
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Reinforcement Learning for Effective Few-Shot Ranking

ABSTRACT
Neural rankers have achieved strong retrieval effectiveness but
require large amounts of labeled data, limiting their applicability in
few-shot settings. In this paper, we address the sample inefficiency of
neural ranking methods by introducing a Reinforcement Learning
(RL)-based re-ranking model that achieves high effectiveness with
minimal training data. Built on a Deep Q-learning Network (DQN)
framework, our approach is designed for few-shot settings, maximiz-
ing sample efficiency to ensure robust generalization from limited
interactions. Extensive experiments show that our model signifi-
cantly outperforms data-intensive methods and existing few-shot
baselines, demonstrating RL’s potential to enhance IR capabilities
in few-shot scenarios.
1 INTRODUCTION
Neural rankers have greatly enhanced IR effectiveness [1], with
transformer architectures [2] playing a key role in capturing con-
textual and semantic relationships between queries and documents.
However, these models typically require vast amounts of labeled
training data to perform well, limiting their applicability in few-shot
settings, where only a small number of labeled examples are avail-
able due to time, cost, or data constraints [3]. A natural solution
in few-shot settings is lexical retrievers like BM25 [4], which rank
documents based on term frequency statistics without requiring
training. However, these models rely on surface-level term match-
ing and so fail to capture deep semantic relationships [5, 6]. Neural
rankers overcome this limitation by leveraging large-scale training
data [7, 8], but their reliance on extensive labeled data makes them
impractical in few-shot settings. To address this, recent work has
explored self-supervised learning [9] and weak supervision [10].
However, these methods still often require substantial data and
remain insufficient for few-shot environments.
Background Approaches. Given the limitations of both tradi-
tional lexical models and current neural ranking methods in few-
shot settings, there is a growing need for ranking approaches that
can effectively operate with minimal labeled data. One promising
direction is to explore methods that can learn from limited feed-
back, rather than relying on large labeled datasets. Sun et al. [11]
proposed MetaAdaptRank which employs synthesizing contrastive
weak supervision and using meta-learning to filter noisy signals.
Unlike MetaAdaptRank, which generates synthetic data, Sinhab-
abu et al. [12] proposed a method that leverages prompting by
retrieving similar queries from a training set and using them as
pairwise ranking examples during inference. This augmentation
allows LLMs to make more informed ranking decisions, improv-
ing both in-domain and out-of-domain retrieval without requiring
model fine-tuning. On the other hand, 𝑃3 Ranker [13] bridges the
gap between pre-trained language models (PLMs) and ranking tasks
by using prompt-based learning to align ranking with PLM training
and pre-finetuning to inject ranking-specific knowledge. Unlike
the two aforementioned methods, the 𝑃3 Ranker focuses on struc-
tured PLM adaptation, making it suitable for few-shot ranking with
minimal labeled data. While 𝑃3 Ranker demonstrates strong per-
formance in few-shot settings, its effectiveness still depends on

pre-finetuning, which may not always be feasible when intermedi-
ate tasks are unavailable or when labeled data is highly limited.

On the other hand, Reinforcement Learning (RL) [14] provides a
suitable framework by enabling models to learn optimal ranking
behaviors through interactions and rewards rather than extensive
labeled data. Contrary to common belief, RL can be effective in cer-
tain few-shot scenarios [15–17]. By framing ranking as a sequential
decision-making task [18], RL allows models to iteratively refine
rankings based on feedback signals, making it particularly adapt-
able in few-shot scenarios. Additionally, RL’s ability to optimize
actions based on accumulated rewards aligns with the objective of
ranking in information retrieval—maximizing document relevance
over time. This capability enables RL-based ranking methods to
achieve strong performance even with limited annotated data.

Reinforcement learning (RL) [19] has gained traction in sev-
eral information retrieval (IR) tasks, particularly in modeling doc-
ument ranking as a sequential decision-making process through
Markov Decision Processes (MDPs). In this framework, at each time
step, an agent selects a document based on the current observa-
tion (e.g., ranking position and remaining unranked documents),
with rewards often defined in terms of ranking metrics like NDCG
(Normalized Discounted Cumulative Gain). Various IR tasks, such
as session search, have been formulated as MDPs to model user
interactions over multiple queries, optimizing document ranking
across sessions [20, 21]. Similarly, RL-based ranking has been ap-
plied to search result diversification [20, 22] and multi-page search
[23], where the RL agent learns to balance relevance and diver-
sity across search results. Specific approaches such as MDPRank
[23–25] and REINFORCE-based document ranking [18] optimize
ranking policies using policy gradient methods. For instance, in
[22], search result diversification is modeled as an MDP, where each
ranking position represents a decision point, and the agent selects
documents sequentially. However, while policy gradient methods
provide flexibility in handling high-dimensional action spaces, they
tend to be sample-inefficient, requiring extensive interactions with
the environment due to noisy gradient estimates and high variance
in training [26]. This inefficiency poses challenges for few-shot
settings, where only limited labeled examples are available.

The CUOLR model [27] extends the MDP-based ranking frame-
work by making the ranking task click model-agnostic, enabling
generalization across different user feedback models. To achieve
this, CUOLR incorporates the Soft Actor-Critic (SAC) algorithm, a
reinforcement learning approach originally designed for continuous
action spaces. However, SAC’s performance and sample efficiency
degrade in discrete action spaces due to its design for continuous
domains. Additionally, actor-critic algorithms like SAC rely on an
on-policy critic, whereas value-based methods like DQN typically
achieve better performance in discrete-action environments [28].
Rationale and Proposed Approach. To address sample ineffi-
ciency, which limits methods like MDPRank in few-shot settings,
we propose a ranking strategy based on Deep Q-learning Networks
(DQN), a sample-efficient value-based RL approach [29, 30]. In this
framework, we approximate the Q-function with a neural network

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

to learn the expected reward of ranking decisions. The key fea-
tures of our approach that make it well-suited for few-shot settings
include: (1) Experience replay, which stores and reuses past interac-
tions, such as previous rankings and document selections, breaking
correlations between consecutive ranking decisions and enhancing
learning diversity—critical when training data is limited. (2) Tem-
poral credit assignment [31], which evaluates long-term rewards,
allowing the model to learn cumulative effects over time rather than
focusing solely on immediate rewards. This is particularly valuable
in ranking, where a document’s position may have delayed effects
on overall ranking quality.
Key Contributions. We address the challenge of sample inef-
ficiency in RL-based ranking for few shot settings, proposing a
re-ranking model specifically designed to perform effectively with
limited training data. Our approach leverages DQN to maximize
data efficiency and improve generalization in few-shot settings.
Our approach enables the model to learn robust ranking policies
from a minimal training dataset, achieving competitive ranking
effectiveness even in data-constrained scenarios. We provide em-
pirical evidence that our model can achieve ranking performance
surpassing lexical ranking methods that do not require training
data and far superior performance to neural rankers that by their
nature require significantly larger training datasets. We further
show that our approach surpasses earlier RL-based rankers, such as
MDPRank, in learning from limited training data. This advantage
stems from our explicit focus on managing and improving sample
efficiency, making our model more effective in few-shot settings.

2 PROPOSED APPROACH
Let us assume that for a few-shot settings (FSS), there exists a
query pool 𝑄𝐹𝑆𝑆 consisting of a limited set of queries 𝑄𝐹𝑆𝑆 =

{𝑞1, 𝑞2, . . . , 𝑞𝑛}. Further let each query 𝑞𝑖 ∈ 𝑄𝐹𝑆𝑆 be associated
with a set of relevant documents 𝐷𝑞𝑖 with 𝑘 documents 𝐷𝑞𝑖 =

{𝑑1, 𝑑2, . . . , 𝑑𝑘 }. The objective of our task is to train a re-ranking
model 𝐹𝑆𝑅𝑎𝑛𝑘 with this small-size training dataset.
Description of the RLModel.We formulate document re-ranking
as a Markov Decision Process (MDP) and optimize it using rein-
forcement learning, where the re-ranking objective is modeled
as a sequence of decisions by an RL agent. Markov Decision Pro-
cesses (MDPs) [32] are stochastic models well-suited for sequential
decision-making. We frame ranking as an MDP, where each step
involves selecting a document for the next position in the list. This
formulation enables the integration of contextual information, such
as the current time step and remaining documents, into the state
representation, leading to more informed ranking decisions. The
MDP in our work is defined as a quadruple ⟨𝑆,𝐴,𝑇 , 𝑅⟩, representing
states, actions, a transition function, and rewards as follows:

States. The states 𝑆 represent the environment. For ranking, the
agent must be aware of the current ranking position and the set
of candidate documents 𝐶 . At time step 𝑡 , the state 𝑠𝑡 is defined
as the pair [𝑡,𝐶𝑡], where 𝐶𝑡 denotes the unsorted set of candidate
documents that remain to be ranked.

Actions. The actions 𝐴 refer to the set of discrete actions avail-
able to the agent. The feasible actions are determined by the cur-
rent state 𝑠𝑡 and are represented as 𝐴(𝑠𝑡). At each time step 𝑡 , the
agent takes action 𝑎𝑡 ∈ 𝐴(𝑠𝑡), which involves selecting a document
𝑐𝑖 ∈ 𝐶𝑡 for the next ranking position 𝑡 + 1.

Transition function. The transition function 𝑇 (𝑠, 𝑎) returns
the next state 𝑠𝑡+1 ∈ 𝑆 resulting from taking action 𝑎𝑡 in state 𝑠𝑡 .
In a deterministic environment, the outcome of this function is
unique, meaning that for each state-action pair, there is a specific
next state. In a given state, 𝑠𝑡 , after taking action 𝑎𝑡 , the next state is
constructed by updating the candidate set and also incrementing the
time step. the candidate set 𝐶𝑡 is updated by removing the chosen
document 𝑐𝑖 from the candidate set and the time step is incremented
by one, forming the next state 𝑠𝑡+1 according to Equation 1:

𝑠𝑡+1 = 𝑇 (𝑠𝑡 , 𝑎𝑡) = [𝑡 + 1,𝐶𝑡+1] where 𝐶𝑡+1 = 𝐶𝑡 \ {𝑐𝑖 } (1)

Reward. The reward R(𝑆,𝐴) provides immediate feedback, also
known as reinforcement. It represents the reward the agent receives
for executing action 𝑎𝑡 ∈ 𝐴(𝑠𝑡). In the context of ranking, the action
𝑎𝑡 corresponds to the selection of a document 𝑐

𝑖
and R(𝑠𝑡 , 𝑎𝑡) is

correlated to the quality of 𝑐𝑖 . The function 𝑅(𝑠, 𝑎) is designed to
prioritize positioning the most relevant documents at the top. Thus,
it can depend on the relevancy of the document 𝑐𝑖 selected by action
𝑎𝑡 , denoted asΨ(𝑐𝑖), and its position. To promote the early selection
of highly relevant documents, we apply a time-based penalty. The
reward function is formulated according to Equation 2:

R(𝑠𝑡 , 𝑎𝑡) =
Ψ(𝑐𝑖)

log2 (𝑡 + 1) 𝑤ℎ𝑒𝑟𝑒 𝑎𝑡 : 𝑠𝑒𝑙𝑒𝑐𝑡 𝑐𝑖 ∈ 𝐶𝑡 (2)

As shown in Equation 2, the logarithmic denominator of the current
time step 𝑡 ensures that selecting relevant documents earlier yields
a higher reward, encouraging the agent to place the most relevant
documents at the top of the ranked list.

In this context, the model consists of two components: (1) a
language model which serves as the feature extractor and whose
weights are not updated during the training. This language model
takes a concatenated query and document pair as input and gener-
ates a vector representation. The current time-step 𝑡 is then con-
catenated to this vector representation to build a feature vector, 𝑥 ,
which acts as the feature for the RL agent: 𝑥 = 𝐿𝑀 (𝑞 ⊕ 𝑑) + 𝑡 .
(2) The agent consists of two components: a) an experience replay
buffer, 𝐵, which stores and randomizes past experiences to enhance
stability, and b) a neural network N . The agent interacts with the
environment to determine the optimal action for each state. Optimal
parameter estimation for MDPs can be achieved using dynamic
programming methods like value iteration [33] or RL approaches
like Q-learning [34]. Given the limited data in few-shot settings,
we require a sample-efficient RL algorithm. DQN is one of the
most data-efficient RL methods as it leverages experience replay
[35], allowing the agent to reuse past experiences, break sample
correlations, and enhance training stability. Traditional RL methods
like Q-learning struggle with high-dimensional state spaces due to
their inflexibility in scaling state-action pairs. To address this, we
use Deep Q-Network (DQN), which employs a neural network as
a non-linear function approximator to estimate the action-value
function in RL. Unlike standard Q-learning, DQN learns an action-
value function rather than the optimal policy [36]. At each time
step 𝑡 , corresponding to a ranking position, the RL agent selects
the next document to fill that position.

Through the action-value function, the agent determines the
optimal action in each state by interacting with the environment.
Optimal parameter estimation for MDPs can be achieved using

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Reinforcement Learning for Effective Few-Shot Ranking Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

dynamic programming methods like value iteration [33] or RL ap-
proaches like Q-learning [34]. Given the limited data in few-shot
settings, we require a sample-efficient RL algorithm. DQN is among
the most data-efficient RL methods, leveraging experience replay
[35] to enable multiple reuses of past experiences, break correla-
tions between consecutive samples, and improve training stability.
Additionally, traditional RL methods like Q-learning become in-
flexible as the number of state-action pairs increases, especially
in high-dimensional state representations. To address this, we use
Deep Q-Network (DQN), which employs a neural network as a non-
linear approximator to estimate the action-value function. Unlike
standard Q-learning, DQN learns an action-value function rather
than directly optimizing the MDP policy [36]. At each time step 𝑡 ,
corresponding to a specific ranking position, the RL agent selects
the next document to fill that position.

Action Value Function. The action value function, i.e., 𝑄 (𝑠, 𝑎),
estimates the expected future rewards of taking action 𝑎𝑡 in state 𝑠𝑡 .
It combines immediate rewards and discounted future rewards to
provide a measure of the value of actions. In an MDP, the future re-
ward is worth less than the current reward and therefore a discount
factor 𝛾 ∈ (0, 1) is applied to future rewards. This discount factor
along with the time step-related penalty in the reward function en-
courages the RL agent to try to select the most relevant documents
sooner in order to maximize its total reward. The neural network in
our RL agent, N , attempts to estimate the value of 𝑄 . We propose
to train this network using Deep Q-Networks (DQN) [30]. DQN is
a popular reinforcement learning algorithm that utilizes a neural
network parameterized by 𝜙 to estimate the 𝑄-value. The input to
this network, 𝑥𝑎𝑡 , is the feature vector of action 𝑎𝑡 . At a given time
step 𝑡 , we calculate the value of action 𝑎𝑡 according to Equation 3:

𝑄 (𝑠, 𝑎𝑡 ;𝜙𝑡) = E

[∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 | 𝑠0 = 𝑠𝑡 , 𝑎0 = 𝑎𝑡

]
(3)

where 𝛾 ∈ [0, 1) is the discount factor, which determines the im-
portance of future rewards, and 𝑟𝑡 is the reward received at time
step 𝑡 . For each action, the expected value is defined as the sum of
the immediate reward and the expected future reward.
The Learning Process. Our proposed learning process consists of
two phases, explained below and formally described in Algorithm 1:

The Experience Collection Phase: The first phase of our RL
process accumulates experiences in the experience replay buffer 𝐵
to stabilize training and improve efficiency in low-resource settings.
Experience replay enhances data efficiency by allowing each expe-
rience tuple to contribute to multiple weight updates [29, 37]. We
ensure sufficient sampling so each experience is revisited multiple
times. Additionally, randomizing samples mitigates correlations
between consecutive experiences, reducing variance and improving
stability [29]. Finally, experience replay helps prevent catastrophic
forgetting, where new experiences overwrite prior knowledge, a
critical issue in data-scarce domains (few shot scenario) where for-
getting learned interactions can degrade performance [38, 39].

The Training Phase: Once the replay buffer is filled, our RL
process randomly samples from the replay buffer and updates the
network based on these samples as shown on Line 14 of Algo-
rithm 1. Randomly sampling experiences to update the network
breaks the correlation between consecutive experiences, leading
to better learning performance [37, 40]. Additionally, to compen-
sate for limited data availability, our approach ensures that each
experience has multiple opportunities to be seen by the network
by sampling from our replay buffer sufficiently. For each experi-
ence tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), the feature vector of action 𝑎𝑡 , 𝑥𝑎𝑡 , is
constructed using the language model 𝐿𝑀 . Then 𝑥𝑎𝑡 is processed
through the networkN to output the current Q-value, �̂� (𝑎𝑡), which
needs to approximate the target value, Ω𝑎𝑡 . The current Q-value is
defined in Equation 4 as follows:

�̂� (𝑠𝑡 , 𝑎𝑡 ;𝜙) = N(𝑥𝑎𝑡 ;𝜙𝑡) (4)

On this basis, 𝑄 ′ is calculated for all the possible actions in 𝑠𝑡+1.
The maximum value of 𝑄 ′ is denoted as 𝑈𝑖 and represents the
maximum reward that can be expected by taking action 𝑎𝑡 and
transitioning to state 𝑠𝑡+1. The target Q-value, Ω𝑎𝑡 , is calculated
as the sum of immediate reward, 𝑟𝑡 and the discounted𝑈𝑖 . This is
shown in Lines 15-19 of Algorithm 1 and Equation 5, as follows:

Ω𝑎𝑡 = 𝑟𝑡 + 𝛾 max
𝑎′

𝑄 (𝑠𝑡+1, 𝑎′;𝜙𝑡) (5)

As the RL model is trained, it is expected �̂� to move towards Ω
to indicate how much reward can be expected if an action 𝑎𝑡 is
taken in time step 𝑡 . In order to find the optimal values of 𝜙∗ for
the networks, we adopt the mean squared error (MSE) between
�̂� and Ω, shown in Equation 6, as the training loss function. This
corresponds to Line 20 in Algorithm 1.

𝐿(𝜙) = E
[(
Ω𝑎𝑡 − �̂� (𝑠𝑡 , 𝑎𝑡 ;𝜙𝑡)

)2]
(6)

Finally, the weights of the network are updated using gradient
descent and learning rate 𝜂, as shown on Line 21 of Algorithm 1.
3 EXPERIMENTS
Research Questions (RQs). We explore three research questions
as follows: (RQ1) we assess whether our proposed model is gener-
alizabile on different language models and whether it shows stable
performance when the number of training samples change; (RQ2)
we investigate whether the performance of our proposed model is
competitive with existing state of the art neural ranking models, a
state-of-the art few shot ranker, and the unsupervised lexical BM25
approach; and, (RQ3) we further explore whether our RL-based

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 1: Generalizability on different LLMs & train set sizes.

Figure 2: Comparison w. neural, few-shot & lexical baselines.

approach is able to show better performance compared to strong
RL-based rankers.
Dataset.We conduct experiments on the MS MARCO v1 dataset
[41], which contains 8.8 million passages. For training, we randomly
sample 2,000 queries (a small set to replicate a few shot scenario)
from the 501k queries with relevance judgments. For evaluation,
we use the TREC Deep Learning Track (DL-2019, DL-2020), which
features more challenging queries and richer relevance labels.
Implementation Details.1. We trained our model, on a 9-layer
FFN, with the learning rate of 0.001, a discount factor of 0.99, a
batch size of 1, a replay buffer size of 10, 000, and 100,000 episodes.
Findings. In (RQ1), we investigate the generalizability and stabil-
ity of our proposed approach. For the sake of generalizability, we
report the performance of our proposed approach when applied
on different language models, namely RoBERTa [42], ELECTRA
[43], DeBERTa [44], and ALBERT [45]. These models are used in
their original pre-trained format without any further fine-tunining
for the ranking task. As shown in Figure 1, our proposed approach
shows similar performance on both TREC DL 2019 and TREC 2020
regardless of the language model that is used for its training. Fur-
thermore, in order to assess the stability, we train our proposed
model on all four language models using four different train set
sizes including 100, 200, 1000, and 2000 training samples. The re-
sults can again be seen in Figure 1. As seen in the figure, model
performances are enhanced as the size of the training set increases
from 100 samples to 2,000 samples by approximately 10%. The in-
crease in performance is smooth for all models on both datasets. We
also note that regardless of the test set and the language model, all
models perform quite strongly even when trained on 100 samples
and exhibit stable performance as train set size increases.

In the second research question (RQ2), we compare our approach
against a state-of-the-art SBERT neural ranking baseline using a
cross-encoder architecture [46], as well as the state-of-the-art few-
shot neural ranker [13], and the lexical-based BM25 baseline, which
requires no training. In few-shot settings, lexical models like BM25
are often preferred for their strong out-of-the-box performance.
1Our code and data is available on GitHub: https://shorturl.at/w4OEv

Figure 3: Benchmarking with state-of-the-art RL baselines.

Based on findings from RQ1, we report results only for the DeBERTa
model due to space constraints. Figure 2 compares our model with
SBERT, 𝑃3𝑅𝑎𝑛𝑘 , and BM25. BM25 remains unaffected by training
size, achieving nDCG@10 scores of 0.505 and 0.479 on TREC DL
2019 and DL 2020, respectively. The key finding in RQ2 is that
SBERT fails to learn effectively from limited samples, maintain-
ing nDCG@10 below 0.1 across all training sizes, even with 2,000
training samples. Our model consistently outperforms 𝑃3𝑅𝑎𝑛𝑘 (the
state of the art few-shot ranker) and scales effectively with increas-
ing training samples, unlike SBERT and 𝑃3𝑅𝑎𝑛𝑘 . It also achieves
consistently higher performance than the lexical BM25 baseline.

In RQ3, we compare our approach against two state-of-the-art
RL-based ranking models: MDPRank [18] and CUOLR [27]. This
research question examines (1) whether the efficiency of our RL-
based method in learning from limited samples extends to other RL
baselines, and (2) whether our approach is more sample-efficient
due to its architectural design. Figure 3 compares our approach
with MDPRank and CUOLR on both test sets, leading to three key
observations. (i) Both MDPRank and CUOLR outperform neural
rankers like SBERT in low-resource settings, consistently achieving
nDCG@10 above 0.2, whereas SBERT remains below 0.05 under
similar conditions. This highlights the effectiveness of RL-based
methods for few-shot learning. (ii)While more effective than neural
rankers, MDPRank employs a policy gradient algorithm, which is
sample inefficient due to noisy gradient estimates and high variance
during training [26]. As a result, it performs worse than our ap-
proach, which is more sample-efficient. (iii) MDPRank plateaus in
performance as training data increases, whereas our model contin-
ues improving with more training samples. (iv) Although CUOLR
outperforms neural rankers, it relies on a soft actor-critic algo-
rithm originally designed for continuous action spaces, making it
inefficient for discrete action spaces [28]. Additionally, actor-critic
methods depend on an on-policy critic, limiting their effectiveness
compared to DQN-based models in discrete settings [28]. Conse-
quently, CUOLR exhibits lower performance than our approach,
which is significantly more efficient in practice.
4 CONCLUDING REMARKS
We propose a reinforcement learning (RL)-based re-ranking model
to address data inefficiency in neural rankers for few shot scenarios.
Built on a Deep Q-learning Network (DQN), our approach enhances
sample efficiency through experience replay and optimized action
selection via Q-value estimation. Extensive experiments show our
model significantly outperforms both data-intensive, RL-based and
strong few-shot ranking baselines achieving high effectiveness in
NDCG while learning meaningful ranking policies from limited
data.

4

https://shorturl.at/w4OEv

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Reinforcement Learning for Effective Few-Shot Ranking Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Andrew Yates, Rodrigo Frassetto Nogueira, and Jimmy Lin. Pretrained trans-

formers for text ranking: BERT and beyond. In Fernando Diaz, Chirag Shah,
Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai, editors, SIGIR ’21:
The 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Virtual Event, Canada, July 11-15, 2021, pages 2666–2668.
ACM, 2021.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-
training of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[3] Navid Rekabsaz and Markus Schedl. Do neural ranking models intensify gender
bias? In Jimmy X. Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock,
Ji-Rong Wen, and Yiqun Liu, editors, Proceedings of the 43rd International ACM
SIGIR conference on research and development in Information Retrieval, SIGIR 2020,
Virtual Event, China, July 25-30, 2020, pages 2065–2068. ACM, 2020.

[4] Stephen E. Robertson andHugo Zaragoza. The probabilistic relevance framework:
BM25 and beyond. Found. Trends Inf. Retr., 3(4):333–389, 2009.

[5] Faezeh Ensan and Ebrahim Bagheri. Document retrieval model through semantic
linking. In Maarten de Rijke, Milad Shokouhi, Andrew Tomkins, and Min Zhang,
editors, Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining, WSDM 2017, Cambridge, United Kingdom, February 6-10, 2017,
pages 181–190. ACM, 2017.

[6] Ebrahim Bagheri, Faezeh Ensan, and Feras N. Al-Obeidat. Neural word and
entity embeddings for ad hoc retrieval. Inf. Process. Manag., 54(4):657–673, 2018.

[7] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match using
local and distributed representations of text for web search. In Rick Barrett, Rick
Cummings, Eugene Agichtein, and Evgeniy Gabrilovich, editors, Proceedings of
the 26th International Conference onWorldWideWeb,WWW2017, Perth, Australia,
April 3-7, 2017, pages 1291–1299. ACM, 2017.

[8] Michael J. Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris
Burges. Optimisationmethods for ranking functions withmultiple parameters. In
Philip S. Yu, Vassilis J. Tsotras, Edward A. Fox, and Bing Liu, editors, Proceedings
of the 2006 ACM CIKM International Conference on Information and Knowledge
Management, Arlington, Virginia, USA, November 6-11, 2006, pages 585–593. ACM,
2006.

[9] Xialei Liu, Joost van de Weijer, and Andrew D. Bagdanov. Exploiting unlabeled
data in cnns by self-supervised learning to rank. IEEE Trans. Pattern Anal. Mach.
Intell., 41(8):1862–1878, 2019.

[10] Peng Xu, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. Passage ranking with
weak supervsion. CoRR, abs/1905.05910, 2019.

[11] Si Sun, Yingzhuo Qian, Zhenghao Liu, Chenyan Xiong, Kaitao Zhang, Jie Bao,
Zhiyuan Liu, and Paul Bennett. Few-shot text ranking with meta adapted syn-
thetic weak supervision. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli, editors, Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event,
August 1-6, 2021, pages 5030–5043. Association for Computational Linguistics,
2021.

[12] Nilanjan Sinhababu, Andrew Parry, Debasis Ganguly, Debasis Samanta, and
Pabitra Mitra. Few-shot prompting for pairwise ranking: An effective non-
parametric retrieval model. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen, editors, Findings of the Association for Computational Linguistics: EMNLP
2024, Miami, Florida, USA, November 12-16, 2024, pages 12363–12377. Association
for Computational Linguistics, 2024.

[13] Xiaomeng Hu, Shi Yu, Chenyan Xiong, Zhenghao Liu, Zhiyuan Liu, and Ge Yu. P3
ranker: Mitigating the gaps between pre-training and ranking fine-tuning with
prompt-based learning and pre-finetuning. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’22, page 1956–1962. ACM, July 2022.

[14] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning. Journal of
Cognitive Neuroscience, 11(1):126–134, 1999.

[15] Scott Jeen, Tom Bewley, and Jonathan Cullen. Zero-shot reinforcement learn-
ing from low quality data. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[16] Max Schwarzer, Ankesh Anand, Rishab Goel, R. DevonHjelm, Aaron C. Courville,
and Philip Bachman. Data-efficient reinforcement learning with momentum
predictive representations. CoRR, abs/2007.05929, 2020.

[17] Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand,
Laurent Charlin, R. Devon Hjelm, Philip Bachman, and Aaron C. Courville.
Pretraining representations for data-efficient reinforcement learning. CoRR,
abs/2106.04799, 2021.

[18] Zheng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Reinforcement
learning to rank with markov decision process. In Noriko Kando, Tetsuya Sakai,
Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White, editors, Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017, pages 945–948.
ACM, 2017.

[19] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[20] Yue Feng, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. From
greedy selection to exploratory decision-making: Diverse ranking with policy-
value networks. In Kevyn Collins-Thompson, Qiaozhu Mei, Brian D. Davison,
Yiqun Liu, and Emine Yilmaz, editors, The 41st International ACM SIGIR Confer-
ence on Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor,
MI, USA, July 08-12, 2018, pages 125–134. ACM, 2018.

[21] Sicong Zhang, Jiyun Luo, and Hui Yang. A POMDP model for content-free
document re-ranking. In Shlomo Geva, Andrew Trotman, Peter Bruza, Charles
L. A. Clarke, and Kalervo Järvelin, editors, The 37th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’14, Gold
Coast , QLD, Australia - July 06 - 11, 2014, pages 1139–1142. ACM, 2014.

[22] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. Adapt-
ing markov decision process for search result diversification. In Noriko Kando,
Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White, edi-
tors, Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017,
pages 535–544. ACM, 2017.

[23] Wei Zeng, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Multi page search
with reinforcement learning to rank. In Dawei Song, Tie-Yan Liu, Le Sun, Peter
Bruza, Massimo Melucci, Fabrizio Sebastiani, and Grace Hui Yang, editors, Pro-
ceedings of the 2018 ACM SIGIR International Conference on Theory of Information
Retrieval, ICTIR 2018, Tianjin, China, September 14-17, 2018, pages 175–178. ACM,
2018.

[24] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. Reinforcement
learning to rank in e-commerce search engine: Formalization, analysis, and
application. In Yike Guo and Faisal Farooq, editors, Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
2018, London, UK, August 19-23, 2018, pages 368–377. ACM, 2018.

[25] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.
Reinforcement learning to optimize long-term user engagement in recommender
systems. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria
Terzi, and George Karypis, editors, Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage,
AK, USA, August 4-8, 2019, pages 2810–2818. ACM, 2019.

[26] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridg-
ing the gap between value and policy based reinforcement learning. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 2775–2785, 2017.

[27] Zeyu Zhang, Yi Su, Hui Yuan, Yiran Wu, Rishab Balasubramanian, Qingyun
Wu, Huazheng Wang, and Mengdi Wang. Unified off-policy learning to rank:
a reinforcement learning perspective. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023.

[28] Denis Steckelmacher, Hélène Plisnier, Diederik M. Roijers, and Ann Nowé.
Sample-efficient model-free reinforcement learning with off-policy critics. In
Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part
III, page 19–34, Berlin, Heidelberg, 2019. Springer-Verlag.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nat., 518(7540):529–
533, 2015.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013.

[31] Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van
Hasselt, and Laura Toni. A survey of temporal credit assignment in deep rein-
forcement learning. Trans. Mach. Learn. Res., 2024, 2024.

[32] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley Series in Probability and Statistics. Wiley, 1994.

[33] Omid Madani. Polynomial value iteration algorithms for detrerminstic mdps.
In Adnan Darwiche and Nir Friedman, editors, UAI ’02, Proceedings of the 18th
Conference in Uncertainty in Artificial Intelligence, University of Alberta, Edmonton,
Alberta, Canada, August 1-4, 2002, pages 311–318. Morgan Kaufmann, 2002.

[34] Stefanos Doltsinis, Pedro Ferreira, and Niels Lohse. An MDP model-based
reinforcement learning approach for production station ramp-up optimization:
Q-learning analysis. IEEE Trans. Syst. Man Cybern. Syst., 44(9):1125–1138, 2014.

[35] Anirudh Goyal, Abram L. Friesen, Andrea Banino, Theophane Weber, Nan Rose-
mary Ke, Adrià Puigdomènech Badia, Arthur Guez, Mehdi Mirza, Peter Conway

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Humphreys, Ksenia Konyushkova, Michal Valko, Simon Osindero, Timothy P. Lil-
licrap, Nicolas Heess, and Charles Blundell. Retrieval-augmented reinforcement
learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learn-
ing, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Pro-
ceedings of Machine Learning Research, pages 7740–7765. PMLR, 2022.

[36] Jesse Clifton and Eric Laber. Q-learning: Theory and applications. Annual Review
of Statistics and Its Application, 7(1):279–301, March 2020.

[37] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience
replay. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

[38] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Gregory
Wayne. Experience replay for continual learning. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 348–358, 2019.

[39] Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, and Xiao-MingWu.
Overcoming catastrophic forgetting in incremental few-shot learning by finding
flat minima. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 6747–6761, 2021.

[40] Long Ji Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Mach. Learn., 8:293–321, 1992.

[41] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. MS MARCO: A human generated machine reading

comprehension dataset. In Tarek Richard Besold, Antoine Bordes, Artur S. d’Avila
Garcez, and Greg Wayne, editors, Proceedings of the Workshop on Cognitive
Computation: Integrating neural and symbolic approaches 2016 co-located with the
30th Annual Conference on Neural Information Processing Systems (NIPS 2016),
Barcelona, Spain, December 9, 2016, volume 1773 of CEUR Workshop Proceedings.
CEUR-WS.org, 2016.

[42] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

[43] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning.
ELECTRA: pre-training text encoders as discriminators rather than generators.
In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[44] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta
using electra-style pre-training with gradient-disentangled embedding sharing.
In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[45] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. ALBERT: A lite BERT for self-supervised learning
of language representations. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

[46] Nils Reimers and Iryna Gurevych. Making monolingual sentence embeddings
multilingual using knowledge distillation. In BonnieWebber, Trevor Cohn, Yulan
He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages
4512–4525. Association for Computational Linguistics, 2020.

6

	Abstract
	1 Introduction
	2 Proposed Approach
	3 Experiments
	4 Concluding Remarks
	References

