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Abstract
Large Language Models (LLMs) exhibit strong capabilities across
various Information Retrieval (IR) and natural language process-
ing tasks. However, they are highly sensitive to prompt variations,
where slight rephrasings can significantly alter responses, leading
to inconsistent or incorrect outputs. This variability poses chal-
lenges for response reliability in real-world applications. Inspired
by Query Performance Prediction (QPP) in IR, we focus on Prompt
Performance Prediction (PPP), which estimates whether an LLM
will generate a correct response for a given prompt before execution.
We propose VAP3 (Variation-Aware Prompt Performance Prediction),
a novel pre-generation PPP approach that integrates prompt varia-
tions with adversarial training to enhance robustness against trivial
modifications and better capture prompt sensitivity. Evaluating
VAP3 against LLM-based self-evaluation, QPP-inspired baselines,
and supervised classification models on the PromptSET-HotpotQA
and PromptSET-TriviaQA datasets, we demonstrate that VAP3 con-
sistently outperforms all baselines, achieving stable and reliable
performance across datasets.

1 Introduction
Large Language Models (LLMs) have recently demonstrated strong
performance in question answering, information retrieval (IR), and
broader natural language processing tasks [12, 15, 32, 38, 50, 60].
Their ability to generate fluent and contextually relevant responses
has led to their widespread adoption across various applications
[8, 26, 29, 56]. However, a significant challenge remains: prompt
sensitivity, the phenomenon where negligible changes in the word-
ing or structure of a prompt can lead to dramatically different
responses [14, 39, 61]. There have been many attempts to study
the impact of prompting on the output of different tasks [37, 55].
For example, in the IR community, at the LLME4val workshop
at SIGIR 2024 [44] and for the task of LLM-based relevance judg-
ment, different research groups were asked to formulate a prompt
for a well-understood objective of providing relevance judgments.
Despite all participants being familiar with the task, sharing a back-
ground in computer science, and having experience with LLMs, the
prompts they generated for the same language model resulted in
significantly different performance outcomes and varying levels of
agreement with human annotations [45]. This inconsistency raises
concerns about the reliability and robustness of LLMs, particularly
in domains that demand high precision and accuracy [53].

The IR community has already extensively researched the dis-
tinct yet conceptually similar task of Query Performance Prediction
(QPP), which aims to estimate the effectiveness of a query without
having access to ground truth [3, 18, 22, 28]. Inspired by QPP, we
focus on Prompt Performance Prediction (PPP) as the task of predict-
ing whether an LLM will effectively generate a correct response
to a given prompt. Here, we assume that the effectiveness of a
prompt is quantifiable and that a correct response exists. Similar
to QPP, which is categorized into pre-retrieval and post-retrieval
strategies [11], PPP can also be divided into pre-generation PPP, and

post-generation PPP. In QPP, post-retrieval methods benefit from
additional contextual information, i.e., retrieved results, allowing
for more accurate predictions [17, 34, 41]. We expect a similar trend
in PPP, where post-generation approaches would provide more
reliable predictions compared to pre-generation ones. However,
pre-generation PPP is particularly valuable and it has more ap-
plications in real-world scenarios because it enables performance
estimation before generation occurs. This can significantly reduce
computational cost and save system generation time. Additionally,
it allows the system to make informed decisions before presenting
an answer to the user. For example, it can guide users or the system
to refine prompts [42, 59], ask clarification questions [4, 48], or even
select a different LLM to generate the response before execution
[52].

To our knowledge, there has been limited research on this topic.
In [10, 43], the authors explored prompt performance prediction
for image generation. Some studies have explored LLM-based self-
evaluation strategies, where the model assesses its own ability to
respond to a given prompt [2, 25, 31], but extensive research in this
area is still lacking. Additionally, efforts have been made to quantify
and understand prompt sensitivity [13, 62]. For instance, Chatter-
jee et al. [13] introduced a metric to measure prompt sensitivity,
analyzing how slight variations in prompts affect LLM responses.
Their findings indicate that certain LLMs exhibit inherent sensitiv-
ity, leading to inconsistent or incorrect outputs even with minor
modifications. Overall, predicting whether a prompt will effectively
satisfy a user’s information need remains a challenging task.

A recent study introduced PromptSET (Prompt Sensitivity Evalu-
ation Task) [47], a specifically designed to examine prompt sensitiv-
ity. Constructed fromHotpotQA and TriviaQA benchmarks [33, 57],
PromptSET comprises a diverse collection of short-form question-
answer pairs. Each question is accompanied by slight variations
that preserve the same underlying information need. The dataset
also includes labels indicating whether an LLM correctly answered
each prompt variation. The study aimed to identify prompts that
are more sensitive to variations and determine which reformula-
tions of the same information need can be consistently answered
by the same LLM. We adopt PromptSET for the PPP task. In ad-
dition to providing a large-scale question-answering dataset with
LLM-generated responses, PromptSET offers structured prompt
variations. These variations are particularly valuable for PPP, en-
abling us to analyze factors influencing prompt effectiveness and
develop robust prediction models.

In addition, Razavi et al. [47] have attempted to apply QPP-
inspired baselines on the PromptSET dataset. Their findings indi-
cate that unsupervised QPP methods perform poorly on predicting
prompt sensitivity, likely due to the complexity of language gen-
eration compared to retrieval. However, supervised approaches
demonstrated better performance, suggesting that learned repre-
sentations are crucial for effective prediction. Building on these
insights, we propose a PPPmethod that integrates prompt variations
with adversarial training to effectively predict prompt performance.
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Our PPP method is inspired by findings in [47], which show that
when an original prompt is answered correctly, its variations are
also likely to receive correct responses. Similarly, LLMs generate
more accurate responses for prompts with high similarity to their
variations [20, 47], indicating a direct correlation between prompt-
variation similarity and response correctness. Incorporating these
variations enhances performance estimation and better captures
prompt sensitivity. A similar principle in QPP uses query perturba-
tions to estimate retrieval performance [1, 51], where comparing
retrieved results from original and perturbed queries provides a
strong retrieval effectiveness signal [59]. These insights motivate
ourmulti-prompt learning framework, leveraging prompt variations
to improve prediction accuracy.

We propose VAP3 (Variation-Aware Prompt Performance Pre-
diction), a novel approach to pre-generation PPP that moves be-
yond treating prompts in isolation. By incorporating prompt vari-
ations, VAP3 more effectively captures sensitivity patterns, lead-
ing to more accurate performance predictions. Additionally, our
transformer-based model leverages adversarial training to enhance
robustness against trivial modifications, ensuring that only slight
prompt differences are taken into consideration when predicting
prompt performance. We systematically evaluate VAP3 against
both LLM-based and QPP-inspired baselines using PromptSET, a
dataset derived from HotpotQA and TriviaQA. Experimental re-
sults show that VAP3 significantly outperforms existing methods,
providing a more reliable approach for predicting prompt effec-
tiveness. To ensure reproducibility, we have released our code at
https://anonymous.4open.science/r/vap3-3042.

2 Proposed Approach
Problem Definition. Let 𝑝 be a prompt and let G be a language

model that generates a response G(𝑝) for 𝑝 . We assume that each
prompt 𝑝 has an associated set of ground truth responses 𝑅𝑝 . The
generated response G(𝑝) is considered correct if: G(𝑝) ∈ 𝑅𝑝 . We
define the prompt performance predictor 𝜇 (𝑝) as a function that
quantifies the likelihood of G(𝑝) ∈ 𝑅𝑝 , i.e., 𝜇 (𝑝,G(𝑝)) → [0, 1]

Transformer-Based Prediction Model. In the context of QPP in
IR [11], several efforts have been made to develop retrieval per-
formance predictors using neural models [27, 49, 58]. Building on
these approaches, Khodabakhsh et al. [35] introduced a predictor
namely BERTPE, denoted as 𝜇, defined as:

𝜇 (𝑝) = 𝜎
(
𝑊2 · 𝜙 (𝑊1

−→
ℎ (𝑝)[CLS] + 𝑏1) + 𝑏2

)
(1)

where:
−→
ℎ (𝑝)[CLS] is the final hidden representation of the special

[𝐶𝐿𝑆] token of the prompt 𝑝 from a transformer encoder, e.g., BERT
[19], and𝑊1,𝑊2 are trainable weight matrices, and 𝑏1, 𝑏2 are bias
terms, 𝜙 (·) is a non-linear activation function, such as ReLU, and
finally, 𝜎 (·) is the sigmoid function, ensuring the output is in the
range of [0, 1]. The prediction model is trained using a binary cross-
entropy loss:

L𝑝𝑝𝑝 (𝜃 ) = −
∑︁
𝑝∈T

𝑦𝑝 log 𝜇 (𝑝) + (1 − 𝑦𝑝 ) log(1 − 𝜇 (𝑝)) (2)

Prompt Variations. To account for prompt sensitivity, we utilize
variations of each prompt to assess performance consistency. In the

context of the PromptSET dataset, 𝑣 (𝑝) is defined as a set of varia-
tions for a given prompt 𝑝 , ensuring that each variation 𝑣𝑝𝑖 ∈ 𝑣 (𝑝)
maintains the same intent while differing in phrasing or structure.
For each prompt 𝑝 , an LLM is used to generate a set of |𝑣 (𝑝) | prompt
variations (in order of 10). To ensure meaningful transformations,
each variation 𝑣𝑝𝑖 is required to preserve the original information
need while maintaining a semantic similarity above a threshold
𝜏 , i.e., Sim(𝑝, 𝑣𝑝𝑖 ) > 𝜏 . This step ensures that generated variations
retain the intent of the original prompt without introducing am-
biguity. Variations that fail to meet the similarity threshold 𝜏 or
deviate from the original intent are discarded.

Using variations of prompts introduced in PromptSET, we can
consider T to represent the training dataset, which consists of
prompts 𝑝 ∈ 𝑃 , their variations 𝑣 (𝑝), and the corresponding ground
truth labels 𝑦𝑝 i.e.,:

T = {[𝑝𝑖 , 𝑦𝑝𝑖 ] | 𝑝𝑖 ∈ {𝑝 ∪ 𝑣 (𝑝)∀𝑝 ∈ 𝑃}} (3)

Each training sample 𝑡𝑖 ∈ T is accompanied by a binary label
𝑦𝑝𝑖 that indicates whether the generated response is correct. 𝑦𝑝𝑖 is
only 1 if G(𝑝) ∈ 𝑅𝑝 . This formulation ensures that the model learns
to predict whether the response 𝐺 (𝑝) produced by the language
model G aligns with the ground truth response set 𝑅𝑝 .

In this work, we extend the input of the predictor 𝜇 beyond
a standalone prompt 𝑝 by incorporating its variations 𝑣 (𝑝). As
discussed in the introduction, leveraging prompt variations and
modeling their interactions with the original prompt can enhance
performance prediction. To this end, we propose incorporating
prompt variations directly into the prediction model. Instead of
making independent predictions for each prompt, we estimate the
performance by considering both 𝑝 and its variations, formulating
𝜇 (𝑝) as the expected value over all pairs of 𝑝 and its variations:

𝜇 (𝑝) = E𝑣𝑝𝑖 ∼𝑣 (𝑝 )
[
𝜎 (𝑊2 · 𝜙 (𝑊1

−→
ℎ (𝑝 ⊕ 𝑣𝑝𝑖 )[CLS] + 𝑏1) + 𝑏2)

]
(4)

Here,
−→
ℎ (𝑝 ⊕ 𝑣𝑝𝑖 )[CLS] is the final hidden representation of the

[CLS] token obtained from encoding the concatenation of the
prompt 𝑝 and its variation 𝑣𝑝 , separated by a special token [SEP].
E𝑣𝑝∼V(𝑝 ) denotes the expected value taken over all variations
𝑣𝑝𝑖 ∈ 𝑣 (𝑝). The network applies a non-linear transformation 𝜙 (·)
followed by a sigmoid activation 𝜎 (·) to produce the probability es-
timate. This approach ensures that instead of making independent
predictions for each prompt variation, we model the joint impact
of variations on prompt performance.

Additionally, we want to make our model aware of trivial modi-
fications, such as typos or minor word substitutions, that do not
significantly impact LLM responses [9]. A naïve prediction model
may overfit to these minor variations, misinterpreting them as
meaningful differences and introducing unnecessary sensitivity. To
mitigate this issue, we incorporate an adversarial training module
that systematically refines the training process by reducing the
model’s sensitivity to irrelevant changes [30, 40]. In addition, this
ensures that the model can generalize beyond seen prompt vari-
ations. To achieve this, we employ the Fast Gradient Sign Method
(FGSM) [24] to perturb the token embeddings and generate adver-
sarial prompts. Given an input prompt 𝑝 , we define its adversarial
version 𝑝 as:

𝑝 = 𝑝 + 𝜖 · sign(∇𝑝L(𝜃 )) (5)

https://anonymous.4open.science/r/vap3-3042
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Table 1: Examples of Original prompts and their variations from PromptSET-HotpotQA and PromptSET-TriviaQA dataset. The
variations were generated by LLaMA 3.1. On average each prompt is accompanied by 9 different variations.

Original Prompt Variation 1 Variation 2
What party is Sarah Coburn’s father a member of? Identify the political affiliation of Sarah

Coburn’s dad.
Determine the parental politics of Sarah Coburn.

1998 was the Chinese year of which creature? What is the zodiac animal for the Chi-
nese year that started in 1998?

Which animal represents the Chinese New Year that
began in 1998 according to the traditional calendar?

Which Monkee was born in Maryland but grew up in
Washington DC?

Who is the Monkee with a connection
to the nation’s capital?

Can you name the Monkee with roots in Washington
DC?

where 𝜖 is the perturbation factor that controls the intensity of
adversarial modifications. ∇𝑝L(𝜃 ) is the gradient of the loss func-
tion with respect to the input embeddings and sign(·) extracts the
direction of gradient updates to perturb the most sensitive tokens.

We train the model using both original and adversarial variations.
Given a batch of training data T , we extend the dataset to include
adversarial perturbations:

Tadv = T ∪ {[𝑝,𝑦𝑝 ] | 𝑝 ∈ T } (6)

The adversarial loss is computed similar to the PPP loss in Equation
2 but on perturbed versions, i.e.,:

L𝑎𝑑𝑣 (𝜃 ) = −
∑︁

�̃�∈T𝑎𝑑𝑣
𝑦𝑝 log 𝜇 (𝑝) + (1 − 𝑦𝑝 ) log(1 − 𝜇 (𝑝)) (7)

The final training objective combines both the standard and
adversarial losses where 𝜆 is a hyperparameter controlling the
contribution of adversarial training:

Ltotal = L𝑝𝑝𝑝 + 𝜆Ladv (8)

3 Experiments
3.1 Dataset
We evaluate our proposed approach using PromptSET generated by
LLaMA [47]. PromptSET is derived from two widely used question-
answering benchmarks: HotpotQA[57] and TriviaQA [33]. It con-
sists of original prompts and their systematically generated vari-
ations, ensuring that all variations retain the same underlying in-
formation need while differing in surface form. Each prompt and
its variations are labeled based on whether an LLM successfully
generates the expected answer. This dataset provides a robust large-
scale evaluation setting for prompt performance prediction. Table
1 shows some prompts and their variations in PromptSET dataset.
These variations are generated by LLaMA 3.1 after being prompted
to generated alternative variations for the original prompt. Prompt-
SET comprises 8,028 original prompts in the training set and 3,441
original prompts in the test set, each accompanied by nine auto-
matically generated variations by LLaMA. The questions and their
variations were then answered by the LLM and the responses were
compared against human-annotated answers from HotpotQA and
TriviaQA. A variation is labeled correct if the LLM-generated re-
sponse matches the expected answer. This dataset allows for the
evaluation of pre-generation PPP, enabling models to predict perfor-
mance before response generation. For more details on this dataset,
we refer to the original paper.

3.2 Baselines
Since there is no existing method specifically designed for PPP, we
explore a set of potential QPP and LLM-inspired baseline. We note
that corpus-based qpp metrics are inapplicable in our scenario since

no document collection is available. Instead, we focus on query-only
metrics, which rely on prompt terms (and their variations).
1. LLM-Based Self-Evaluation: In this baseline, the LLM is explicitly
asked to predict its ability to generate a correct response to the given
prompt. This self-evaluation strategy has been employed previously
[2, 25, 31] and is known for exhibiting overconfidence, as LLMs tend
to overestimate their own reliability. This is implemented using
LLaMA 3.1, where the model outputs a confidence score reflecting
its perceived capability to produce an accurate response.
2. Text-Based Classification: This baseline introduced in PromptSET,
frames PPP as a binary text classification task, where a classifier is
trained to predict whether a given prompt will be successfully. The
baseline fine-tunes a BERT-based classifier from simple transform-
ers [46] that learns from different prompts and their corresponding
answerability labels.
3. Specificity-Based QPP Methods: Inspired by specificity metrics
[5–7], we explore prompt specificity as a proxy for performance.
The intuition is that specific prompts, being less ambiguous, are
easier to address, whereas broader prompts introduce interpretative
uncertainty. We implement four neural-based specificity QPP meth-
ods—Closeness Centrality (CC), Degree Centrality (DC), Inverse
Edge Frequency (IEF), and PageRank—quantifying the centrality
of prompt terms in the embedding space, with the hypothesis that
higher specificity correlates with greater answerability.
4. Clarity Score: In QPP, the query clarity hypothesis posits that
queries with lower Kullback-Leibler (KL) divergence from a docu-
ment corpus retrieve more relevant results [16]. Inspired by this,
we introduce the Prompt Clarity Score, which quantifies the KL
divergence between a prompt and its variations. A low divergence
indicates semantic consistency across rephrasings, suggesting a
well-defined concept that is easier for an LLM to address. We evalu-
ate KL divergence as a predictor of prompt performance. 5. Entropy:
Entropy has been used in prior work as a signal for detecting hal-
lucination in LLM-generated responses [23, 36, 54], where higher
entropy indicates greater uncertainty in the model’s predictions.
The underlying intuition is that a prompt with higher entropy sug-
gests lower predictability and answerability, meaning that the LLM
is more uncertain about producing a relevant and precise response.
Following this intuition, we hypothesize that by measuring entropy
in token representations, we capture query variability and uncer-
tainty. Significant entropy shifts across prompt variations indicate
instability, suggesting lower reliability and response quality.
6. Geometric-Based Methods: Faggioli et al. [21] have introduced
a geometric framework for QPP, measuring query-document em-
bedding volumes to assess retrievability. We adapt it for PPP by
constructing embedding volumes from prompts and their variations.
We explore two methods: (i) Reciprocal Volume, which measures
the inverse hypercube volume around a query and its variants,
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Table 2: Results of baselines and VAP3 on TriviaQA and HotPotQA.

Category Method TriviaQA HotPotQA
Accuracy F1 Recall Precision Accuracy F1 Recall Precision

Random Random 0.5017 0.507 0.580 0.510 0.498 0.308 0.485 0.226
LLM-based Self-evaluation 0.4656 0.6239 0.9798 0.4577 0.1696 0.2050 0.9419 0.1150

CC 0.506 0.453 0.452 0.454 0.549 0.209 0.524 0.130
Specificity-based DC 0.484 0.448 0.463 0.434 0.565 0.199 0.475 0.126

IEF 0.505 0.462 0.469 0.455 0.535 0.204 0.526 0.127
PageRank 0.481 0.444 0.458 0.431 0.533 0.153 0.370 0.096

Geometric-based Reciprocal Volume 0.5629 0.532 0.594 0.512 0.533 0.320 0.477 0.241
Discounted Matryoshka 0.5526 0.529 0.592 0.511 0.532 0.326 0.491 0.244

Query-variations Query Clarity 0.5503 0.538 0.606 0.532 0.520 0.350 0.561 0.254
Interactions Entropy 0.4554 0.502 0.606 0.559 0.424 0.300 0.536 0.209
Text Classification BERT 0.660 0.659 0.620 0.654 0.526 0.360 0.017 0.813
Supervised BERTPE 0.648 0.627 0.644 0.611 0.710 0.318 0.594 0.217
Proposed VAP3 0.693 0.781 0.819 0.746 0.730 0.501 0.589 0.436

with smaller volumes indicating higher semantic coherence; and
(ii) Discounted Matryoshka Representation, which progressively
aggregates volumes to capture retrieval consistency. These methods
hypothesize that compact prompt embeddings indicate higher an-
swerability, while greater dispersion suggests increased uncertainty
and low answerability.
7. Supervised QPP Baseline (BERTPE): Finally, we include BERTPE,
a state-of-the-art supervised QPP model that has shown strong
performance in prior studies [35]. BERTPE learns to predict re-
triever performance by fine-tuning contextualized representations
of queries. In our setting, BERTPE is trained on individual prompts
(both original and variations) to learn their intrinsic difficulty. This
serves as a strong supervised baseline for PPP.

3.3 Experimental Setup
For training, we tuned key hyperparameters, including the number
of epochs ∈ [1, 2, 3, 4, 5], 𝜖 ∈ [1𝑒−5, 5𝑒−5, 1𝑒−4, 5𝑒−4, 1𝑒−3, 5𝑒−3]
(from Equation 5), and 𝜆 ∈ [0.1, 0.3, 0.5, 0.7, 0.9] (from Equation 8),
the learning rate [1𝑒 − 6, 1𝑒 − 5, 1𝑒 − 4], batch size [8, 16, 32], and
dropout rate [0.1, 0.2, 0.3] for fine-tuning bert-base-uncased with
adversarial training. We conducted a hyperparameter sweeping
using 10% of the training set as a validation set, optimizing for the
lowest validation loss. The best-performing configuration, selected
based on validation performance, was then applied to the full test
set of each dataset.

4 Results
In Table 2, we present the performance of all baseline models in-
troduced in the previous section on the PromptSET-TriviaQA and
PromptSET-HotpotQA [47]. The evaluation metrics include accu-
racy, F1-score, recall, and precision. To provide a reference point,
we include a random baseline in the first row, which assigns labels
randomly. From this table, we make the following observations:
(1) Among the baselines, the unsupervised methods exhibit no-
tably poor performance, with accuracy values hovering around
50%, which is close to random chance. Geometric-based methods,
perform slightly better than specificity-based methods but still
fail to provide meaningful predictive power. Furthermore, query-
variant interaction-based approaches, including Clarity Score and
Entropy, also fail to yield effective predictions for the PPP task.

While these features have demonstrated strong correlations with
QPP in the retrieval setting, their predictive effectiveness does not
translate well to prompt performance prediction, highlighting fun-
damental differences between retrieval-based and generation-based
performance prediction paradigms.
(2) The LLM self-evaluation baseline exhibits extremely high recall
but very low precision and accuracy. This confirms that the model
overestimates its ability to answer prompts correctly, predicting
most prompts as answerable even when they are not.
(3) The supervised baselines, including BERT-based text classi-
fication and BERTPE [35], perform significantly better than the
unsupervised baselines. The BERT-based text classification model
achieves 66.0% accuracy on TriviaQA, outperforming all other base-
lines. However, it struggles on HotpotQA, with accuracy dropping
to 52.6%, indicating a lack of robustness across datasets.
(4) Our proposed method, VAP3, achieves the highest accuracy, F1-
score, and a balanced recall-precision tradeoff across both datasets.
VAP3 reaches 69.3% accuracy on TriviaQA and 73.0% on HotpotQA,
outperforming BERTPE, which achieves 64.8% on TriviaQA and
71.0% onHotpotQA. F1-scores follow a similar trend, reflecting a bal-
anced ability to predict both answerable and unanswerable prompts.
This indicates that VAP3 is more robust to dataset variations, likely
due to its use of prompt variations and adversarial training, which
improve generalization. Overall, our findings demonstrate that
VAP3 significantly outperforms all existing baselines, effectively
addressing the prompt sensitivity issue in LLMs.

5 Concluding Remarks
In this paper, we propose the task of Prompt Performance Predic-
tion (PPP), which aims to predict whether an LLM will generate a
correct response to a given prompt or not. By enabling proactive
performance estimation, PPP allows for better prompt formula-
tion, adaptive model selection, and efficient resource utilization.
We proposed VAP3 (Variation-Aware Prompt Performance Predic-
tion), a novel pre-generation PPP approach that integrates prompt
variations with adversarial training to effectively estimate prompt
performance. Our experimental results on PromptSET (HotpotQA
& TriviaQA) demonstrate that by leveraging prompt variations,
VAP3 consistently outperforms existing baselines, achieving higher
accuracy and better generalization.



VAP3: Variation-Aware Prompt Performance Prediction Conference’17, July 2017, Washington, DC, USA

References
[1] Negar Arabzadeh, Radin Hamidi Rad, Maryam Khodabakhsh, and Ebrahim

Bagheri. 2023. Noisy Perturbations for Estimating Query Difficulty in Dense
Retrievers. In CIKM. 3722–3727.

[2] Negar Arabzadeh, Siqing Huo, Nikhil Mehta, Qingyun Wu, Chi Wang,
Ahmed Hassan Awadallah, Charles L. A. Clarke, and Julia Kiseleva. 2024.
Assessing and Verifying Task Utility in LLM-Powered Applications. In Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.). As-
sociation for Computational Linguistics, Miami, Florida, USA, 21868–21888.
doi:10.18653/v1/2024.emnlp-main.1219

[3] Negar Arabzadeh, Chuan Meng, Mohammad Aliannejadi, and Ebrahim Bagheri.
2024. Query Performance Prediction: From Fundamentals to Advanced Tech-
niques. In European Conference on Information Retrieval. Springer, 381–388.

[4] Negar Arabzadeh, Mahsa Seifikar, and Charles LA Clarke. 2022. Unsupervised
Question Clarity Prediction Through Retrieved Item Coherency. In CIKM. 3811–
3816.

[5] Negar Arabzadeh, Fattane Zarrinkalam, Jelena Jovanovic, Feras Al-Obeidat, and
Ebrahim Bagheri. 2020. Neural embedding-based specificity metrics for pre-
retrieval query performance prediction. Information Processing & Management
57, 4 (2020), 102248.

[6] Negar Arabzadeh, Fattaneh Zarrinkalam, Jelena Jovanovic, and Ebrahim Bagheri.
2019. Geometric Estimation of Specificity within Embedding Spaces. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management (CIKM ’19). ACM, 2109–2112. doi:10.1145/3357384.3358152

[7] Negar Arabzadeh, Fattane Zarrinkalam, Jelena Jovanovic, and Ebrahim Bagheri.
2020. Neural Embedding-Based Metrics for Pre-retrieval Query Performance Predic-
tion. Springer International Publishing, 78–85. doi:10.1007/978-3-030-45442-5_10

[8] Zhuoxi Bai, Ning Wu, Fengyu Cai, Xinyi Zhu, and Yun Xiong. 2024. Aligning
Large LanguageModel with Direct Multi-Preference Optimization for Recommen-
dation. In Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management (Boise, ID, USA) (CIKM ’24). Association for Computing
Machinery, New York, NY, USA, 76–86. doi:10.1145/3627673.3679611

[9] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2023. Prompting
Is Programming: A Query Language for Large Language Models. Proceed-
ings of the ACM on Programming Languages 7, PLDI (June 2023), 1946–1969.
doi:10.1145/3591300

[10] Nicolas Bizzozzero, Ihab Bendidi, and Olivier Risser-Maroix. 2024. Prompt Per-
formance Prediction for Image Generation. arXiv:2306.08915 [cs.IR] https:
//arxiv.org/abs/2306.08915

[11] David Carmel and Elad Yom-Tov. 2010. Estimating the Query Difficulty for
Information Retrieval. Synthesis Lectures on Information Concepts, Retrieval, and
Services 2, 1 (2010), 1–89.

[12] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2024. A survey on
evaluation of large language models. ACM Transactions on Intelligent Systems
and Technology 15, 3 (2024), 1–45.

[13] Anwoy Chatterjee, HSVNS Kowndinya Renduchintala, Sumit Bhatia, and Tanmoy
Chakraborty. 2024. POSIX: A Prompt Sensitivity Index For Large Language
Models. arXiv preprint arXiv:2410.02185 (2024).

[14] Anwoy Chatterjee, H S V N S Kowndinya Renduchintala, Sumit Bhatia, and
Tanmoy Chakraborty. 2024. POSIX: A Prompt Sensitivity Index For Large
Language Models. In Findings of the Association for Computational Linguis-
tics: EMNLP 2024, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.).
Association for Computational Linguistics, Miami, Florida, USA, 14550–14565.
doi:10.18653/v1/2024.findings-emnlp.852

[15] Cheng-Han Chiang and Hung-yi Lee. 2023. Can large language models be an
alternative to human evaluations? arXiv preprint arXiv:2305.01937 (2023).

[16] Steve Cronen-Townsend, Yun Zhou, and W Bruce Croft. 2002. Predicting Query
Performance. In SIGIR. 299–306.

[17] Suchana Datta, Debasis Ganguly, Derek Greene, and Mandar Mitra. 2022. Deep-
QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Query
Performance Prediction. In WSDM. 201–209.

[18] Suchana Datta, Sean MacAvaney, Debasis Ganguly, and Derek Greene. 2022.
A ‘Pointwise-Query, Listwise-Document’based Query Performance Prediction
Approach. In SIGIR. 2148–2153.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL. 4171–4186.

[20] Federico Errica, Giuseppe Siracusano, Davide Sanvito, and Roberto Bifulco. 2024.
What Did I DoWrong? Quantifying LLMs’ Sensitivity and Consistency to Prompt
Engineering. arXiv preprint arXiv:2406.12334 (2024).

[21] Guglielmo Faggioli, Nicola Ferro, Cristina Ioana Muntean, Raffaele Perego, and
Nicola Tonellotto. 2023. A Geometric Framework for Query Performance Predic-
tion in Conversational Search. In SIGIR. 1355–1365.

[22] Guglielmo Faggioli, Oleg Zendel, J Shane Culpepper, Nicola Ferro, and Falk
Scholer. 2022. sMARE: A New Paradigm to Evaluate and Understand Query

Performance Prediction Methods. Information Retrieval Journal 25, 2 (2022),
94–122.

[23] Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. 2024. Detecting
hallucinations in large language models using semantic entropy. Nature 630,
8017 (2024), 625–630.

[24] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. arXiv:1412.6572 [stat.ML] https://arxiv.org/
abs/1412.6572

[25] Akshat Gupta, Xiaoyang Song, and Gopala Anumanchipalli. 2024.
Self-Assessment Tests are Unreliable Measures of LLM Personality.
arXiv:2309.08163 [cs.CL] https://arxiv.org/abs/2309.08163

[26] Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas
Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al.
2023. A survey on large language models: Applications, challenges, limitations,
and practical usage. Authorea Preprints (2023).

[27] Helia Hashemi, Hamed Zamani, andWBruce Croft. 2019. Performance Prediction
for Non-factoid Question Answering. In ICTIR. 55–58.

[28] Claudia Hauff, Djoerd Hiemstra, and Franciska de Jong. 2008. A survey of pre-
retrieval query performance predictors. In CIKM.

[29] Ling Huang, Wanqiu Deng, Yiling Jiang, and Qinghua Zhong. 2025. Development
trends of large language models and their applications in green digital intelli-
gence of supply chains. In Proceedings of the 2024 5th International Conference on
Computer Science andManagement Technology (ICCSMT ’24). Association for Com-
puting Machinery, New York, NY, USA, 770–774. doi:10.1145/3708036.3708165

[30] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
J Doug Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM
workshop on Security and artificial intelligence. 43–58.

[31] Siqing Huo, Negar Arabzadeh, and Charles LA Clarke. 2023. Retrieving Support-
ing Evidence for Generative Question Answering. arXiv preprint arXiv:2309.11392
(2023).

[32] Feihu Jiang, Chuan Qin, Kaichun Yao, Chuyu Fang, Fuzhen Zhuang, Hengshu
Zhu, and Hui Xiong. 2024. Enhancing question answering for enterprise knowl-
edge bases using large language models. In International Conference on Database
Systems for Advanced Applications. Springer, 273–290.

[33] Mandar Joshi, Eunsol Choi, Daniel S.Weld, and Luke Zettlemoyer. 2017. TriviaQA:
A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehen-
sion. arXiv:1705.03551 [cs.CL] https://arxiv.org/abs/1705.03551

[34] Maryam Khodabakhsh and Ebrahim Bagheri. 2023. Learning to Rank and Predict:
Multi-task Learning for Ad Hoc Retrieval and Query Performance Prediction.
Information Sciences 639 (2023), 119015.

[35] Maryam Khodabakhsh, Fattane Zarrinkalam, and Negar Arabzadeh. 2024. BertPE:
A BERT-Based Pre-retrieval Estimator for Query Performance Prediction. Springer
Nature Switzerland, 354–363. doi:10.1007/978-3-031-56063-7_27

[36] Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik,
and Yarin Gal. 2024. Semantic entropy probes: Robust and cheap hallucination
detection in llms. arXiv preprint arXiv:2406.15927 (2024).

[37] Alina Leidinger, Robert van Rooij, and Ekaterina Shutova. 2023. The lan-
guage of prompting: What linguistic properties make a prompt successful?
arXiv:2311.01967 [cs.CL] https://arxiv.org/abs/2311.01967

[38] Junlong Li, Jinyuan Wang, Zhuosheng Zhang, and Hai Zhao. 2022. Self-
prompting large language models for zero-shot open-domain QA. arXiv preprint
arXiv:2212.08635 (2022).

[39] Sheng Lu, Hendrik Schuff, and Iryna Gurevych. 2024. How are Prompts Different
in Terms of Sensitivity?. In Proceedings of the 2024 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), Kevin Duh, Helena Gomez, and Steven
Bethard (Eds.). Association for Computational Linguistics, Mexico City, Mexico,
5833–5856. doi:10.18653/v1/2024.naacl-long.325

[40] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2019. Towards Deep Learning Models Resistant to Adversarial
Attacks. arXiv:1706.06083 [stat.ML] https://arxiv.org/abs/1706.06083

[41] Chuan Meng, Negar Arabzadeh, Arian Askari, Mohammad Aliannejadi, and
Maarten de Rijke. 2024. Query Performance Prediction using Relevance Judg-
ments Generated by Large Language Models. arXiv preprint arXiv:2404.01012
(2024).

[42] Dipasree Pal and Debasis Ganguly. 2021. Effective Query Formulation in Conver-
sation Contextualization: A Query Specificity-based Approach. In Proceedings of
the 2021 ACM SIGIR International Conference on Theory of Information Retrieval.
177–183.

[43] Eduard Poesina, Adriana Valentina Costache, Adrian-Gabriel Chifu, Josiane
Mothe, and Radu Tudor Ionescu. 2024. PQPP: A Joint Benchmark for Text-
to-Image Prompt and Query Performance Prediction. arXiv:2406.04746 [cs.CV]
https://arxiv.org/abs/2406.04746

[44] Hossein A Rahmani, Clemencia Siro, Mohammad Aliannejadi, Nick Craswell,
Charles LA Clarke, Guglielmo Faggioli, Bhaskar Mitra, Paul Thomas, and Emine
Yilmaz. 2024. Llm4eval: Large language model for evaluation in ir. In Proceedings
of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 3040–3043.

https://doi.org/10.18653/v1/2024.emnlp-main.1219
https://doi.org/10.1145/3357384.3358152
https://doi.org/10.1007/978-3-030-45442-5_10
https://doi.org/10.1145/3627673.3679611
https://doi.org/10.1145/3591300
https://arxiv.org/abs/2306.08915
https://arxiv.org/abs/2306.08915
https://arxiv.org/abs/2306.08915
https://doi.org/10.18653/v1/2024.findings-emnlp.852
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/2309.08163
https://arxiv.org/abs/2309.08163
https://doi.org/10.1145/3708036.3708165
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://doi.org/10.1007/978-3-031-56063-7_27
https://arxiv.org/abs/2311.01967
https://arxiv.org/abs/2311.01967
https://doi.org/10.18653/v1/2024.naacl-long.325
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/2406.04746
https://arxiv.org/abs/2406.04746


Conference’17, July 2017, Washington, DC, USA Anon.

[45] Hossein A. Rahmani, Emine Yilmaz, Nick Craswell, Bhaskar Mitra, Paul Thomas,
Charles L. A. Clarke, Mohammad Aliannejadi, Clemencia Siro, and Guglielmo Fag-
gioli. 2024. LLMJudge: LLMs for Relevance Judgments. arXiv:2408.08896 [cs.IR]
https://arxiv.org/abs/2408.08896

[46] Thilina C Rajapakse, Andrew Yates, and Maarten de Rijke. 2024. Simple Trans-
formers: Open-source for All. In Proceedings of the 2024 Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval in
the Asia Pacific Region. 209–215.

[47] Amirhossein Razavi, Mina Soltangheis, Negar Arabzadeh, Sara Salamat, Morteza
Zihayat, and Ebrahim Bagheri. 2025. Benchmarking Prompt Sensitivity in Large
Language Models. arXiv:2502.06065 [cs.CL] https://arxiv.org/abs/2502.06065

[48] Haggai Roitman, Shai Erera, and Guy Feigenblat. 2019. A Study of Query Perfor-
mance Prediction for Answer Quality Determination. In ICTIR. 43–46.

[49] Dwaipayan Roy, Debasis Ganguly, Mandar Mitra, and Gareth JF Jones. 2019.
Estimating Gaussian Mixture Models in the Local Neighbourhood of Embedded
Word Vectors for Query Performance Prediction. IPM 56, 3 (2019), 1026–1045.

[50] Alireza Salemi and Hamed Zamani. 2024. Evaluating retrieval quality in retrieval-
augmented generation. In Proceedings of the 47th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. 2395–2400.

[51] Abbas Saleminezhad, Negar Arabzadeh, Radin Hamidi Rad, Soosan Beheshti, and
Ebrahim Bagheri. 2025. Robust query performance prediction for dense retrievers
via adaptive disturbance generation. Machine Learning 114, 3 (2025), 1–23.

[52] Surendra Sarnikar, Zhu Zhang, and J Leon Zhao. 2014. Query-performance
Prediction for Effective Query Routing in Domain-specific Repositories. JASIST
65, 8 (2014), 1597–1614.

[53] Sonish Sivarajkumar, Mark Kelley, Alyssa Samolyk-Mazzanti, Shyam
Visweswaran, and Yanshan Wang. 2024. An empirical evaluation of prompting
strategies for large language models in zero-shot clinical natural language
processing: algorithm development and validation study. JMIR Medical
Informatics 12 (2024), e55318.

[54] Weihang Su, Yichen Tang, Qingyao Ai, Changyue Wang, Zhijing Wu, and Yiqun
Liu. 2024. Mitigating entity-level hallucination in large language models. In

Proceedings of the 2024 Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval in the Asia Pacific Region. 23–31.

[55] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
arXiv:2302.11382 [cs.SE]

[56] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebas-
tian Gehrmann, Prabhanjan Kambadur, David Rosenberg, and Gideon Mann.
2023. Bloomberggpt: A large language model for finance. arXiv preprint
arXiv:2303.17564 (2023).

[57] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association for
Computational Linguistics, Brussels, Belgium, 2369–2380. doi:10.18653/v1/D18-
1259

[58] Hamed Zamani, W Bruce Croft, and J Shane Culpepper. 2018. Neural Query
Performance Prediction Using Weak Supervision from Multiple Signals. In SIGIR.
105–114.

[59] Yun Zhou andW Bruce Croft. 2007. Query Performance Prediction inWeb Search
Environments. In SIGIR. 543–550.

[60] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chen-
long Deng, Zhicheng Dou, and Ji-Rong Wen. 2023. Large language models for
information retrieval: A survey. arXiv preprint arXiv:2308.07107 (2023).

[61] Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong Duan, Dahua Lin, and
Kai Chen. 2024. ProSA: Assessing and Understanding the Prompt Sensitivity of
LLMs. arXiv:2410.12405 [cs.CL] https://arxiv.org/abs/2410.12405

[62] Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong Duan, Dahua Lin, and
Kai Chen. 2024. ProSA: Assessing and Understanding the Prompt Sensitivity of
LLMs. arXiv:2410.12405 [cs.CL] https://arxiv.org/abs/2410.12405

https://arxiv.org/abs/2408.08896
https://arxiv.org/abs/2408.08896
https://arxiv.org/abs/2502.06065
https://arxiv.org/abs/2502.06065
https://arxiv.org/abs/2302.11382
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://arxiv.org/abs/2410.12405
https://arxiv.org/abs/2410.12405
https://arxiv.org/abs/2410.12405
https://arxiv.org/abs/2410.12405

	Abstract
	1 Introduction
	2 Proposed Approach
	3 Experiments
	3.1 Dataset
	3.2 Baselines
	3.3 Experimental Setup

	4 Results
	5 Concluding Remarks
	References

