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Bias-Aware Curriculum Sampling For Fair Ranking

Abstract
Neural ranking models are widely used in information retrieval (IR)
to retrieve and rank relevant documents. However, these models
may inherit and amplify biases present in the training data, posing
challenges for fairness and relevance in ranking outputs. In this
paper, we propose a novel curriculum-based training approach
that manages bias exposure throughout the training process. We
design a bias-aware curriculum that stages the exposure of the
model to biased samples during the training stages, allowing the
model to establish a fair relevance baseline. We conduct extensive
experiments across different LLMs and datasets to evaluate the
effectiveness of our approach. Our results demonstrate that our
proposed curriculum-based strategy outperforms state-of-the-art
bias reduction methods in terms of both fairness and relevance,
without sacrificing retrieval effectiveness.
1 Introduction
Neural rankers are central to recent IR systems, enabling efficient
document retrieval across applications [2, 3, 11, 32, 36]. However,
their effectiveness comes with a vulnerability: sensitivity to biases
in training data [24]. Gold standard datasets often contain inher-
ent biases, as human-generated content reflects demographic or
ideological skews [9]. When trained on such data, neural rankers
inherit and may amplify these biases, prioritizing frequent patterns
as relevance indicators [24]. This risks embedding societal biases
in ranking outputs, undermining fairness and trustworthiness.

Existing bias mitigation approaches for neural rankers often
focus on data-level debiasing [6, 8] and modifying learning ob-
jectives [23, 26, 34]. Data-level debiasing adjusts biased samples
before training, reducing explicit biases but risking loss of valuable
information and failing to adapt to bias exposure during training.
Model-level methods introduce regularization terms or bias-specific
penalties [23, 26, 34], embedding bias mitigation in training but
altering relevance learning. In either case, optimizing for both fair-
ness and relevance may lead to degradation of ranking performance
potentially entangling bias within the relevance criteria [15, 22].

While existing approaches focus on data-level debiasing or mod-
ifying training objectives, we hypothesize that an alternative strat-
egy lies in controlling the exposure sequence of biased samples dur-
ing training. Research has shown that the order in which samples
are presented to neural models significantly impacts performance,
a process known as curriculum learning [30]. Depending on the
context, models can benefit from a structured progression of train-
ing data, moving from harder to easier samples or vice versa. In the
case of bias mitigation, our key hypothesis is that controlling the
sequence in which biased samples are introduced could influence
the extent to which biases are embedded in the final model.

While this curriculum-based approach offers a possible alter-
native to traditional debiasing methods [7–9, 34], it presents key
challenges. First, designing an effective curriculum is non-trivial, as
it must prioritize relevance learning while gradually introducing bi-
ased samples. Poor sequencing risks premature bias internalization
or an inadequate relevance foundation. Second, a dynamic sampling
strategy is essential to adjust bias exposure in alignment with the

model’s progress, ensuring training stability and controlled bias
integration. To address these challenges in this paper, inspired by
the works on Curriculum Learning in IR [17, 20, 33], we provide
the following contributions: (i) We formalize the use of curriculum
learning for structured bias exposure in neural rankers, balancing
bias mitigation and relevance learning. (ii) We introduce a bias-
aware curriculum that sequences training samples based on bias
scores, progressively incorporating staged exposure to biased sam-
ples. (iii) We propose a dynamic sampling strategy that adjusts
sampling probabilities based on bias scores, ensuring gradual expo-
sure without compromising convergence. (iv)We conduct extensive
experiments demonstrating the effectiveness of our approach com-
pared to existing bias mitigation techniques.

2 Problem Formulation
Let Q = {𝑞1, 𝑞2, . . . , 𝑞𝑁 } represent a set of queries andD = {𝑑1, 𝑑2,
. . . , 𝑑𝑀 } denote a collection of documents. The objective of a neural
ranker Φ is to identify and rank the most relevant documents from
D for each query 𝑞𝑖 based on a relevance score 𝑠 (𝑞𝑖 , 𝑑 𝑗 ), where
𝑑 𝑗 ∈ D. We consider training samples to be structured as S =

{(𝑞𝑖 , 𝑑+𝑖 𝑗 , 𝑑
−
𝑖𝑘
)}, where 𝑑+

𝑖 𝑗
denotes a relevant (positive) document

and 𝑑−
𝑖𝑘

represents an irrelevant (negative) document for a given
query 𝑞𝑖 . The model Φ is trained to maximize the relevance score
difference between positive and negative examples.

Training datasets often contain biases that subtly influencemodel
learning [4, 10, 18, 35]. A document 𝑑 𝑗 may encode biases, such as
inclination towards a certain gender, quantifiable via a bias scor-
ing function, Ψ(𝑑 𝑗 ) [1, 21, 23, 24]. These biases risk entangling
with relevance signals, leading the model to misinterpret biased
patterns as relevance indicators, compromising ranking fairness.
Mitigating this requires (1) maintaining high ranking effectiveness,
Λ(Q), while minimizing bias in outputs, Π(Q); and (2) sequencing
training samples to positively shape learning dynamics.

Curriculum Learning Process. To decouple bias from the
model’s learning of relevance, we structure the training process as
a two-stage procedure. In the first stage, Initial Relevance Learning,
the model Φ is trained on samples Slow-bias (or Shigh-bias) depend-
ing on the direction of the curriculum, which consist of documents
with low (or high) bias scores, Ψ(𝑑+

𝑖 𝑗
) < 𝜖 , where 𝜖 is a predefined

threshold. In the second stage, Gradual Bias Introduction, the model
is progressively exposed to samplesShigh-bias (orSlow-bias) in the al-
ternative case) with differing degrees of bias. This gradual exposure
allows the model to generalize its understanding of relevance while
enhancing robustness against biases. Let Λ(Q) be a metric that
evaluates the ranking effectiveness on a set of queries Q, and Π(Q)
denote a metric that quantifies bias in the ranked outputs for Q.
Our learning objective can be expressed as finding the parameters
𝜃 of the model Φ such that:

argmax
𝜃

Λ(Q) subject to Π(Q) → 0. (1)

where Λ(Q) is comparable to baselines to maintain performance.
1
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Figure 1: Sampling probs for 10 buckets, with 𝜎 = {0.5, 1, 2, 3} .
3 Methodology
We propose a training strategy to achieve the proposed learning ob-
jective, comprising: (i) an adaptive curriculum guiding the training
sequence with bias-aware sampling, (ii) a controlled probability dis-
tribution to balance exposure, and (iii) a learning objective aligning
relevance learning with fairness.

Bias-Aware Curriculum Design. A key challenge in bias-
aware learning is preventing models from misinterpreting biases
for relevance signals. Building on curriculum learning principles
[5, 16, 27, 31], we hypothesize that introducing less (or high, depend-
ing on curriculum direction) biased samples earlier in training may
shape the model’s understanding of bias and possibly mitigates bias.
To achieve this, we define a bias scoring function, Ψ(𝑑+

𝑖 𝑗
), quanti-

fying bias in each document 𝑑+
𝑖 𝑗
. This score informs our sampling

strategy, adjusting document selection probabilities. Prioritizing
low (or high) bias samples early impacts the risk of bias influencing
initial learning, potentially creating a fairer relevance baseline. As
training progresses, higher (or lower) bias samples are gradually
introduced, refining relevance without embedding bias.

Dynamic Sampling Strategy with Bias Scoring. We propose
that the bias score of each relevant document 𝑑+

𝑖 𝑗
may serve as a

key factor in determining the training sequence. Since relevant doc-
uments shape the model’s understanding of relevance for a query
𝑞, any bias within them risks being misinterpreted as a relevance
signal. If only high (or low) bias documents appear early in training,
the model may internalize these degrees of bias as relevance indi-
cators. To mitigate this, we propose a controlled sampling strategy
where the degree of bias of a document determines its selection
probability in the early phases. This encourages the model to first
focus on learning relevance and gradually engage with the concept
of bias through its exposure to samples with progressive degrees
of bias.

To quantify the bias within each relevant document in a training
sample 𝑆 = (𝑞𝑖 , 𝑑+𝑖 𝑗 , 𝑑

−
𝑖𝑘
), we compute a bias score for each relevant

document 𝑑+
𝑖 𝑗
, denoted as Ψ(𝑑+

𝑖 𝑗
). This score reflects the degree of

bias present in the document and serves as the primary metric for
ranking training samples based on their degree of bias. Specifically,
the bias score Ψ is a function mapping each relevant document 𝑑+

𝑖 𝑗

to a real-valued score, defined as:

Ψ : D+ → R, Ψ(𝑑+𝑖 𝑗 ) = bias score of 𝑑+𝑖 𝑗 , 𝑑+𝑖 𝑗 ∈ D+

Figure 2: The Bias-performance trade-off.

where D+ represents the set of all relevant documents.
Given the bias score of each training sample, the samples in 𝑆 are

sorted, forming an ordered set 𝑆sorted. This arrangement controls
the sequence of sample exposure. The ordered set is then divided
into discrete buckets 𝐵𝑖 , each containing a fixed number of samples.
A function 𝛽 (𝑆, 𝑏) partitions 𝑆sorted into 𝑏 equally sized buckets:
𝐵𝑖 = 𝛽 (𝑆sorted, 𝑏) . Each bucket has size 𝑏 with a total of 𝑁 equally
sized buckets. Buckets group samples by bias level, enabling distinct
sampling probabilities. This approach ensures controlled exposure,
prioritizing samples with different bias levels throughout training.

Adaptive Probability Distribution for Sampling.A sampling
probability 𝑃𝐵𝑖

is assigned to each bucket 𝐵𝑖 to regulate model ex-
posure to biased data. For instance, in order to ensure buckets
containing higher bias samples have a lower sampling probabil-
ity earlier in the training process, 𝑃𝐵𝑖

can be defined as inversely
proportional to the average bias score 𝑥𝑖 of bucket 𝐵𝑖 :

𝑃𝐵𝑖
∝ 1

𝑥𝑖
, where 𝑥𝑖 =

1
|𝐵𝑖 |

∑︁
𝑑+
𝑖 𝑗
∈𝐵𝑖

Ψ(𝑑+𝑖 𝑗 ). (2)

where |𝐵𝑖 | is the number of documents in 𝐵𝑖 , and Ψ(𝑑+
𝑖 𝑗
) is the

bias score of document 𝑑+
𝑖 𝑗
. To refine the sampling framework,

we model the bucket sampling probabilities 𝑃𝐵𝑖
using a Gaussian

distribution, ensuring a smooth probability curve. Adjusting the
distribution parameters controls the spread, assigning higher proba-
bilities to differing buckets. The Gaussian function can be defined as
𝑃𝑋 (𝑥𝑖 ) = 1

𝜎
√
2𝜋

exp
(
− (𝑥𝑖−𝜇 )2

2𝜎2

)
where 𝑥𝑖 is the average bias score

for bucket 𝐵𝑖 , 𝜇 defines the distribution center, and 𝜎 controls its
spread. To ensure probabilities sum to one, we normalize them. All
samples within a bucket 𝐵𝑖 share the same probability 𝑃𝐵𝑖

, ensur-
ing consistent bias management. A smaller 𝜎 sharpens the peak,
emphasizing on the earlier buckets in training, while a larger 𝜎
smooths the transition across bias levels.

As an illustrative example, Figure 1 shows the sampling probabil-
ity distribution across ten buckets, demonstrating how the Gaussian

2
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Table 1: Bias & retrieval effectiveness on the 215 query set.
cutoff @10

Models MRR ARaB-tc↓ ARaB-tf↓ ARaB-bool↓ NFaiR ↑ liwc ↓
Bias-Aware Loss [26] 0.1820 0.3419 0.1492 0.1176 0.8209 0.9202
Light-Weight-Sampling [8] 0.1823 0.2017 0.0938 0.0782 0.9087 0.5636
CODER [34] 0.0014 0.0260 0.0171 0.0205 0.9649 0.2998
ADVBERT [23] 0.1753 0.1975 0.1054 0.1113 0.8747 0.7850
Our Approach 0.1989 0.0773 0.0376 0.0322 0.9126 0.5057

cutoff @20
Models MRR ARaB-tc↓ ARaB-tf↓ ARaB-bool↓ NFaiR ↑ liwc ↓
Bias-Aware Loss [26] 0.1873 0.2783 0.1169 0.0899 0.8519 0.6650
Light-Weight-Sampling [8] 0.1876 0.1618 0.0746 0.0616 0.9168 0.4681
CODER [34] 0.0001 0.0227 0.0148 0.0178 0.9650 0.2828
ADVBERT [23] 0.1799 0.1144 0.0653 0.0710 0.8795 0.6432
Our Approach 0.2046 0.0632 0.0308 0.0265 0.9212 0.4355

Table 2: Bias & retrieval effectiveness on the 1,765 query set.
cutoff @10

Models MRR ARaB-tc↓ ARaB-tf↓ ARaB-bool↓ NFaiR ↑ liwc ↓
Bias-Aware Loss [26] 0.2591 0.2109 0.0949 0.0755 0.7289 1.5142
Light-Weight-Sampling [8] 0.2558 0.1540 0.0764 0.0680 0.8204 1.1500
CODER [34] 0.0001 0.0646 0.0371 0.0421 0.8404 0.7199
ADVBERT [23] 0.2019 0.4222 0.2260 0.2363 0.7132 1.6427
Our Approach 0.2671 0.0095 0.0062 0.0090 0.8382 1.0275

cutoff @20
Models MRR ARaB-tc↓ ARaB-tf↓ ARaB-bool↓ NFaiR ↑ liwc ↓
Bias-Aware Loss [26] 0.2653 0.1644 0.0730 0.0574 0.7578 1.2169
Light-Weight-Sampling [8] 0.2622 0.1192 0.0587 0.0516 0.8313 0.9614
CODER [34] 0.0014 0.0674 0.0388 0.0440 0.8407 0.6467
ADVBERT [23] 0.2106 0.2731 0.1475 0.1554 0.7424 1.2933
Our Approach 0.2737 0.0173 0.0040 0.0047 0.8478 0.8684

model regulates data exposure. In this case, lower-bias buckets re-
ceive higher sampling probabilities, while higher-bias buckets have
progressively lower ones. We hypothesize that this structured ap-
proach promotes fairness and robustness during training. We note
that in this approach, all training instances will eventually be sam-
pled. Lower initial sampling probabilities do not exclude samples
but delay their introduction.

Progressive Learning Objective. The selected samples 𝑆 =

(𝑞𝑖 , 𝑑+𝑖 𝑗 , 𝑑
−
𝑖𝑘
) are then fed into a cross-encoder neural ranker. The

model calculates relevance scores for both the relevant document
𝑑+
𝑖 𝑗

and the irrelevant document 𝑑−
𝑖𝑘

in relation to the query 𝑞𝑖 :
𝑠 (𝑞𝑖 , 𝑑𝑖 𝑗 ) = Φ(𝑞𝑖 ⊕ 𝑑𝑖 𝑗 ). The model is trained with a Max Margin
Loss [13] calculated as:

𝐿 =
1
𝑛

𝑁 +∑︁
𝑖=1

𝑁 −∑︁
𝑗=1

max(0,𝑚 − Φ(𝑞, 𝑑𝑖+) + Φ(𝑞, 𝑑 𝑗 −)) (3)

4 Experiments
Research Questions. Our experiments are structured around
four Research Questions (RQs): RQ1. Does curriculum sampling
effectively mitigate biases in neural rankers? Specifically, we in-
vestigate whether structuring the training sequence based on bias
levels can reduce bias in ranking outputs while maintaining model
effectiveness. RQ2. How does the model perform relative to the
state-of-the-art bias reduction baseline methods? RQ3. Does the
choice of probability distribution hyperparameters for bias-aware
sampling influence the model’s ranking performance and bias miti-
gation effectiveness? RQ4. Is the model’s performance consistent
across different language models? We run experiments on 3 lan-
guage models, BERT-mini [14, 28], MiniLM [29], and ELECTRA
[12] to assess the generalizability of our approach across LLMs.
Datasets and Setup. We train the neural rankers on the MS-
MARCO passage ranking dataset [19], with 200,000 queries and 8.8
million passages. A random sample of 3,000,000 triples is used for
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Figure 3: Impact of bucket size on model performance.
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Figure 4: Impact of 𝜎 on model performance.

training over one epoch, using the Adam optimizer with a sigmoid
activation. We follow OpenMatch [25] architecture, implementa-
tion, and hyperparameters. Full implementation details and source
code are available on GitHub: https://shorturl.at/e3ggk.
Bias Measure and Bias Test Datasets. We consider ARaB-tf [24]
as the function Ψ in Equation 2 for measuring bias of the documents.
To evaluate performance and bias reduction, we focus on gender
bias using two bias query datasets: (a) Gender-neutral queries: These
queries assess whether the model introduces gender stereotypes in
neutral contexts. We use the query set from [23], which includes
1,765 gender-neutral queries, selected from MS MARCO queries.
(b) Socially sensitive queries: This set includes 215 queries that may
contribute to societal inequality if bias is present.
Evaluation Metrics. For ranking, we use Mean Reciprocal Rank
(MRR) [19]. For bias, we use three metrics:Average Rank Bias (ARaB)
[24], which quantifies biased word occurrences in documents us-
ing Term Count (TC), Term Frequency (TF), and Boolean metrics;
NFaiRR [23], measuring document-level fairness, with higher values
indicating fairer rankings; and Linguistic Inquiry and Word Count
(LIWC) [21], which assesses gender mentions in text as suggested
by [9].
Baseline Methods. To benchmark our approach, we compare it
against five established baselines representing diverse bias mitiga-
tion strategies: (1) AdvBert [23] uses adversarial debiasing in the
ranker’s intermediate layers; (2) Bias-aware Loss [26] integrates
a bias penalty in the loss function for targeted bias reduction during
training; (3) CODER [34]0 applies a neutrality regularization term
in a transformer model; (4) Light-Weight Sampling Strategy
(LWS) selects biased documents as negative samples, training the
model to recognize and mitigate bias.
Findings. In RQ1, we assess whether our proposed curriculum
sampling approach reduces bias. We conduct experiments under

3
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Figure 5: Generalizability of our proposed approach on different LLMs.
five conditions: (1) shuffled training (no curriculum), (2) High to
Low bias curriculum sampling, (3) Low to High bias curriculum
sampling, (4) training on neutral samples (bias-free), and (5) training
on biased samples. Figure 2(a) shows the trade-off between fairness
(NFaiR [23]) and effectiveness (MRR). Training on biased samples
yields the worst fairness and effectiveness, performing worse than
the shuffled baseline. Neutral-sample training improves fairness but
reduces performance by up to 10%. The High to Low strategy im-
proves fairness but still lowers effectiveness (up to 7%). In contrast,
our proposed Low to High curriculum strategy achieves the best
fairness-effectiveness trade-off, as further confirmed in Figure 2(b),
where lower LIWC values indicate reduced bias. Empirical results
show that Low to High curriculum sampling best balances bias re-
duction and retrieval effectiveness. By prioritizing low-bias samples
early, the model establishes a robust relevance foundation before
gradually incorporating higher-bias samples. This controlled expo-
sure prevents early bias internalization, allowing the model to learn
relevance signals more effectively. Without loss of generality and
to save space, we adopt this strategy for reporting subsequent RQs.
In RQ2, we compare the performance of our proposed approach
with the state-of-the-art baseline methods. Tables 1 and 2 show this
comparison. We observe that our proposed method outperforms the
bias-aware loss, Light-Weight-Sampling, and ADVBERT methods
in terms of bias reduction, while having higher MRR. The other
baseline method, CODER, although is able to reduce the bias more
than our proposed approach, but it significantly reduces retrieval
effectiveness to 0.0014 for cut-off 10, and 0.0001 for cut-off 20 on
the 215 query set, effectively making unhelpful retrieval.
In RQ3, we examine the impact of probability distribution parame-
ters on model performance, focusing on bucket size 𝑏 and standard
deviation 𝜎 in sampling probabilities. Figure 3 shows the effect of
varying bucket sizes using a Normal Distribution (𝜇 = 0, 𝜎 = 1)
and BERT-mini as the baseline. The analysis covers two query sets
(215 and 1,765 queries) at cut-offs 10 and 20. The results reveal:
(1) Bias Reduction: Increasing 𝑏 from 5 to 20 reduces bias across
all metrics (ARaB-TC, ARaB-TF, ARaB-Bool, LIWC, and NFaiR).
(2) Effect of Larger Buckets: Larger bucket sizes further enhance
bias reduction, with 𝑏 = 20 outperforming 𝑏 = 5. (3) No-Bucket

Strategy: Treating each sample as an individual bucket maximizes
performance and minimizes bias, aligning with the trend that larger
bucket sizes reduce bias more effectively. Figure 4 examines the
effect of varying 𝜎 on model stability and bias metrics. Our results
show (i) MRR Stability: MRR remains stable across sigma values
( 0.27 on 1,765 queries, 0.22 on 215 queries), showing minimal im-
pact on retrieval effectiveness. (ii) Consistency in Bias Metrics: Bias
measures (ARaB-TC, ARaB-TF, ARaB-BOOL, LIWC, NFaiR) exhibit
less than 5% variation across sigma values.

In RQ41, we assess whether our approach generalizes across
different LLMs while reducing bias and maintaining retrieval effec-
tiveness. We repeat experiments with MiniLM and ELECTRA along-
side BERT-mini. Since Figure 3 indicates the best results occur in
the no-bucket scenario, we train models with no bucket, and 𝜎 = 1.
Figure 5 presents bias reduction and ranking performance across
the LLMs. The first, second, and third rows show results for BERT-
mini, MiniLM, and ELECTRA, respectively. Metrics to the left of the
dotted line measure bias (lower is better), while those on the right
assess fairness and effectiveness (higher is better). Our approach
significantly reduces bias compared to the baseline (no curriculum
sampling) while increasing the NFaiR fairness metric. Additionally,
MRR remains comparable to the original model, confirming that
bias reduction does not compromise ranking effectiveness in our
proposed curriculum sampling approach.
5 Concluding Remarks
In this paper, we introduced a curriculum learning approach for ad-
dressing bias in neural rankers. By structuring the training process
through a staged exposure to biased samples, we enabled neural
rankers to learn relevance while minimizing the risk of embedding
biases into their trained model. Our proposed bias-aware curricu-
lum and dynamic sampling strategy achieved gradual bias exposure
in a controlled, systematic manner, supporting both model stability
and performance. Our experimental results demonstrated that this
approach not only improved bias mitigation but also enhanced rank-
ing effectiveness, underscoring its potential for advancing fairness
in information retrieval systems.

1All results are statistically significant based on a paired t-test with a p-value < 0.05.
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