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Abstract

This paper introduces ADG-QPP (Adaptive Disturbance Generation), an unsu-
pervised Query Performance Prediction (QPP) method designed specifically for
dense neural retrievers. The underlying foundation of ADG-QPP is to measure query
performance based on its degree of robustness towards perturbations. Traditional
QPP methods rely on predefined lexical perturbations on the query, which only
apply to sparse retrieval methods and fail to maintain consistent performance
across different datasets. In our work, we address these limitations by perturbing
the query by injecting disturbance leveraged by the focal network-based measure-
ments including node-based, edge-based, and cluster-based metrics, into its neural
embedding representation. Rather than applying the same perturbation across
all queries, our approach develops an instance-wise disturbance for each query
that is then used for its perturbation. Through extensive experiments on three
benchmark datasets, we demonstrate that ADG-QPP outperforms state-of-the-art
baselines in terms of Kendall τ , Spearman ρ, and Pearson’s ρ correlations.
Keywords:Information Retrieval, Query Performance Prediction, Post-retrieval
Query Performance Prediction, and Dense Neural Retrievers.

1 Introduction
The main objective of many Information Retrieval (IR) methods is to curate and
present information for the users to satisfy their information needs. In practice, IR
methods do not necessarily exhibit comparable performance when addressing users’
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information needs, often expressed through user queries. In other words, a particular
IR method may show strong performance on a certain subset of user queries while
not being quite effective on others. In addition, IR methods do not necessarily show
coherent performance with each other where the difficult queries for one IR method
may in fact be easy for another method. As such, the IR community has been interested
in predicting the performance of queries for a given IR method to estimate how well
the IR method can satisfy the query. More formally, the Query Performance Prediction
(QPP) task is aimed at estimating the effectiveness of the retrieved results for a given
query without having explicit information about the relevance of information for the
user.

Query performance prediction has several real-world applications that significantly
enhance the effectiveness and efficiency of information retrieval systems. One key appli-
cation is in adaptive retrieval strategies, where QPP can predict the difficulty of a
query and dynamically adjust the retrieval process. For simpler queries, search engines
can employ cost-effective and faster rankers, while more complex queries may trigger
the use of sophisticated, resource-intensive rankers. This not only optimizes resource
usage but also minimizes system latency. Additionally, QPP can improve user engage-
ment by identifying difficult queries and prompting users with clarifying questions
to better understand their intent [1]. This interaction can increase user satisfaction,
as it demonstrates the system’s intelligence and responsiveness. Another significant
application is in federated search and metasearch engines, where QPP can guide the
merging of results from multiple data sources by weighing them according to their
estimated quality [2, 3]. Additionally, QPP is useful in content enhancement through
missing content analysis, allowing system administrators to identify and address gaps
in the document collection to better answer emerging user needs. These applications
demonstrate QPP’s role in making retrieval systems more responsive, efficient, and
user-centric [4].

Given the significance of QPP methods in the context of retrieval methods,
researchers have examined various ways through which query performance could be
estimated using unsupervised signals including query characteristics, distribution of
content in the corpus, the semantic association between the query and the corpus,
as well as, supervised approaches that learn to regression models by various forms of
fine-tuning large language models for this task. One QPP approaches that received
early attention without notable success was the idea of exploiting the relation between
query robustness and its retrieval effectiveness. The premise behind these models is
that a query is considered robust if it does not show considerable performance vari-
ation when subjected to slight perturbations. In other words, if the lexical form of a
query changes (e.g., changing a query such as ‘who is president of the united states’
to ‘president of the US ’), the extent to which the retrieved list changes due to the
lexical change of the query (perturbations) is an indication of query robustness, mean-
ing that more robust queries are essentially easier for the retrieval method to satisfy.
While theoretically elegant, QPP methods that operate based on robustness to per-
turbations face two major Limitations (L1) Their first major limitation is that they
resort to lexical changes to the surface form of the query, which while useful for sparse
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retrievers, do not apply to more advanced dense neural retrievers that show less sen-
sitivity to the lexical form of the query. (L2) Furthermore, even on sparse retrievers,
these QPP methods [4–6] do not show consistent performance across different datasets
given their sensitivity to the type of perturbation that is applied to the queries.

In this paper, we propose a QPP method, referred to as ADG-QPP (Adaptive Dis-
turbance Generation), which builds on the foundations of earlier work that have
considered query robustness to lexical perturbations as a means to estimate query per-
formance. In particular, ADG-QPP is designed to address the two major limitations of
earlier work (L1 and L2). Our proposed approach is designed specifically to estimate
query performance for dense neural retrievers and therefore rather than focusing on
introducing perturbations on the lexical form of the query, we pay special attention on
injecting disturbance into the neural embedding representation of queries. This way,
our approach applies perturbations at the deeper semantic layer of the query captured
in its embedding representation rather than changing the query itself, which may or
may not be semantically meaningful, addressing L1. In addition, in our approach,
we propose ways through which customized disturbance will be determined on an
instance-wise basis, and as such, perturbations generated by measurements based on
focal network metrics introduced in 3.4.1, applied to each query will be specific to that
query. These metrics include three main categories: (1) Node-based measures (Seman-
tic Network Size, degree centrality, closeness centrality, and PageRank); (2) Edge-based
measures (Connectivity Score, Query Connectivity Strength, Average Query Con-
nectivity, and Rare Path Index); and, (3) Cluster-based measures (Centroid Cluster
Weight and Inter-cluster Connectivity). Therefore, our approach makes it possible to
maintain consistent QPP performance across different dataset, hence satisfying L2.
The key contributions of our work can be enumerated as follows:

1. We introduce the ADG-QPP method for estimating query performance for dense neu-
ral retrievers. Our method operates based on query robustness measured through
changes observed in retrieval performance of a query after the injection of noisy
perturbations on the embedding representation of the query;

2. We provide a systematic framework on how a customized degree of disturbance can
determined to be injected into each particular query to optimize QPP performance;

3. Through extensive experiments on multiple benchmark datasets, such as TREC
DL 2019 and 2020, and TREC DL-Hard [7], we find that our proposed approach
offers consistently better performance compared to the state of the art baselines on
metrics such as Kendall τ and Spearman ρ, and Pearson Pearson’s ρ Correlations.

2 Related work

Query performance prediction methods are broadly categorized into pre-retrieval and
post-retrieval approaches [4]. While pre-retrieval methods rely on query features and
corpus statistics before retrieval [5, 8, 9], post-retrieval methods leverage an addi-
tional piece of information from the retrieved documents to predict query performance.
Post-retrieval QPP methods have shown higher effectiveness compared to pre-retrieval
methods, i.e., showing higher correlation with the actual retrieval system performance
[6, 10, 11]. This paper is focused on post-retrieval QPP.
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Accurate prediction of query performance has proven beneficial in various appli-
cations [12–15]. For instance, QPP has been effective in adapting retrieval strategies
on a per-query basis [16]. By predicting query difficulty, search engines can deploy
cost-effective rankers for simpler queries and more complex, resource-intensive rankers
for more challenging queries [17, 18]. This approach optimizes resource usage while
minimizing system latency. Additionally, QPP can enhance user engagement by iden-
tifying difficult queries and interacting with users to request further clarification of
their intent i.e., by asking users clarifying questions [19, 20]. Previous research has
shown that such interactions increase user satisfaction, as users perceive it as a sign
of system intelligence [21].

Traditionally, post-retrieval QPP methods relied on term statistics from the index
to predict the performance of traditional sparse bag-of-words high-dimensional retriev-
ers, such as BM25 [22]. These methods were based on several ideas, including the
association between the query and the retrieved documents [23], the query and the
corpus, the retrieved documents and the corpus [23], as well as the inter-association
between the retrieved documents [24]. For instance, some methods evaluated how the
language model induced from the retrieved documents differed from that of the col-
lection [25, 26]. Another group of traditional QPP methods focused on the retrieval
scores among the top retrieved documents [6, 10, 11, 27, 28]. The idea was that a high
variance in scores indicate that relevant and non-relevant documents were easier to
distinguish. Conversely, a low standard deviation suggests difficulty in separating rele-
vant from non-relevant documents, indicating a harder query to satisfy. More recently,
with the advent of neural models, several QPP methods have used neural embed-
dings to tackle the task [5, 29–31]. With the availability of large-scale benchmarks and
datasets, supervised neural-based models, such as NeuralQPP [29], NQA-QPP [32],
BERT-QPP [33] and qpp-BERT-pl [34] have emerged and shown strong performance.
These neural-based models have shown to outperform traditional term frequency-
based QPP methods in several benchmarks. We provide a more detailed description
of such methods in Section 4.1.

While most proposed methods are tailored to the characteristics of sparse retriev-
ers, such as QL (Query Likelihood) and BM25 which are both high-dimensional
bag-of-word based retrievers [35, 36] , little attention has been given to QPP for
dense retrievers [37, 38]. Dense retrievers are supervised and, due to limited train-
ing data, sharing the data between ranker and QPP model training is challenging.
Training dense retrievers and QPP models on the same data can lead to overfitting,
causing QPP to overestimate performance. Therefore, we propose an unsupervised
QPP method specifically designed for dense retrievers to avoid data overlap between
QPP and ranking tasks. Our method, referred to as ADG-QPP, leverages the advan-
tages of neural embeddings by using neural embedding representations of queries and
retrieved documents for QPP. In this work, we build on the idea of disturbance injec-
tion through the retrieval channel, previously used in [6, 39] where the authors propose
generating a noisy query based on the retrieved documents, similar to the idea of using
pseudo relevance feedback. Among perturbation-based methods, Dense-QPP seeks to
estimate robustness by adding a constant disturbance to all query representations.
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However, the randomness of the added noise causes fluctuations in performance, mak-
ing the results inconsistent. To address this, the authors proposed to inject the noise
multiple times (30 as described in their paper) and calculate the average of predicted
performance as the final prediction value. While this approach reduces variability and
tends to increase the stability of the injected noise, it remains unstable and compu-
tationally demanding. This exposes a significant limitation in Dense-QPP, as it relies
on multiple trials to achieve stability rather than effectively managing the underlying
variability. By comparing results retrieved from the original query against those from
its perturbed version, we assess the robustness of the query. A robust query is less
affected by disturbance, implying it can handle perturbations without significant loss
of retrieval effectiveness. In other words, the difference between the retrieved results
of the original query and the perturbed query serves as a signal for query robustness
or performance estimation.

While previous works have demonstrated the efficacy of perturbations for QPP
, they were not generally stable and consistent across different benchmark datasets.
This was partly because the perturbations happened at the lexical form of the query.
Additionally, the perturbations were designed specifically for sparse retrievers, which
are not applicable for dense retrievers. Our method aims to improve and expand upon
the idea of query perturbation by generating adaptive perturbations to queries specif-
ically for dense retrievers. We utilize the geometric properties of neural embedding
of queries and their retrieved documents to generate adaptive disturbance on a per
query basis, achieving better and more consistent results [5, 40].

3 Methodology

3.1 Problem Definition

Within the context of information retrieval, the Query Performance Prediction (QPP)
task is defined as estimating the effectiveness of a retrieval method R in satisfying the
information need behind a given query q without having access to relevance judge-
ments. In practice, a retrieval method R would retrieve a ranked list of documents Dq

for a given query q, denoted as Dq ← R(q, C). Here, C represents the corpus of doc-
uments from which documents are retrieved and ranked, and R(·) is a function that
takes the corpus C and a query q and produces a ranked list of documents Dq. The
documents in Dq are rank-ordered based on their relevance score to the query.

By having relevance judgment annotations of documents in C for a given q, we
measure the effectiveness of R(q, C) by its ability to rank-order all relevant docu-
ments at the top of the ranked list. The retrieved documents Dq are assessed with
an evaluation function µ(Dq|q, C). Some of the common µ functions are Mean Aver-
age Precision (MAP), Mean Reciprocal Rank (MRR), and normalized Discounted
Cumulative Gain (nDCG). Finally, the quality of the retrieval set Dq is predicted as
µ̂(Dq|q, C) through a QPP method ϕ(Dq, q, C) through comparison with the actual
performance µ(Dq|q, C). The predicted effectiveness of the retrieved results Dq for a
given query q is evaluated by how accurate µ̂(q,Dq) can predict µ(Dq, q) on a set of
queries.
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3.2 Approach Rationale

The foundation of our proposed QPP method is based on the relationship between
the robustness of a query to possible perturbations and the subsequent performance of
the information retrieval method on such a query. In simpler terms, a query is con-
sidered more robust if random perturbations do not significantly alter the retrieved
document list. In other words, changes in the query do not lead to substantial changes
in retrieval. Such a robust query could be seen as being resistant to changes in perfor-
mance. Researchers have argued that, in the context of sparse retrievers, robust queries
are those that have high discriminative power in identifying relevant documents and
therefore are not impacted by perturbations. Conversely, less robust queries are sensi-
tive to perturbations, resulting in notable changes to the retrieved document list when
the query is altered. In practice, more robust queries are considered to be easier from
a QPP point of view, as regardless of how the user formulates the query, it is highly
likely that a similar set of relevant documents are retrieved for the query. On the other
hand, less robust queries can be seen as being more difficult as small changes in query
formulation by the user will lead to considerable changes in the results.

Let us consider the process of perturbing a query as a noisy communication chan-
nel through which a query acts as a signal passing through, potentially becoming
noisier. One would be able to assess the robustness of the query before and after pass-
ing through the noisy channel by comparing results retrieved from the original query
against those from its perturbed version, essentially testing the impact of disturbance
on the query’s effectiveness. A robust query is less affected by such disturbance, imply-
ing it can handle perturbations without significant loss of retrieval effectiveness. In
contrast, a less robust query exhibits greater variance in its results when subjected
to similar disturbances, indicating susceptibility to query formulation alterations. For
sparse retrieval methods, the noisy channel can apply alterations on the surface form
of the query, e.g., changing ‘what the oldest you can have a baby’ to ‘what the youngest
you can have a baby’. In contrast, given dense neural retrieval methods operate on
the query based on its dense representation, it is possible inject disturbance into the
embedding space rather than relying solely on lexical manipulations [6, 41]. Embed-
ding space allows for more nuanced, fine-grained adjustments to query representations,
offering a richer space for testing robustness through noisy perturbations.

Our work in this paper focuses on predicting query performance for dense retriev-
ers by offering a systematic approach to inject disturbance into query representations
such that query robustness can be measured. The fundamental premise of our approach
is to test the resilience of queries to disturbances in the embedding space represented
as dense vectors. By deliberately injecting disturbance into these embeddings and
analyzing the impact on the retrieval results, it may be possible to measure the robust-
ness of queries. Our proposed method leverages the continuous nature of embedding
spaces, which allows for subtle and complex perturbations, unlike discrete changes
typical in lexical spaces. By assessing how well queries withstand such perturbations,
our proposed method aims to predict query effectiveness.
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Fig. 1: The overview of our proposed approach. We note that the adaptive disturbance
generator part is shown in Figure 2 .

3.3 Proposed Approach

Given a query q, a function E(.) maps queries into an embedding space as a dense p-
dimensional vector where p. To retrieve the top-k relevant documents from a corpus
C relevant to q, we employ a dense retriever Rd, such that Dk

q = Rd(E(q), C).
We introduce perturbations into the vector representation of the query E(q), by

constructing a disturbance-injected query representation as follows:

Ẽ(q) = E(q) +N (1)

where N represents the injected disturbance. We conceptualize query perturbations
by introducing a non-specific disturbance represented as N , encompassing a range of
potential noise models that can be injected into a dense query representation. This
non-specific disturbanceN is offered as a way to capture real-world variability in query
representations while maintaining the dimensional bounds of both E(q) and Ẽ(q).

As illustrated in Figure 1, our approach involves first mapping each query into a
dense vector representation based on a large language model (LLM). This embedding
is then subjected to perturbations through an Adaptive Disturbance Generator shown
in Figure 2, which considers the semantic relationships among queries or retrieved doc-
uments. The figure shows the process of generating the perturbed query embeddings
Ẽ(q) by injecting context-sensitive disturbance in a Query-based Focal Network (QFN)
which will be defined in Section 3.4.1. Given the original query and the disturbed query
representations, we examine the retrieval outcomes for both of the representations.
We define a performance metric QPPADG as a function that captures the associa-
tion between the retrieved document lists from the original and perturbed queries.
This association is a potential indicator of the stability of query performance when
subjected to disturbances. The formal representation of QPPADG is defined as:

QPPADG(q,Rd, C) = S(Dk
q , D̃

k
q ) (2)

where Dk
q is the corresponding list of documents for the original query q and the

list retrieved post-perturbation is denoted by D̃k
q = Rd(Ẽ(q), C). Furthermore, the

function S is quantifies the differences between the retrieved lists of results for the
original query E(q) and the perturbed query Ẽ(q).

The quantification of differences based on S needs to correlate with actual query
performance. In particular, in document retrieval, items ranked lower are less likely
to be seen by the users and are therefore less important than items higher in the list.
Thus, S will need to show sensitivity to not only the presence of items on the two
lists but also their relative ranking in the two lists. The Ranked Bias Overlap (RBO)
measure [42] has shown to be able satisfy such conditions in that it captures both item
similarity as well as item rank when comparing two lists and therefore we propose
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Fig. 2: Overview of the adaptive disturbance generator method depicting a Query-
based Focal Network (QFN).

that it can be appropriate for operationalizing S. More formally, the overlap Od at
depth d between Dk

q and D̃k
q is the number of items common between the two lists

in their top d positions. The weighted overlap at depth is Wd = Od

d . On this basis,

S(Dk
q , D̃

k
q ) can be defined based on Wd with a decay factor p such that importance of

items exponentially decreases as the depth increases:

S(Dk
q , D̃

k
q ) = (1− p)

L∑
d=1

pd−1Wd (3)

where L is the maximum length S will be calculated. In the following sections, we will
elaborate on the characteristics appropriate for the disturbance N in Equation 1.

3.4 Adaptive Disturbance Generation for Query Perturbation

To operationalize the disturbance N in Equation 1, a clean approach would be to
inject an Additive White Gaussian Noise (AWGN) into the representations of each
query to produce query perturbations. Such an approach offers several advantages: (i)
AWGN has a uniform power spectral density across frequencies [43, 44], ensuring that
embedding vector elements receive noise uniformly across different frequencies; and
(ii) AWGN follows a Gaussian distribution, which is desirable as it accurately models
real-world noisy perturbations [45]. By uniformly applying AWGN to all queries, it
would be possible to assess how the retrieval method handles noise and identify which
queries are more robust and which are more sensitive to noisy disturbances. Based on
AWGN, the perturbation to individual query representations E(q) can be defined as:

Ẽ(q) = E(q) +N (0, σ2) (4)

where N (0, σ2) represents the Gaussian noise distribution with a mean of 0 and
a variance of σ2, which is added to each query representation. The variance σ2 is
a critical parameter in this equation, determining the intensity of the noise being
introduced. It influences the degree of perturbation each query representation receives
where a higher variance results in a more significant deviation from the original query.
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However, a significant drawback of injecting disturbances into queries, as described
in Equation 4, is the assumption of homogeneity among queries. This assumption does
not account for the diverse nature of queries in practical scenarios. Some queries might
be naturally more robust due to their clarity, specificity, or corpus-related properties,
while others might be inherently more ambiguous and sensitive to specific distur-
bances. Consequently, applying the same level of disturbance to all queries might not
produce an ideal disturbance for creating useful query variants for the QPP tasks.
While the uniform AWGN offers a simple and clean way to generate perturbations,
it may not capture the individualized response of the retrieval system to each unique
query. Injecting instance-wise personalized disturbance enables a fine-tuned applica-
tion of disturbance, aligning more closely with the semantic features and complexities
of each query, thereby yielding a more discerning assessment of the retrieval system’s
robustness. For this reason, we additionally propose to personalize disturbance to the
specific representation of each query. This Adaptive Disturbance Generation method
utilizes network-based metrics to inform the level of perturbations applied to each
representation on a per query basis, enabling a contextualized evaluation of query
robustness. This adaptive disturbance generation method still incorporates Gaussian
noise but adjusts the disturbance level according to the structural and semantic con-
text of each query within the embedding space. By adjusting the disturbance level
on an instance-wise basis, the method adjusts the injected disturbance based on each
query’s specific representation.

Previous studies have shown that the geometric properties of neural representa-
tions can be useful for various tasks such as specificity quantification and analogical
reasoning [46, 47]. Similarly, we explore personalized disturbance to be injected in each
query representation based on the context of the query representation in the embed-
ding space. The idea is that the context surrounding each query in the embedding
space is a potential indicator for the sensitivity of the query itself. For example, a query
surrounded by diverse documents in the embedding space may experience a significant
performance drift with a small amount of disturbance, whereas a query surrounded
by documents with highly similar content may remain stable despite the injected dis-
turbance. Therefore, the representation of queries in the embedding space and the
documents that surround them can potentially be used as a measure for personalizing
the disturbance to be injected into the query.

3.4.1 Focal Networks

To explore the surrounding space of a query within the embedding space, we define
the concept of a focal network. A focal network for a query q, represented as ζ(qi) =
(Vζ ,Eζ , γ), is a weighted undirected graph where Vζ includes the graph vertices, and
Eζ = {ei,j : i, j ∈ Vζ} includes the edges between every pair of nodes i and j. The
function γ : Eζ → [−1, 1] determines the edge weights as the semantic relatedness
between the two nodes e.g., cosine similarity of their embedded dense vector represen-
tations. Based on the types of nodes participating in constructing the focal network, we
propose to build (i) a Query-based Focal Network (QFN), and (ii) a Document-based
Focal Network (DFN).
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Query Store: The QueryStore is defined as Q = {q1, q2, . . . , qn} where each qi is a
query previously submitted to the same search engine by the users. Upon receiving an
input query, the QueryStore mechanism computes the similarity between this query
and the archived queries using a predefined distance metric. Given the LLM decoder,
top K similar queries are identified by mapping the representation of the main query
to its similar vector representations in the Q set.
Query-based Focal Network (QFN): A Query-based Focal Network ζQFN is a focal
network where the set of nodes Vζ consists of the main query q and a set of similar
queries to q noted as Qq. Here, Qq is obtained from a QueryStore Q, which consists
of a set of previously submitted queries to the same search engine.

Now, to build the QFN for query q, i.e., ζQFN (q), we obtain the set of vertices VQFN
ζ

including the main query as well as most similar queries, i.e., VQFN
ζ = {q ∪Qq}. The

edges in QFN represent the similarity between all vertices in VQFN
ζ .

Document-based Focal Network (DFN): In contrast to QFN where a query is
contextualized with similar queries received from the users in the past, the document-
based focal network DFN contextualizes a query in the context of its top-K retrieved
documents Dq. The DFN network contextualizes the query with the documents that
surround it in the embedding space. More precisely, VDFN

ζ = {q ∪ {d ∈ Dq}} consists
of the query itself and the set of top-k retrieved documents for this query. Similar to
QFN, the edges in DFN represent the similarity between all vertices in VDFN

ζ .
In both QFN and DFN networks, an edge between any two nodes i and j is weighted

by the semantic similarity between the two nodes, which can be measured by any
similarity-based metric between the representation of the two nodes. Without loss
of generality, in this paper, we adopt the cosine similarity measure for this purpose.
We define the pruning constant ϵ as the threshold for edge weights. Both networks
ζ(q) can be pruned and sparsified to ζϵ(q) by removing edges with weights below ϵ.
More specifically, we aim to construct a focal network for qi, where qi serves as the
focal node and forges connections directly to other queries and documents only if the
semantic relatedness between the focal node and its neighbors surpasses a specified
threshold. In essence, two nodes within the ϵ-neighborhood of the query qi, exhibiting
semantic relatedness to qi greater than ϵ, are interconnected within the focal network.
We propose that the properties of the QFN and DFN networks that capture the context
surrounding each query would allow us to to derive context-specific disturbances, i.e.,
σ in Equation 4. Variance σ is determined directly by measuring focal network metrics.

For the sake of clarity, we visualize two sample QFN networks in Figure 3 repre-
senting two queries, namely ‘access, how to go to most recent record ’ (on the left), and
‘what important job do the lysosomes have’ (on the right). In each QFN, the query is
centered, surrounded by its top-6 most similar queries. In this figure, any edges with
weights below ϵ = 0.5 have been pruned. In the query on the left, we demonstrate
a poorly performing query, which cannot be satisfactorily addressed by the retrieval
method. As seen in the figure, the QFN network for this query is sparsely connected,
potentially pointing to the fact that any perturbations to they query can lead to higher
changes in changes in retrieval. Conversely, the query on the right side depicts the
QFN network for a well-performing query. This network is characterized by a dense
and well-connected structure, indicating that the query will be robust to possible
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Fig. 3: Two sample QFN networks for two queries that have differing levels of difficulty.
The left network illustrates a poorly-performing query with high sparsity, while the
right network displays a well-performing query with a dense structure.

noisy perturbations. The contrast between the two networks, i.e., high sparsity for the
poorly performing query and the high density for the well-performing query, points to
the potential utility of the QFN and DFN networks for deriving context-sensitive distur-
bances. By tailoring the level of disturbance injected to the query based on its context
in the focal networks, our proposed approach aims to capture the potential variabili-
ties that queries may encounter in the real-world and hence more accurately estimate
query performance in practice.

In the following, we elaborate on the potential host of disturbance measures that
can be derived from the focal networks.

3.5 Network-Based Disturbance Measures

Our objective is to utilize focal network characteristics to generate contextualize dis-
turbances, i.e., σ in Equation 4. We define three different forms of disturbances based
on node-based, edge-based, and cluster-based of the focal networks. The set of all metrics
used for disturbances are introduced in Table 1.
Node-based Disturbances. We postulate that the position of a node within the
network is a strong sign of its resilience to disturbance and hence its robustness. For
instance, if a query exhibits popularity within the focal network, this can indicate that
the query may serve as a bridge between various nodes in the network; implying that
minor perturbations would not significantly disrupt its connections with other nodes
in the network. High robustness in this context means that the query can withstand
variations while maintaining its role in the network. As such, node-based measures
can provide insight into the structural importance and connectivity of the query node
within the focal network, which may be relevant factors in determining the appropriate
disturbance for assessing query robustness. Table 1 describes node-based measures
including Semantic Network Size, degree centrality, closeness centrality, and PageRank.
Edge-based Disturbances. We suggest that focal networks with stronger connec-
tions are more resilient to disturbance; therefore, representing queries that are more
robust to perturbations. Conversely, focal network with weaker edge connections can
be an indication of a less robust query that can be susceptible to high variation in
the face of small perturbations. Given edge-based network metrics focus on evaluat-
ing the resilience and consistency of connections (edges) between nodes, they have the
potential to assess the structure and strength of connections within a focal network.
For instance, a query that is not only highly connected in the focal network but is
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Table 1: Network-based disturbance measures.

Metric Name Formula Description

N
o
d
e
-b

a
s
e
d

Semantic Network
Size (SNS)

|Vζ |

A large network size surrounding a particular query
node suggests that the query is embedded in a
dense semantic space, potentially enhancing its
robustness due to multiple relational pathways.

Degree Centrality
(DC)

|{ei,j ∈ Eζ}|

Extent to which a query connects to other nodes,
identifying whether the node is popular in the focal
network. Popular queries are likely to be robust to
disturbance.

Closeness Central-
ity (CC)

[∑
j∈Vζ,j ̸=i d(q, j)

]−1

Highlights how quickly it is possible to move from
the query node to others in the focal network.
Queries with high connectivity maintain short
paths even when perturbed and remain robust.

PageRank (PR) 1−d
|Vζ | + d

∑
j∈Vζ

PR(j)
deg(j)

A high PR measures how well a query is not only
connected to many other nodes but also connected
to other highly connected ones. A high PageRank
may be a sign of being robustness to disturbance.

E
d
g
e
-b

a
s
e
d

Connectivity Score
(CS)

|Eζ(q)|
A high edge count indicates that the query is well-
connected, suggesting that it will be less sensitive
to noisy perturbations.

Query Connec-
tivity Strength
(QCS)

∑
eq,j∈Eζ

γ(eq,j)
A high connectivity strength value indicates
numerous relevant connections within the network,
which can be a sign of the robustness of query.

Average Query
Connectivity
(AQC)

1
|Eζ(q)|

∑
eq,j∈Eζ

γ(eq,j)

This metric computes the average strength of con-
nections for the query node where high average
strengths point to more resilient queries against
disturbance.

Rare Path Index
(RPI)

1
|Eζ(q)|

∑
eq,j∈Eζ

1
γ(eq,j)

A High RPI suggests that specific connections
remain stable and relevant when query is altered.

C
lu

s
t
e
r
-b

a
s
e
d Inter-Cluster Con-

nectivity (ICC)
1(
K
2

) ∑
I ̸=j maxi,j γ(ei,j)

The strength of connections between different clus-
ters reflects the overall interconnectedness of the
network pointing to resilience against disturbance.

Centroid Cluster
Weight (CCW)

∑
(u,v)∈ECk

w(u,v)

|ECk
|

measures strength within the most cohesive cluster,
a sign of robustness against disturbances in at least
one aspect of the query.

also connected to other highly connected nodes can point to a query that is highly
resilient to noisy perturbations, and hence robust in retrieval performance. Table 1
offers the motivation behind edge-based measures such as Connectivity Score, Query
Connectivity Strength, Average Query Connectivity , and Rare Path Index.
Cluster-based Disturbances. In this class of disturbances, we are motivated by
earlier empirical research that suggests that semantic tightness or diversity of retrieval
results of a query can be an indication of query performance [5, 48]. Low variance in
clusters surrounding the query can suggest that the query is tightly related to others,
indicating a high degree of robustness. Conversely, high variance within surrounding
clusters might signal a broader, more eclectic set of nearest queries or documents,
which may indicate susceptibility to semantic shifts or varying interpretations of the
query. Understanding the overall interconnectedness of the focal networks may allow
us to gauge the potential differing semantic interpretations of the query. To this end
and within the focal network ζ(q), we apply clustering to obtain K clusters from the
nodes in Vζ . The center of each cluster Ck is the centroid, calculated as the average of
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the embeddings of the nodes that make up the cluster. A high cohesion within clusters
indicates that all nodes in the cluster are semantically related, suggesting strong group
specificity and robustness to semantic drift. Additionally, well-distinguishable clusters
where nodes are well matched to their own cluster and distinct from other clusters
indicate a well-structured semantic network. Such a network suggests that the main
query is robust, as the clusters are distinct enough such that noisy perturbations
cannot cause significant query drift. Table 1 provides an overview of cluster-based
measures such as Centroid Cluster Weight and Inter-cluster Connectivity.

4 Experimental Setup

Datasets. We evaluate our proposed approach on the widely adopted MS MARCO
(Microsoft Machine Reading Comprehension) V1 passage collection, which includes
8.8 million passages over 500,000 queries, each associated with at least one relevance-
judged document. This dataset has been extensively used for large-scale training of
downstream tasks, such as QPP. We adopted three query sets associated with the MS
MARCO V1 passage collection from the TREC Deep Learning Track datasets from
2019 (DL-2019) and 2020 (DL-2020), as well as the Deep Learning Hard (DL-Hard)
query set, which includes more challenging queries with a higher number of labels
per query. These datasets were chosen due to their extensive human-labeled relevance
judgments per query, providing a robust basis for evaluating the performance of our
approach. The actual performance on these three datasets is reported by the official
evaluation metric on these query sets, i.e., nDCG@10.
Query Store. We integrated 808,731 queries from the MS MARCO V1 passage col-
lection using the faiss library [49] to efficiently index and retrieve similar queries. The
indexing method employed was Exact Search for L2 (IndexFlatL2), which stores vec-
tors as fixed-size codes in an array. During search, all indexed vectors were decoded and
compared to query vectors. However, for improved search speed, we utilized IndexPQ,
which compares vectors in the compressed domain without decoding, facilitating faster
query retrieval.
Evaluation Metrics. The evaluation of a query performance predictor is typically
performed by measuring the correlation between the predicted and actual query per-
formance on a set of queries. Essentially, given two lists of queries performances—the
actual performance and the predicted performance—the correlation between these lists
quantifies the quality of the prediction. As widely used for QPP evaluation [4], we
report common linear and rank-based correlation metrics, including Pearson’s ρ linear
correlation, as well as Kendall’s τ and Spearman’s ρ rank-based correlations. Higher
correlation values indicate more accurate predictive performance.
Retrievers. In order to show the generalizability of our approach, we report the
performance of our work on the QPP task for two different state of the art retrievers,
namely S-BERT [50] and ANCE [51].
Injected Disturbance. White Gaussian Noise was introduced by setting µ = 0 and
selecting σ values through the metrics introduced in 3.5. The range for σ is normalized
to (0,1]. We performed an element-wise addition of the disturbance to the embedded
query vector and retrieved thsection 3.5. e original and perturbed query from the
embedded document index using Faiss library [49].
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Pruning. For building the focal networks, the ϵ threshold defines the minimum sim-
ilarity required to establish a connection between nodes in the network, with edges
having lower weights than ϵ being pruned from the network. We analyze the impact
of ϵ on the performance of our proposed approach.
Ranked Bias Overlap (RBO). To measure the differences between the two retrieved
ranked lists of documents for the original query and the perturbed query, we first
retrieved the top 1,000 documents for both queries. We then calculate the similarity
between the two retrieved lists using RBO. As suggested in previous studies [37, 52],
we set p to 0.95.
Codebase. We note that for reproducibility purposes, our code and data is publicly
available at https://anonymous.4open.science/r/ADG-QPP-6529 .

4.1 Baselines

We compare our proposed method against several state-of-the-art supervised and
unsupervised post-retrieval QPP methods:
Unsupervised QPP Baselines. Unsupervised term-statistics QPP baselines we
consider in this paper include: (1) Weighted Information Gain (WIG) [6]: Calcu-
lates the mean divergence of the retrieval score of the top-ranked documents from
the corpus to predict query performance. (2) Clarity [26]: Measures the coherence
of term distribution in the retrieved list of documents with respect to the corpus
by comparing the language models induced from the retrieved documents and the
entire corpus. (3) Query Feedback (QF) [6]: This disturbance-based QPP method mea-
sures the overlap between the top retrieved documents from the original query and
a disturbance-injected query created using pseudo-relevance feedback. (4) Normalized
Query Commitment (NQC) [27]: This measure calculates the standard deviation of
the rank scores of the retrieved documents normalized by the corpus score. The idea
behind score-based metrics is that higher variance among the score of top-retrieved
documents indicates easier distinguishability of relevant and non relevant documents
and thus an easier query to satisfy. (5) Score Magnitude and Variance (SMV) [10]: Uses
both the magnitude and variance of the scores of the retrieved documents to estimate
query performance. (6) Utility Estimation Framework based on NQC (UEFNQC) [53]:
In this approach, QPP is modeled as predicting the utility a user can derive from the
retrieved result list. This prediction is based on estimating the similarity of the results
to the ideal scenario, where all relevant documents are positioned at the highest ranks
and all non-relevant documents are positioned below the relevant ones. (7) Pairwise
Rank Preference (QPP-PRP) [54]: This method is designed for QPP on dense retriev-
ers and estimates the consistency of the observed ranking with the predicted pairwise
preferences. A higher agreement indicates better query performance.
AWGN (Dense-QPP). In this baseline, a constant perturbation is added across all
the query representations. In their paper, the authors proposed to do the inference with
N different noisy queries where N is suggested to be 30 to overcome the fluctuations
in performance outcomes by averaging the predicted outputs. The need for multiple
runs to achieve stable results bring up inefficiency challenges. In order to make this a
fair comparison, we report the results with one run in Table 3.
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Supervised QPP Baselines. The supervised QPP methods employed in this paper
include: (1) Neural-QPP [29]: This was the first supervised neural-based QPP method
which uses existing unsupervised QPP methods as signals for weakly-supervised learn-
ing to tackle QPP task. (2) NQA-QPP [32]: This method works by integrating three
key components to predict the performance of non-factoid QA systems. The three com-
ponents are i) the score-based component analyzes the distribution of retrieval scores
assigned to the top-ranked answers, ii) the representation of the query iii) interactions
of the representations of the question-answer component using BERT. (3) BERT-QPP
[33]: This method utilizes fine-tuned BERT models to directly estimate the perfor-
mance based on the quality of the retrieved documents. (4) qppBERT-PL [34]: It
addresses QPP using BERT by leveraging both pointwise and listwise approaches. The
method partitions the top-k retrieved documents into smaller chunks and later encodes
the interactions between the query and different chunks with an LSTM to account for
sequential information. (5) Deep-QPP [31]: This interaction-based model focuses on
the semantic interactions between query terms and terms in the top-retrieved docu-
ments. The model employs a series of 2D convolutional layers to extract features from
these interactions, followed by a feed-forward layer to predict the relative specificity.

5 Findings

5.1 Experimental Results

We compare the performance of the network-based metrics introduced in Table 1 on
both Query Focal Network (QFN) and Document Focal Network (DFN) in Table 2 top
and bottom sections, respectively. Additionally, we dig deeper into the performance
of different groups of disturbance metrics, including Node-based, Edge-based, and
Cluster-based metrics, across the three datasets: DL-Hard, DL-2019, and DL-2020.

5.1.1 Best-Performing Disturbance Metrics on QFN

For each of the three groups of network-based metrics, we select the best-performing
one as the representative of that group. When building the focal network based solely
on queries (QFN), we observe that among the node-based metrics, DC performs the
best. This means that when injecting disturbance to query representations relative to
their Degree Centrality across QFN, the RBO between the retrieved ranked list of the
original query and the perturbed query shows the highest correlation across all the
different node-based metrics. Similarly, for edge-based metrics, we observe that CS,
QCS, and AQC all show competitive performance when derived from the Query Focal
Network. For example, while AQC achieves the highest Pearson-ρ correlation of 0.709
on DL-2019, indicating an extremely high correlation for the QPP task, CS enjoys
the highest correlation on DL-2020. Among cluster-based metrics, as reported in the
last rows of Table 2, ICC performs better on DL-Hard by a wide margin, while CCW
outperforms well on DL-2020. On DL-2019, their performance are similar and do not
show statistically significant differences.

5.1.2 Best-Performing Disturbance Metrics on DFN

We compare the performance of different disturbance metrics obtained from DFN in the
bottom part of Table 2. Among Node-based metrics applied to DFN, SNS and CC show
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Table 2: Performance comparison between different variations of ADG-QPP on
Query Focal Network (QFN, upper table) and Document Focal Network (DFN,
bottom table) in terms of the Pearson-ρ (P-ρ), Kendall-τ (K-τ) and Spearman-ρ
(S-ρ). All correlations are statistically significant at α = 0.5. The highest value
in each column of the subgroup is in bold.

QFN

DL-Hard DL-2019 DL-2020
Metrics P−ρ K−τ S -ρ P−ρ K−τ S −ρ P−ρ K−τ S−ρ

Node

SNS 0.429 0.276 0.405 0.554 0.339 0.508 0.225 0.158 0.226
CC 0.322 0.185 0.289 0.468 0.293 0.455 0.180 0.150 0.217
DC 0.469 0.319 0.449 0.684 0.439 0.598 0.401 0.298 0.424
PR 0.289 0.195 0.306 0.355 0.299 0.431 0.245 0.165 0.236

Edge

CS 0.479 0.339 0.460 0.539 0.326 0.450 0.470 0.299 0.427
QCS 0.450 0.352 0.494 0.535 0.343 0.497 0.396 0.246 0.353
AQC 0.420 0.288 0.408 0.709 0.419 0.587 0.324 0.166 0.247
RPI 0.248 0.155 0.229 0.459 0.279 0.396 0.202 0.134 0.193

Cluster
ICC 0.466 0.324 0.456 0.589 0.357 0.503 0.307 0.196 0.272
CCW 0.253 0.183 0.262 0.590 0.366 0.516 0.378 0.245 0.349

DFN

Node

SNS 0.452 0.344 0.479 0.690 0.419 0.573 0.240 0.186 0.283
CC 0.389 0.278 0.393 0.685 0.401 0.572 0.367 0.322 0.468
DC 0.513 0.362 0.510 0.611 0.419 0.579 0.221 0.158 0.252
PR 0.346 0.225 0.328 0.239 0.182 0.245 0.267 0.169 0.272

Edge

CS 0.453 0.304 0.427 0.662 0.425 0.605 0.358 0.229 0.349
QCS 0.467 0.357 0.520 0.587 0.375 0.498 0.213 0.144 0.207
AQC 0.527 0.405 0.556 0.617 0.361 0.524 0.324 0.150 0.222
RPI 0.417 0.294 0.424 0.417 0.304 0.434 0.292 0.245 0.366

Cluster
ICC 0.564 0.402 0.556 0.574 0.348 0.508 0.287 0.148 0.209
CCW 0.476 0.309 0.451 0.613 0.383 0.519 0.405 0.210 0.295

very competitive performance. While both metrics perform similarly on DL-2019, CC
outperforms SNS on DL-2020. Comparing the same metrics from QFN and DFN, we
observe that including documents in the focal network is extremely beneficial for some
metrics. For instance, comparing SNS in QFN versus DFN, SNS achieves a Pearson-ρ of
0.554 on DL-2019, which increased to 0.690 when documents were included in the focal
network. However, adding documents does not always have the same level of impact.
For most edge-based metrics, including documents did not help. We hypothesize that
metrics capturing the centrality of queries within the focal network, such as centrality-
based metrics, benefit more from the inclusion of documents. Overall, the metrics that
show strong performance are consistent whether applied to QFN or DFN. For instance,
ICC from the cluster-based group outperforms CCW in both QFN and DFN.

5.1.3 Comparison between QFN and DFN

In this section, we compare the results between two Networks QFN and DFN. The
performance of edge-based metrics varies more between QFN and DFN. In QFN, met-
rics like CS and AQC show strong results, with CS achieving the highest Pearson-ρ
of 0.470 on DL-2020. However, in DFN, while these metrics still perform well, their
effectiveness is somewhat reduced, particularly for QCS, which shows a decline in
performance on DL-2020 compared to its performance in QFN. This suggests that edge-
based metrics, while useful, may be more sensitive to the network configuration, with
their performance being more variable when documents are included in the network.
In the cluster-based metrics, ICC stands out, particularly in DFN, where it achieves a
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Table 3: Performance comparison between our best-performed proposed approach and SOTA
baselines when predicting the performance of S-BERT dense retriever. All correlations are
statistically significant at α = 0.5 except the italic ones. The highest value in each column is
in bold.

DL-Hard DL-2019 DL-2020
P − ρ K − τ S − ρ P − ρ K − τ S − ρ P − ρ K − τ S − ρ

Clarity 0.232 0.110 0.162 0.217 0.111 0.151 0.196 0.137 0.188
QF 0.044 0.051 0.060 0.071 0.022 0.043 0.148 0.029 0.052
NQC 0.418 0.276 0.381 0.560 0.419 0.598 0.285 0.194 0.289
WIG 0.093 0.072 0.105 0.139 0.071 0.116 0.153 0.032 0.051
n(σx) 0.400 0.259 0.369 0.501 0.361 0.532 0.242 0.158 0.232
SMV 0.396 0.314 0.438 0.577 0.428 0.600 0.360 0.246 0.357
UEF 0.441 0.298 0.412 0.607 0.428 0.601 0.336 0.228 0.329
NeuralQPP 0.232 0.080 0.103 0.209 0.057 0.057 0.152 0.015 0.003
Pclarity NQC 0.088 0.053 0.083 0.428 0.314 0.451 0.084 0.202 0.292
NQAQPP 0.113 0.240 0.359 0.269 0.129 0.160 0.221 0.159 0.234
BERTQPP 0.435 0.181 0.256 0.334 0.143 0.194 0.378 0.273 0.411
qppBERT-PL 0.405 0.171 0.225 0.299 0.131 0.183 0.344 0.224 0.335
Deep-QPP 0.096 0.049 0.065 0.139 0.103 0.106 0.262 0.197 0.291
QPP-PRP 0.181 0.099 0.144 0.203 0.204 0.281 0.181 0.143 0.219
AWGN (Dense-QPP) 0.371 0.254 0.384 0.572 0.414 0.574 0.331 0.199 0.318
Our Approach 0.469 0.319 0.449 0.684 0.439 0.598 0.401 0.298 0.424

Pearson-ρ of 0.564 on DL-Hard, outperforming other metrics within its group. While
CCW shows some promise, especially on DL-2020, it fails to match the consistent and
strong performance of ICC. Interestingly, in DFN, ICC appears to be better suited to
networks with richer document-query interactions. When comparing node-based met-
rics across QFN and DFN, we observe distinct patterns in their effectiveness. Degree
Centrality (DC) emerges as the most consistent performer in QFN, with particularly
strong results across all datasets. For instance, DC achieves a Pearson-ρ of 0.684 on
DL-2019 and 0.469 on DL-Hard in QFN, significantly outperforming other node-based
metrics like SNS and CC. In contrast, while DC also performs well in DFN, its effec-
tiveness slightly diminishes compared to its performance in QFN, with a Pearson-ρ of
0.611 on DL-2019. This suggests that DC is more robust and stable when applied
within QFN, where the focus is solely on query interactions without the inclusion of
documents. While other metrics show variability in their performance when moving
from QFN to DFN, DC maintains a high level of performance across all datasets in QFN

marking it as the chosen metric for the upcoming experiments.

5.1.4 Comparison with Baselines

In Table 3, we compare our best-performing variation from Table 2, i.e., the DC metric
from the node-based group on QFN, with various state-of-the-art unsupervised and
supervised QPP baselines. Based on the results, we make several observations:
(1) We first draw attention to comparing the performance of the last two rows, i.e.,
injecting uniform noise to all queries (AWGN) versus the adaptive disturbance, which
injects different disturbance per query based on its focal network. Comparing AWGN
with the best-performing adaptive disturbance method shows that injecting personal-
ized disturbance per query leads to higher performance than uniformly injecting the
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Table 4: Performance comparison between ADG-QPP and SOTA baselines when pre-
dicting the performance of ANCE dense retriever. All correlations are statistically
significant at α = 0.5 except the italic ones. The highest value in each column is in bold.

DL-Hard DL-2019 DL-2020
P − ρ K − τ S − ρ P − ρ K − τ S − ρ P − ρ K − τ S − ρ

Clarity 0.221 0.230 0.331 0.353 0.237 0.344 0.281 0.215 0.320
QF 0.155 0.118 0.165 0.129 0.098 0.148 0.283 0.257 0.361
NQC 0.235 0.300 0.424 0.504 0.335 0.446 0.442 0.328 0.449
WIG 0.166 0.133 0.189 0.159 0.120 0.186 0.230 0.195 0.275
n(σx) 0.242 0.197 0.275 0.361 0.233 0.347 0.199 0.181 0.262
SMV 0.174 0.290 0.438 0.518 0.337 0.447 0.417 0.328 0.456
UEF 0.229 0.310 0.458 0.520 0.350 0.453 0.458 0.348 0.497
NeuralQPP 0.142 0.063 0.099 0.047 0.004 0.035 0.220 0.087 0.120
Pclarity NQC 0.157 0.172 0.112 0.383 0.247 0.402 0.209 0.308 0.174
NQAQPP 0.334 0.264 0.360 0.115 0.140 0.192 0.147 0.152 0.204
BERTQPP 0.213 0.143 0.049 0.144 0.165 0.232 0.362 0.268 0.381
qppBERT-PL 0.303 0.254 0.342 0.229 0.189 0.247 0.313 0.205 0.280
Deep-QPP 0.154 0.131 0.175 0.183 0.195 0.264 0.220 0.127 0.194
QPP-PRP 0.016 0.004 0.033 0.096 0.086 0.107 0.201 0.170 0.278
AWGN 0.315 0.310 0.456 0.528 0.363 0.462 0.443 0.332 0.483
Our Approach 0.432 0.316 0.423 0.535 0.368 0.466 0.543 0.361 0.521

same disturbance to all queries. This emphasizes that to test the robustness of different
queries fairly and in the same context, different levels of disturbance are needed.
(2) Our proposed approach outperforms all the baselines on all datasets except on
DL-2019 in terms of Spearman-ρ. While our approach achieved a Spearman-ρ of 0.598,
UEF obtained 0.601. We conducted paired t-test significance test to determine whether
this difference is statistically significant. The results show that this difference is not sta-
tistically significant. As such, we can conclude that our proposed approach is capable
of achieving the best performance across all datasets and all evaluation metrics.
(3) Some baselines show competitive performance on specific datasets, but our
approach demonstrates the most robust performance across all three datasets and met-
rics. For example, BERT-QPP achieved a competitive Pearson-ρ of 0.435 on DL-Hard,
compared to our method’s 0.469. However, BERT-QPP’s Kendall-τ was much lower
than ours (0.181 vs. 0.319). The most competitive baseline, UEF, shows similar per-
formance on DL-Hard and DL-2019. However, on DL-2020, the margin is significant,
and our method outperformed UEF by a margin of 0.1 in terms of Spearman-ρ.
(4) Among the unsupervised QPP baselines, those that rely on the distribution of
retrieval scores, such as NQC, SMV, and n(σx), exhibit better performance compared
to methods, such as Clarity and QF, that sometimes fail to achieve statistically signifi-
cant correlations with actual query performance. This observation aligns with previous
studies [38]. Within the supervised QPP baselines, NeuralQPP shows extremely low
correlation values, likely due to its reliance on weak signals from unsupervised meth-
ods, which are not robust indicators for QPP in the context of dense retrievers.
Additionally, NeuralQPP demands large training data volumes and demonstrates poor
performance with limited data availability. Similarly, while Deep-QPP has shown effec-
tiveness with sparse retrievers, it fails to maintain consistent performance with dense
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retrievers. On the other hand, methods like NQAQPP, BERTQPP, and qppBERT-
PL display higher degrees of correlation with actual query performance, although still
showing lower performance than our proposed approach.
(5) Previous studies have shown that neural-based methods generally show reliable
performance when predicting the performance of sparse retrievers such as BM25. How-
ever, they do not perform well when predicting the performance of dense retrievers, as
also observed in [38, 54]. This could be due to the inability to train these methods from
scratch to learn the performance of dense retrievers due to overlapping data between
the ranker and the QPP method, resulting in a performance drop in a zero-shot set-
ting. Therefore, using an unsupervised neural-based method leverages the semantic
space without the need for additional training.
(6) Other than our method, the only other unsupervised neural-based method, QPP-
PRP, shows lower performance compared to our method. For example, on DL-Hard,
we achieved Pearson-ρ and Kendall-τ of 0.469 and 0.319, respectively, while QPP-PRP
only achieved 0.181 and 0.099, respectively.

5.2 Robustness Analysis

5.2.1 The Impact of Dense Retrievers

Here, we study the generalizability of our proposed method in predicting the per-
formance of different dense retrievers. In Table 4, we have shown that our proposed
method outperforms other state-of-the-art baselines when predicting the performance
of S-BERT [50] as a state-of-the-art dense retriever. Here, we aim to determine if it can
also predict the performance of another dense retriever effectively. To do so, we con-
sider Approximate Nearest Neighbor Negative Contrastive Estimation (ANCE) [51],
which has shown high performance on various downstream NLP and IR tasks.

The results in Table 4 indicate that our proposed approach achieves high correla-
tion not only on S-BERT but also on ANCE. This emphasizes the generalizability of
our approach, showing that our method is not limited to a single dense retriever, thus
demonstrating robustness and generalizability. Our proposed method not only outper-
forms all the baselines in predicting the performance of ANCE but also achieves a high
and meaningful range of correlations, which are reliable and significant. On all three
datasets and in terms of all three evaluation metrics, our proposed approach outper-
formed all the baselines except on DL-Hard in terms of Spearman-ρ. UEF, which has
also shown reliable performance in predicting the performance of S-BERT, exhibits
a high correlation for predicting ANCE. In addition, it is noteworthy that although
adding disturbance uniformly to all queries shows a significant correlation with the
actual performance, leveraging the adaptive disturbance method can still improve it
and outperforms AWGN. In summary, while the choice of the dense retriever has been
shown to impact the performance of QPP methods, our method consistently shows
the highest and most stable performance across all datasets for both dense retrievers.

5.2.2 The Impact of Focal Network Pruning

As highlighted in Section 4, when building the focal networks, we prune edges with
weights below a certain threshold ϵ. The threshold ϵ represents the minimum similarity
required to establish a connection between nodes (queries or documents) in the focal
network. Here, we analyze the impact of ϵ on the performance of ADG-QPP. Figure
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Fig. 4: Impact of epsilon on the performance of ADG-QPP. The Epsilon (ϵ) values (X-
axis) vs performance (Kendall’s τ and Pearson’s ρ) of ADG-QPP (Y-axis).

4 presents the Pearson-ρ, Kendall-τ and Spearman-ρ correlations from left to right
across different pruning thresholds (ϵ values) on the three datasets of our experiments.

Higher ϵ results in a sparser focal network, while ϵ = 0 means no edges are pruned.
As depicted in these plots, by pruning more edges, the performance of ADG-QPP

increases. However, after a certain threshold, the performance starts to drop. We
hypothesize that this decline occurs because the focal networks become too sparse,
leaving insufficient meaningful edges. For instance, on all three datasets, we observe
that all three correlations improve with increasing ϵ values to 0.3, beyond which the
performance starts to decline. Choosing an appropriate ϵ value is critical for construct-
ing a robust semantic network. Too low an ϵ value may result in a sparse network,
missing important semantic relationships, while too high an ϵ value may introduce
redundancy by linking semantically distant nodes. The suitable ϵ value balances the
inclusion of meaningful semantic relationships without introducing excessive distur-
bance and redundancy. Having said that and based on these results, we selected an
ϵ value of 0.3 for our experiments, as it achieved a consistent and robust correlation
with the actual performance across all datasets.

6 Concluding Remarks
In this paper, we have introduced a query performance predictor designed specifically
for dense retrieval methods. Our proposed approach is premised on the foundation that
queries that exhibit robustness towards noisy perturbations are likely to be easier to be
addressed by retrieval methods. On this basis, we propose how customized disturbance
can be generated and injected into the embedding representation on a per query basis,
which can then be used for retrieval and the estimation of the performance of the query.
We have shown through extensive experiments on three widely used datasetsthat our
proposed approach is able to exhibit consistently better performance for estimating
the retrieval effectiveness of queries on two different neural retrieval methods.
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