 0.3786 0.4532 0.3251
DySAT 0.2624 0.2227 0.3195 0.3368 0.4032 0.2892
VGRNN 0.2686 0.2279 0.3270 0.3060 0.3663 0.2628
EvolveGCN 0.2034 0.1726 0.2476 0.2829 0.3386 0.2429
CTGCN-C 0.2360 0.2003 0.2873 0.3247 0.3887 0.2788
DHNE 0.2407 0.2042 0.2930 0.3434 0.4111 0.2949
DyHATR 0.2866 0.2431 0.3491 0.3788 0.4531 0.3254
DyHNet 0.3307 0.2806 0.4026 0.4260 0.5099 0.3658
∆% over best +15.39% +15.43% +15.33% +12.46% +12.51% +12.41%

The baselines that are specifically designed to address dynamic heterogeneous
networks (gray rows) do not have competitive performance not only to DyHNet

but also when compared to baselines that do not take node heterogeneity into
account on the IMDB dataset. On the AMiner dataset, DyHATR is the runner-
up method but its performance is essentially the same as DynGEM (which is a
method for homogeneous networks) at k = 2. This is an important observation
as it shows that considering node heterogeneity does not necessarily lead to
improved downstream performance since interactions between heterogeneous
node types need to be carefully taken into account, which may otherwise lead
to incorrect or missing associations between node types, which can impact
performance. For instance, DyHATR, unlike DyHNet, reduces the heterogeneous
graph into homogeneous subgraphs. The lower performance of DyHATR could
be attributed to such a reduction that can lead to missing associations between
different heterogeneous node types, which is clearly addressed in our DyHNet

method.

5.5 RQ2. The Node Classification Task

The node classification task aims to predict the label corresponding to each
node. We conduct experiments on the Yelp and DBLP datasets to compare
the performance of different models on the node classification task. Since there

S
p
rin

ger
N

atu
re

2021
L AT

E
X

tem
p
late

22
D

yH
N

et:
L

ea
rn

in
g

D
yn

a
m

ic
H

eterogen
eo

u
s

N
etw

o
rk

R
ep

resen
ta

tio
n

s

Table 5 Results on the Yelp and DBLP datasets for node classification. Bold is best performance and underline is runner-up.

Datasets Metrics Train % DynAE DynAERNN DynGEM DySAT EvolveGCN CTGCN-C DHNE DyHATR DyHNet
∆% over
the best

Yelp

AUC

20% 0.5319 0.5040 0.5756 0.4947 0.6273 0.6368 0.5001 0.6037 0.6965 +9.38%
40% 0.5498 0.5109 0.6040 0.5076 0.6245 0.6690 0.4986 0.6201 0.7021 +4.94%
60% 0.5503 0.5089 0.6043 0.5043 0.6304 0.6697 0.4890 0.6142 0.6963 +3.97%
80% 0.5643 0.5205 0.6097 0.4970 0.6311 0.6673 0.4898 0.6225 0.7147 +7.11%

Macro F1

20% 0.1741 0.2845 0.3455 0.2589 0.1741 0.4414 0.1759 0.3983 0.4871 +10.37%
40% 0.1791 0.2215 0.4088 0.2672 0.1791 0.4854 0.1791 0.4056 0.5035 +3.74%
60% 0.1771 0.1771 0.3996 0.2783 0.1771 0.4671 0.1771 0.4043 0.4917 +5.25%
80% 0.1817 0.2878 0.4054 0.2657 0.1738 0.4579 0.1817 0.4194 0.5123 +11.87%

Micro F1

20% 0.3534 0.3687 0.3956 0.3442 0.3534 0.4351 0.3544 0.4082 0.4882 +12.21%
40% 0.3673 0.3704 0.4224 0.3587 0.3673 0.4774 0.3673 0.4088 0.5090 +6.61%
60% 0.3618 0.3618 0.4128 0.3673 0.3618 0.4592 0.3618 0.4091 0.4944 +7.68%
80% 0.3748 0.3748 0.4119 0.3636 0.3525 0.4527 0.3748 0.4193 0.5121 +13.11%

DBLP

AUC

20% 0.5828 0.5880 0.6263 0.5030 0.5056 0.7152 0.4895 0.6301 0.7304 +2.14%
40% 0.5860 0.5919 0.6347 0.5078 0.5002 0.7387 0.4924 0.6393 0.7565 +2.42%
60% 0.5875 0.5942 0.6375 0.5130 0.5193 0.7481 0.5072 0.6410 0.7797 +4.22%
80% 0.5799 0.5906 0.6294 0.4996 0.5044 0.7529 0.5067 0.6366 0.8098 +7.55%

Macro F1

20% 0.2348 0.2348 0.2966 0.1849 0.1362 0.4341 0.1023 0.2736 0.4488 +3.39%
40% 0.2547 0.2661 0.3482 0.1925 0.1357 0.4693 0.1009 0.2913 0.5107 +8.82%
60% 0.2499 0.2499 0.3400 0.1874 0.1348 0.4780 0.1704 0.2734 0.5362 +12.16%
80% 0.2322 0.2322 0.3214 0.1793 0.1427 0.4895 0.1252 0.2528 0.5785 +18.16%

Micro F1

20% 0.3012 0.3012 0.3218 0.2907 0.2849 0.4469 0.2571 0.3348 0.4632 +3.65%
40% 0.3194 0.3175 0.3614 0.2965 0.2895 0.4842 0.2527 0.3561 0.5212 +7.63%
60% 0.3165 0.3165 0.3510 0.2931 0.2888 0.4951 0.2802 0.3393 0.5468 +10.45%
80% 0.2945 0.2945 0.3321 0.2878 0.3149 0.5031 0.2270 0.3161 0.5916 +17.60%

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 23

is exactly one class corresponding to each labelled node, the learning objective
is a single-label classification problem. Similar to the settings for the DBLP
dataset in Section 5.4, the structure subgraphs in the DBLP dataset are also
divided by the published academic papers. Meanwhile, in Yelp, we construct
each review and its connected nodes (i.e., business, location, user and rating
star) as a structure subgraph.

We feed the embedding vectors of labelled nodes (i.e., businesses in Yelp
and authors in DBLP) generated by each learning model to a linear regres-
sion classifier with varying training (training/validation) proportions (i.e.,
20% (10%/10%), 40% (30%/10%), 60% (50%/10%) and 80% (70%/10%)), the
remaining is used for testing. Again, the train/validation/test splits are also
the same across embedding methods. We use Area Under The Curve (AUC),
Macro F1 and Micro F1 as the evaluation metrics. Because of the memory
size limitations that we faced with the VGRNN model, we were not able to report
the results of this method for the node classification task.

The results of our experiments on Yelp and DBLP datasets are reported in
Table 5, based on which we make the following observations: (a) our proposed
method (i.e., DyHNet) consistently outperforms all the baselines. For the train-
test split of 80%-20%, the Micro F1 scores archived by our model increase by
13% and 17% compared to the runner-up model (i.e., CTGCN-C) on the Yelp
and DBLP datasets respectively. (b) Our model is more robust in the presence
of class imbalance. The significant performance gap between Macro F1 and
Micro F1 of some models (e.g., EvolveGCN and DHNE on the Yelp dataset) shows
that such methods tend to favor the majority class when dealing with imbal-
anced dataset, which is an undesirable outcome. (c) The performance between
CTGCN-C and DyHATR, which are the best baseline among the homogeneous and
heterogeneous network representation learning methods respectively, are com-
parable. From this observation, we hypothesize that in the node classification
task, the network structure seems to be more important than the historical
information. DyHATR is more capable to preserve the local connective prox-
imity than the global structural information. The reason is it makes use of
the attention mechanism to aggregate information only from the neighboring
nodes and overlooks the subgraph structure. Meanwhile, CTGCN-C decomposes
the graph into subgraphs in order to retain the global structure. Our pro-
posed approach is able to achieve better performance which demonstrates the
effectiveness of DyHNet in preserving graph structural information.

5.6 RQ3. Ablation Study

In this section, we analyze the impact of the three main components of
our proposed method (DyHNet), namely the local graph encoder (LGE), the
global graph encoder (GGE) and the temporal encoder (T E). To do so, we
compare DyHNet to its six variants: (1) DyHNet-NoL (which removes LGE),
(2) DyHNet-NoG (which removes GGE), (3) DyHNet-NoT (which removes T E),
(4) DyHNet-NoLG (which removes LGE and GGE), (5) DyHNet-NoGT (which
removes GGE and T E) and (6) DyHNet-NoLT (which removes LGE and T E).

Springer Nature 2021 LATEX template

24 DyHNet: Learning Dynamic Heterogeneous Network Representations

Table 6 Ablation on the IMDB dataset for link prediction.

@k=1 @k=2

Method F1 Recall Precision F1 Recall Precision

DyHNet 0.5029 0.4539 0.5638 0.5831 0.7610 0.4727
DyHNet-NoL 0.4878 0.4403 0.5469 0.5783 0.7547 0.4688
DyHNet-NoG 0.3728 0.3365 0.4180 0.5213 0.6803 0.4225
DyHNet-NoT 0.4321 0.3899 0.4844 0.5574 0.7275 0.4518
DyHNet-NoLG 0.3659 0.3302 0.4102 0.5165 0.6740 0.4186
DyHNet-NoGT 0.3705 0.3344 0.4154 0.5084 0.6635 0.4121
DyHNet-NoLT 0.4379 0.3952 0.4909 0.5614 0.7327 0.4551

The performances of all models over the four datasets are shown in Tables 6
and 7. For the IMDB and AMiner datasets, the metric is computed by taking
the average of Micro F1 score at k = 1 and k = 2. For the other datasets,
the metric is computed on the dataset in which the training/testing ratio is
80%/20%.

Tables 6 and 7 report the performance of the proposed method and its
variants when removing different components for the link prediction task. As
seen in Tables 6 and 7, the proposed DyHNet method, in the presence of the
local, global, and temporal encoders performs the best. Results achieved for
the IMDB dataset, presented in Table 6, suggest that among the different
components, the local graph encoder (LGE) has the least impact as the per-
formance drops slightly when this encoder is removed from the model. On
the other hand, the global graph encoder (GGE) has a significantly stronger
impact on the performance. On all datasets, the performance dropped dramat-
ically when the global graph encoder (GGE) is removed from the model. This
trend can also be observed when the other encoders are removed at the same
time as the Global Encoder. For instance, comparing the DyHNet-NoL varia-
tion where only the Local Encoder is removed with (DyHNet-NoLG) where the
Global Encoder is also removed, one can observe a significant drop in perfor-
mance showing the strong impact of the global encoder. We also observe that
the temporal encoder also has a noticeable impact on the overall performance
of DyHNet and the degree o f this impact is significantly larger than that of
the Local Encoder.

In the context of the AMiner dataset, we make similar observations to
that of the IMDB dataset where the global graph encoder (GGE) still has the
highest impact, but it appears that the local graph encoder (LGE) component
contributes more noticeably to the link prediction task on the AMiner dataset
in comparison to the IMDB dataset. This can be explained as other researchers
have already reported the performance of graph encoders can vary depending
on the characteristics of each dataset [22, 44]. Table 8 reports the performance
of different variants of our method for node classification. Similar to Tables
6 and 7, the global graph encoder (GGE) has the most impact on the overall
performance. Following the Global Encoder as the most effective component
on both Yelp and DBLP datasets, temporal encoder (T E) is the second most
effective component that can drastically change performance when removed.
We note that the least effective component is the local graph encoder (LGE) as

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 25

(a) IMDB

(b) AMiner

Fig. 3 Sensitivity for link prediction on IMDB and AMiner.

was also observed in the link prediction task. Again, the variation of DyHNet

that includes all three components yields the best result for node classification.

5.7 RQ4. Sensitivity Analysis

We further investigate the sensitivity of the proposed approach to its hyper-
parameters. The main hyper-parameters of DyHNet are the random walk length
(p), the number of anchor subgraphs (k), the number of sampled subgraphs

Springer Nature 2021 LATEX template

26 DyHNet: Learning Dynamic Heterogeneous Network Representations

(a) Yelp

(b) DBLP

Fig. 4 Sensitivity for node classification on Yelp and DBLP.

(m) in Equation 8, the number of global subgraph encoder layers, the number
of attention heads (k′) in T E and the dimension (d′) of the final representation
Z. For the link prediction task, we tested and reported the result for the
IMDB and AMiner datasets. For node classification, we report the evaluation
metrics with training ratio = 80% on the Yelp and DBLP datasets. Figures 3
and 4 report the impact of hyper-parameters on the link prediction and node
classification tasks respectively.

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 27

Table 7 Ablation on the AMiner dataset for link prediction.

@k=1 @k=2

Method F1 Recall Precision F1 Recall Precision

DyHNet 0.3307 0.2806 0.4026 0.4260 0.5099 0.3658
DyHNet-NoL 0.2298 0.1950 0.2798 0.3654 0.4374 0.3138
DyHNet-NoG 0.1848 0.1568 0.2250 0.3654 0.4374 0.3138
DyHNet-NoT 0.3106 0.2635 0.3781 0.3786 0.4532 0.3251
DyHNet-NoLG 0.2360 0.2003 0.2873 0.3346 0.4005 0.2873
DyHNet-NoGT 0.1957 0.1660 0.2382 0.3731 0.4466 0.3204
DyHNet-NoLT 0.2158 0.1831 0.2628 0.3632 0.4348 0.3119

Table 8 Ablation on Yelp and DBLP for node classification.
Yelp DBLP

method Train % AUC Macro F1 Micro F1 AUC Macro F1 Micro F1

20% 0.6965 0.4871 0.4882 0.7304 0.4488 0.4632
40% 0.7021 0.5035 0.5090 0.7872 0.5498 0.5627
60% 0.6963 0.4917 0.4944 0.7943 0.5601 0.5732

DyHNet

80% 0.7147 0.5123 0.5121 0.8098 0.5785 0.5916

DyHNet-NoL

20% 0.6965 0.4789 0.4817 0.7192 0.4544 0.4632
40% 0.7017 0.4834 0.4898 0.7843 0.5343 0.5461
60% 0.7082 0.4806 0.4879 0.7974 0.5586 0.5670
80% 0.7044 0.5043 0.5083 0.8079 0.5746 0.5904

DyHNet-NoG

20% 0.6054 0.1742 0.3536 0.6233 0.2947 0.3184
40% 0.6145 0.1791 0.3673 0.6182 0.2356 0.3063
60% 0.6017 0.1817 0.3748 0.6200 0.2363 0.3075
80% 0.6241 0.4074 0.4082 0.6204 0.2363 0.3075

DyHNet-NoT

20% 0.6203 0.3881 0.4028 0.6582 0.3961 0.4007
40% 0.6253 0.3814 0.4125 0.6841 0.4236 0.4304
60% 0.6227 0.3912 0.4082 0.7073 0.4399 0.4526
80% 0.6052 0.3960 0.4119 0.7345 0.4904 0.4982

DyHNet-NoLG

20% 0.5000 0.1742 0.3536 0.6231 0.3000 0.3144
40% 0.5043 0.1817 0.3748 0.6180 0.2363 0.3075
60% 0.5032 0.1817 0.3748 0.6192 0.2363 0.3075
80% 0.5000 0.1817 0.3748 0.6186 0.2363 0.3075

DyHNet-NoGT

20% 0.5983 0.1742 0.3536 0.6010 0.1152 0.2994
40% 0.5939 0.3826 0.3933 0.5775 0.1714 0.3235
60% 0.5908 0.3979 0.4045 0.6072 0.3132 0.3260
80% 0.5911 0.4055 0.4119 0.6122 0.3250 0.3383

DyHNet-NoLT

20% 0.6143 0.3726 0.4079 0.6635 0.3937 0.3988
40% 0.6075 0.3689 0.3952 0.7089 0.4435 0.4588
60% 0.6063 0.3721 0.3989 0.7145 0.4663 0.4723
80% 0.6073 0.3812 0.4007 0.7346 0.4820 0.4883

As seen in Figure 3, the proposed model shows robustness against
different hyper-parameters of the model. While changing any of the six hyper-
parameters will only slightly change the performance of the overall model and
the model performance remains stable regardless of the changes to the hyper-
parameters indicating its robustness. Similarly and as shown in Figure 4, for
the node classification task, the proposed method still shows robustness in
light of changes to different model hyper-parameters again indicating that the
proposed model is quite stable. We conclude the proposed model is stable to
the choice of hyper-parameters regardless of the downstream task, i.e., node
classification and link prediction.

We do note that the model can be configured to show its best performance
by finding the best hyper-parameters, e.g., based on a held-out validation set.
For example, in Figure 4 (a), for the Yelp dataset, performance peaks when
the dimension of the final representation being is set to 256, or in Figure 4 (b),

Springer Nature 2021 LATEX template

28 DyHNet: Learning Dynamic Heterogeneous Network Representations

for the DBLP dataset, the configuration that uses four attention heads shows
the best performance. However, increased performances are not significant.

6 Concluding Remarks

This objective of our work paper has been on learning neural representations
for dynamic heterogeneous networks. We proposed DyHNet, which system-
atically integrates local node semantics, global network semantics, as well
as longer-range temporal associations between network snapshots. Based on
experiments on two distinct tasks, four different datasets and in comparison
with several strong state-of-the-art baselines, we have shown that our pro-
posed DyHNet method has been able to show consistently better and more
robust performance compared to state-of-the-art methods.

We would like to point to some potential limitations of this work which we
aim to address as future work:

1. Online representation learning for streaming networks. Our model
requires that all the nodes in the network be present during training in
order to learn their embeddings. There is a limited number of existing work
that perform representation learning on network streams [63]. As future
work, we intend to extend DyHNet to provide support for online/continual
learning;

2. Novel subgraph sampling strategy. Our method relies on the seman-
tics of the anchor subgraphs sampled by the metapath-based approach
and the structure subgraphs selected randomly. Prior research recommends
to utilize a range of subgraph sampling strategies to fully extract richer
information [64], which we will further in our future work.

Declarations

• Funding: The research leading to these results received funding from NSERC
• Conflict of interest: The authors have no competing interests to declare that

are relevant to the content of this article.
• Ethics approval: Not applicable
• Consent to participate: Not applicable
• Consent for publication: Not applicable
• Availability of data and materials: The data and other artifacts have been

made available at https://github.com/hoangntc/DyHNet
• Code availability: The source code has been made available at https://

github.com/hoangntc/DyHNet.
• Authors’ contributions: Hoang Nguyen and Radin Hamidi Rad imple-

mented the method and ran experiments. Fattane Zarrinkalam and Ebrahim
Bagheri wrote and revised the manuscript.

https://github.com/hoangntc/DyHNet
https://github.com/hoangntc/DyHNet
https://github.com/hoangntc/DyHNet

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 29

References

[1] Lv, Q., Ding, M., Liu, Q., Chen, Y., Feng, W., He, S., Zhou, C., Jiang,
J., Dong, Y., Tang, J.: Are we really making much progress?: Revisit-
ing, benchmarking and refining heterogeneous graph neural networks. In:
Zhu, F., Ooi, B.C., Miao, C. (eds.) KDD ’21: The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event,
Singapore, August 14-18, 2021, pp. 1150–1160 (2021). https://doi.org/10.
1145/3447548.3467350. https://doi.org/10.1145/3447548.3467350

[2] Doan, K.D., Manchanda, S., Mahapatra, S., Reddy, C.K.: Interpretable
graph similarity computation via differentiable optimal alignment of node
embeddings. In: Diaz, F., Shah, C., Suel, T., Castells, P., Jones, R., Sakai,
T. (eds.) SIGIR ’21: The 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Virtual Event,
Canada, July 11-15, 2021, pp. 665–674 (2021). https://doi.org/10.1145/
3404835.3462960. https://doi.org/10.1145/3404835.3462960

[3] Hamilton, W.L.: Graph representation learning. Synthesis Lectures on
Artifical Intelligence and Machine Learning 14(3), 1–159 (2020)

[4] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social
representations. In: Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W.,
Ghani, R. (eds.) The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA
- August 24 - 27, 2014, pp. 701–710 (2014). https://doi.org/10.1145/
2623330.2623732. https://doi.org/10.1145/2623330.2623732

[5] Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks.
In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D.,
Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pp. 855–864 (2016). https://doi.org/10.
1145/2939672.2939754. https://doi.org/10.1145/2939672.2939754

[6] Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J.: Representation
learning for attributed multiplex heterogeneous network. In: Teredesai,
A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-
8, 2019, pp. 1358–1368 (2019). https://doi.org/10.1145/3292500.3330964.
https://doi.org/10.1145/3292500.3330964

[7] Xu, Y.: An empirical study of locally updated large-scale information
network embedding (LINE). PhD thesis, University of California, Los
Angeles, USA (2017). http://www.escholarship.org/uc/item/2mp915ck

https://doi.org/10.1145/3447548.3467350
https://doi.org/10.1145/3447548.3467350
https://doi.org/10.1145/3404835.3462960
https://doi.org/10.1145/3404835.3462960
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/3292500.3330964
http://www.escholarship.org/uc/item/2mp915ck

Springer Nature 2021 LATEX template

30 DyHNet: Learning Dynamic Heterogeneous Network Representations

[8] Kipf, T.N., Welling, M.: Semi-supervised classification with graph con-
volutional networks. In: 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings (2017). https://openreview.net/forum?id=SJU4ayYgl

[9] Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning
on large graphs. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach,
H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pp. 1024–1034 (2017)

[10] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.:
Graph attention networks. CoRR abs/1710.10903 (2017) 1710.10903

[11] Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggre-
gated graph neural network for heterogeneous graph embedding.
In: Huang, Y., King, I., Liu, T., van Steen, M. (eds.) WWW
’20: The Web Conference 2020, Taipei, Taiwan, April 20-24,
2020, pp. 2331–2341 (2020). https://doi.org/10.1145/3366423.3380297.
https://doi.org/10.1145/3366423.3380297

[12] Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heteroge-
neous graph attention network. In: Liu, L., White, R.W., Mantrach, A.,
Silvestri, F., McAuley, J.J., Baeza-Yates, R., Zia, L. (eds.) The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019, pp. 2022–2032 (2019). https://doi.org/10.1145/3308558.3313562.
https://doi.org/10.1145/3308558.3313562

[13] Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer
networks. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 11960–11970 (2019)

[14] Sun, Q., Li, J., Peng, H., Wu, J., Ning, Y., Yu, P.S., He, L.:
SUGAR: subgraph neural network with reinforcement pooling and
self-supervised mutual information mechanism. In: Leskovec, J., Gro-
belnik, M., Najork, M., Tang, J., Zia, L. (eds.) WWW ’21: The Web
Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23,
2021, pp. 2081–2091 (2021). https://doi.org/10.1145/3442381.3449822.
https://doi.org/10.1145/3442381.3449822

[15] Alsentzer, E., Finlayson, S.G., Li, M.M., Zitnik, M.: Subgraph neural net-
works. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.
(eds.) Advances in Neural Information Processing Systems 33: Annual

https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/3366423.3380297
https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1145/3442381.3449822

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 31

Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, Virtual (2020)

[16] Kazemi, S.M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P.,
Poupart, P.: Representation learning for dynamic graphs: A survey. J.
Mach. Learn. Res. 21(70), 1–73 (2020)

[17] Kong, C., Li, H., Zhang, L., Zhu, H., Liu, T.: Link prediction on dynamic
heterogeneous information networks. In: International Conference on
Computational Data and Social Networks, pp. 339–350 (2019). Springer

[18] Milani Fard, A., Bagheri, E., Wang, K.: Relationship prediction in
dynamic heterogeneous information networks. In: European Conference
on Information Retrieval, pp. 19–34 (2019). Springer

[19] Jiang, Z., Gao, Z., Lan, J., Yang, H., Lu, Y., Liu, X.: Task-
oriented genetic activation for large-scale complex heterogeneous graph
embedding. In: Huang, Y., King, I., Liu, T., van Steen, M. (eds.)
WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24,
2020, pp. 1581–1591 (2020). https://doi.org/10.1145/3366423.3380230.
https://doi.org/10.1145/3366423.3380230

[20] Qu, L., Zhu, H., Duan, Q., Shi, Y.: Continuous-time link prediction via
temporal dependent graph neural network. In: Huang, Y., King, I., Liu,
T., van Steen, M. (eds.) WWW ’20: The Web Conference 2020, Taipei,
Taiwan, April 20-24, 2020, pp. 3026–3032 (2020). https://doi.org/10.
1145/3366423.3380073. https://doi.org/10.1145/3366423.3380073

[21] Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: Dysat: Deep
neural representation learning on dynamic graphs via self-attention
networks. In: Caverlee, J., Hu, X.B., Lalmas, M., Wang, W.
(eds.) WSDM ’20: The Thirteenth ACM International Conference
on Web Search and Data Mining, Houston, TX, USA, February 3-
7, 2020, pp. 519–527 (2020). https://doi.org/10.1145/3336191.3371845.
https://doi.org/10.1145/3336191.3371845

[22] Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi,
H., Kaler, T., Schardl, T.B., Leiserson, C.E.: Evolvegcn: Evolving graph
convolutional networks for dynamic graphs. In: The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 5363–
5370 (2020). https://aaai.org/ojs/index.php/AAAI/article/view/5984

[23] Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowl. Based

https://doi.org/10.1145/3366423.3380230
https://doi.org/10.1145/3366423.3380073
https://doi.org/10.1145/3366423.3380073
https://doi.org/10.1145/3336191.3371845

Springer Nature 2021 LATEX template

32 DyHNet: Learning Dynamic Heterogeneous Network Representations

Syst. 187 (2020). https://doi.org/10.1016/j.knosys.2019.06.024

[24] Xue, H., Yang, L., Jiang, W., Wei, Y., Hu, Y., Lin, Y.: Modeling dynamic
heterogeneous network for link prediction using hierarchical attention
with temporal RNN. In: Hutter, F., Kersting, K., Lijffijt, J., Valera,
I. (eds.) Machine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2020, Ghent, Belgium, September
14-18, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol.
12457, pp. 282–298 (2020). https://doi.org/10.1007/978-3-030-67658-2
17. https://doi.org/10.1007/978-3-030-67658-2 17

[25] Yin, Y., Ji, L., Zhang, J., Pei, Y.: DHNE: network representation learning
method for dynamic heterogeneous networks. IEEE Access 7, 134782–
134792 (2019). https://doi.org/10.1109/ACCESS.2019.2942221

[26] Bian, R., Koh, Y.S., Dobbie, G., Divoli, A.: Network embedding and
change modeling in dynamic heterogeneous networks. In: Piwowarski, B.,
Chevalier, M., Gaussier, É., Maarek, Y., Nie, J., Scholer, F. (eds.) Pro-
ceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2019, Paris, France,
July 21-25, 2019, pp. 861–864 (2019). https://doi.org/10.1145/3331184.
3331273. https://doi.org/10.1145/3331184.3331273

[27] Wu, J., He, J., Xu, J.: Demo-net: Degree-specific graph neural net-
works for node and graph classification. In: Teredesai, A., Kumar,
V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, pp. 406–415 (2019). https://doi.org/10.1145/3292500.3330950.
https://doi.org/10.1145/3292500.3330950

[28] Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., Yang, Q., Khar-
lamov, E., Tang, J.: Graph random neural networks for semi-supervised
learning on graphs. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., Lin, H. (eds.) Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, Virtual (2020)

[29] Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In:
Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D.,
Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pp. 1225–1234 (2016). https://doi.org/10.
1145/2939672.2939753. https://doi.org/10.1145/2939672.2939753

[30] Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate:

https://doi.org/10.1016/j.knosys.2019.06.024
https://doi.org/10.1007/978-3-030-67658-2_17
https://doi.org/10.1007/978-3-030-67658-2_17
https://doi.org/10.1109/ACCESS.2019.2942221
https://doi.org/10.1145/3331184.3331273
https://doi.org/10.1145/3331184.3331273
https://doi.org/10.1145/3292500.3330950
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 33

Graph neural networks meet personalized pagerank. In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019 (2019). https://openreview.net/forum?id=H1gL-
2A9Ym

[31] Shi, C., Wang, X., Yu, P.S.: Heterogeneous Graph Representation
Learning and Applications. Artificial Intelligence: Foundations, The-
ory, and Algorithms, (2022). https://doi.org/10.1007/978-981-16-6166-2.
https://doi.org/10.1007/978-981-16-6166-2

[32] Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W.: Structural deep embedding
for hyper-networks. CoRR abs/1711.10146 (2017) 1711.10146

[33] Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable rep-
resentation learning for heterogeneous networks. In: Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Halifax, NS, Canada, August 13 - 17,
2017, pp. 135–144 (2017). https://doi.org/10.1145/3097983.3098036.
https://doi.org/10.1145/3097983.3098036

[34] Zhang, D., Yin, J., Zhu, X., Zhang, C.: Metagraph2vec: Complex
semantic path augmented heterogeneous network embedding. CoRR
abs/1803.02533 (2018) 1803.02533

[35] Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heteroge-
neous graph neural network. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp.
793–803 (2019)

[36] Fang, Y., Zhao, X., Huang, P., Xiao, W., de Rijke, M.: M-HIN: complex
embeddings for heterogeneous information networks via metagraphs. In:
Piwowarski, B., Chevalier, M., Gaussier, É., Maarek, Y., Nie, J., Scholer,
F. (eds.) Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2019,
Paris, France, July 21-25, 2019, pp. 913–916 (2019). https://doi.org/10.
1145/3331184.3331281. https://doi.org/10.1145/3331184.3331281

[37] Wang, X., Zhang, M.: GLASS: GNN with labeling tricks for subgraph
representation learning. In: The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April 25-29, 2022 (2022).
https://openreview.net/forum?id=XLxhEjKNbXj

[38] Yin, H., Zhang, M., Wang, Y., Wang, J., Li, P.: Algorithm and system co-
design for efficient subgraph-based graph representation learning. CoRR
abs/2202.13538 (2022) 2202.13538

https://doi.org/10.1007/978-981-16-6166-2
https://arxiv.org/abs/1711.10146
https://doi.org/10.1145/3097983.3098036
https://arxiv.org/abs/1803.02533
https://doi.org/10.1145/3331184.3331281
https://doi.org/10.1145/3331184.3331281
https://arxiv.org/abs/2202.13538

Springer Nature 2021 LATEX template

34 DyHNet: Learning Dynamic Heterogeneous Network Representations

[39] Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic net-
work embedding by modeling triadic closure process. In: McIlraith,
S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pp. 571–578 (2018).
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16572

[40] Goyal, P., Kamra, N., He, X., Liu, Y.: Dyngem: Deep embedding method
for dynamic graphs. CoRR abs/1805.11273 (2018) 1805.11273

[41] Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based
Systems 187, 104816 (2020)

[42] Yin, Y., Ji, L., Zhang, J., Pei, Y.: DHNE: network representation learning
method for dynamic heterogeneous networks. IEEE Access 7, 134782–
134792 (2019). https://doi.org/10.1109/ACCESS.2019.2942221

[43] Wang, X., Lu, Y., Shi, C., Wang, R., Cui, P., Mou, S.: Dynamic heteroge-
neous information network embedding with meta-path based proximity.
IEEE Trans. Knowl. Data Eng. 34(3), 1117–1132 (2022). https://doi.org/
10.1109/TKDE.2020.2993870

[44] Fang, Y., Zhao, X., Huang, P., Xiao, W., de Rijke, M.: Scalable rep-
resentation learning for dynamic heterogeneous information networks
via metagraphs. ACM Trans. Inf. Syst. 40(4), 64–16427 (2022). https:
//doi.org/10.1145/3485189

[45] Zhang, Z., Huang, J., Tan, Q.: SR-HGAT: symmetric relations based
heterogeneous graph attention network. IEEE Access 8, 165631–165645
(2020). https://doi.org/10.1109/ACCESS.2020.3022664

[46] Fang, Y., Yang, Y., Zhang, W., Lin, X., Cao, X.: Effective and efficient
community search over large heterogeneous information networks. Proc.
VLDB Endow. 13(6), 854–867 (2020). https://doi.org/10.14778/3380750.
3380756

[47] Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph
neural networks? In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019).
https://openreview.net/forum?id=ryGs6iA5Km

[48] Zhang, W., Fang, Y., Liu, Z., Wu, M., Zhang, X.: mg2vec: Learning

https://arxiv.org/abs/1805.11273
https://doi.org/10.1109/ACCESS.2019.2942221
https://doi.org/10.1109/TKDE.2020.2993870
https://doi.org/10.1109/TKDE.2020.2993870
https://doi.org/10.1145/3485189
https://doi.org/10.1145/3485189
https://doi.org/10.1109/ACCESS.2020.3022664
https://doi.org/10.14778/3380750.3380756
https://doi.org/10.14778/3380750.3380756

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 35

relationship-preserving heterogeneous graph representations via meta-
graph embedding. IEEE Transactions on Knowledge and Data Engi-
neering 34(3), 1317–1329 (2022). https://doi.org/10.1109/TKDE.2020.
2992500

[49] Wu, M., Pan, S., Du, L., Tsang, I., Zhu, X., Du, B.: Long-short dis-
tance aggregation networks for positive unlabeled graph learning. In:
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (CIKM 2019), pp. 2157–2160 (2019)

[50] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Guyon, I.,
von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan,
S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008
(2017)

[51] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural com-
putation 9, 1735–80 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

[52] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. CoRR
abs/1706.03762 (2017) 1706.03762

[53] Zhao, J., Wang, X., Shi, C., Hu, B., Song, G., Ye, Y.: Heterogeneous graph
structure learning for graph neural networks. In: Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pp. 4697–4705 (2021).
https://ojs.aaai.org/index.php/AAAI/article/view/16600

[54] Huang, Z., Mamoulis, N.: Heterogeneous information network embed-
ding for meta path based proximity. CoRR abs/1701.05291 (2017)
1701.05291

[55] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extrac-
tion and mining of academic social networks. In: Li, Y., Liu, B., Sarawagi,
S. (eds.) Proceedings of the 14th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Las Vegas, Nevada,
USA, August 24-27, 2008, pp. 990–998 (2008). https://doi.org/10.1145/
1401890.1402008. https://doi.org/10.1145/1401890.1402008

[56] Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regu-
larized transductive classification on heterogeneous information net-
works. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.)

https://doi.org/10.1109/TKDE.2020.2992500
https://doi.org/10.1109/TKDE.2020.2992500
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1701.05291
https://doi.org/10.1145/1401890.1402008
https://doi.org/10.1145/1401890.1402008

Springer Nature 2021 LATEX template

36 DyHNet: Learning Dynamic Heterogeneous Network Representations

Machine Learning and Knowledge Discovery in Databases, European
Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24,
2010, Proceedings, Part I. Lecture Notes in Computer Science, vol.
6321, pp. 570–586 (2010). https://doi.org/10.1007/978-3-642-15880-3 42.
https://doi.org/10.1007/978-3-642-15880-3 42

[57] Fan, H., Zhang, F., Wei, Y., Li, Z., Zou, C., Gao, Y., Dai, Q.: Hetero-
geneous hypergraph variational autoencoder for link prediction. IEEE
Trans. Pattern Anal. Mach. Intell. 44(8), 4125–4138 (2022). https://doi.
org/10.1109/TPAMI.2021.3059313

[58] Hajiramezanali, E., Hasanzadeh, A., Narayanan, K.R., Duffield, N.,
Zhou, M., Qian, X.: Variational graph recurrent neural networks. In:
Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,
E.B., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
10700–10710 (2019)

[59] Liu, J., Xu, C., Yin, C., Wu, W., Song, Y.: K-core based temporal graph
convolutional network for dynamic graphs. IEEE Transactions on Knowl-
edge and Data Engineering, 1–1 (2020). https://doi.org/10.1109/TKDE.
2020.3033829

[60] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In:
Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980

[61] Fang, Y., Zhao, X., Huang, P., Xiao, W., de Rijke, M.: Scalable rep-
resentation learning for dynamic heterogeneous information networks
via metagraphs. ACM Trans. Inf. Syst. 40(4), 64–16427 (2022). https:
//doi.org/10.1145/3485189

[62] Leone, M., Huber, S., Arora, A., Garćıa-Durán, A., West, R.: A critical re-
evaluation of neural methods for entity alignment. Proc. VLDB Endow.
15(8), 1712–1725 (2022)

[63] Liu, X., Hsieh, P., Duffield, N., Chen, R., Xie, M., Wen, X.: Real-
time streaming graph embedding through local actions. In: Amer-Yahia,
S., Mahdian, M., Goel, A., Houben, G., Lerman, K., McAuley, J.J.,
Baeza-Yates, R., Zia, L. (eds.) Companion of The 2019 World Wide
Web Conference, WWW 2019, San Francisco, CA, USA, May 13-
17, 2019, pp. 285–293 (2019). https://doi.org/10.1145/3308560.3316585.
https://doi.org/10.1145/3308560.3316585

https://doi.org/10.1007/978-3-642-15880-3_42
https://doi.org/10.1109/TPAMI.2021.3059313
https://doi.org/10.1109/TPAMI.2021.3059313
https://doi.org/10.1109/TKDE.2020.3033829
https://doi.org/10.1109/TKDE.2020.3033829
https://doi.org/10.1145/3485189
https://doi.org/10.1145/3485189
https://doi.org/10.1145/3308560.3316585

Springer Nature 2021 LATEX template

DyHNet: Learning Dynamic Heterogeneous Network Representations 37

[64] Wang, J., Chen, P., Ma, B., Zhou, J., Ruan, Z., Chen, G., Xuan, Q.: Sam-
pling subgraph network with application to graph classification. IEEE
Trans. Netw. Sci. Eng. 8(4), 3478–3490 (2021). https://doi.org/10.1109/
TNSE.2021.3115104

https://doi.org/10.1109/TNSE.2021.3115104
https://doi.org/10.1109/TNSE.2021.3115104

	Introduction
	Related work
	Static Network Representation Learning
	Dynamic Network Representation Learning

	Preliminaries
	Notations

	Proposed Approach
	Overview
	DyHNet Components
	Capturing Local Semantics
	Capturing Global Semantics
	Phase 1. Anchor Subgraph Selection
	Phase 2. Anchor Subgraph Encoder
	Phase 3. Subgraph Encoder

	Integrating Local and Global Semantics
	Capturing Graph Dynamics

	Optimization
	DyHNet Algorithm

	Experiments
	Datasets
	Baselines
	Experimental Setup
	RQ1. The Link Prediction Task
	RQ2. The Node Classification Task
	RQ3. Ablation Study
	RQ4. Sensitivity Analysis

	Concluding Remarks

