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Reinforcement Learning for Effective Few-Shot Ranking

ABSTRACT
Neural rankers have achieved strong retrieval effectiveness but
require large amounts of labeled data, limiting their applicability in
few-shot settings. In this paper, we address the sample inefficiency of
neural ranking methods by introducing a Reinforcement Learning
(RL)-based re-ranking model that achieves high effectiveness with
minimal training data. Built on a Deep Q-learning Network (DQN)
framework, our approach is designed for few-shot settings, maximiz-
ing sample efficiency to ensure robust generalization from limited
interactions. Extensive experiments show that our model signifi-
cantly outperforms data-intensive methods and existing few-shot
baselines, demonstrating RL’s potential to enhance IR capabilities
in few-shot scenarios.
1 INTRODUCTION
Neural rankers have greatly enhanced IR effectiveness [1], with
transformer architectures [2] playing a key role in capturing con-
textual and semantic relationships between queries and documents.
However, these models typically require vast amounts of labeled
training data to perform well, limiting their applicability in few-shot
settings, where only a small number of labeled examples are avail-
able due to time, cost, or data constraints [3]. A natural solution
in few-shot settings is lexical retrievers like BM25 [4], which rank
documents based on term frequency statistics without requiring
training. However, these models rely on surface-level term match-
ing and so fail to capture deep semantic relationships [5, 6]. Neural
rankers overcome this limitation by leveraging large-scale training
data [7, 8], but their reliance on extensive labeled data makes them
impractical in few-shot settings. To address this, recent work has
explored self-supervised learning [9] and weak supervision [10].
However, these methods still often require substantial data and
remain insufficient for few-shot environments.
Background Approaches. Given the limitations of both tradi-
tional lexical models and current neural ranking methods in few-
shot settings, there is a growing need for ranking approaches that
can effectively operate with minimal labeled data. One promising
direction is to explore methods that can learn from limited feed-
back, rather than relying on large labeled datasets. Sun et al. [11]
proposed MetaAdaptRank which employs synthesizing contrastive
weak supervision and using meta-learning to filter noisy signals.
Unlike MetaAdaptRank, which generates synthetic data, Sinhab-
abu et al. [12] proposed a method that leverages prompting by
retrieving similar queries from a training set and using them as
pairwise ranking examples during inference. This augmentation
allows LLMs to make more informed ranking decisions, improv-
ing both in-domain and out-of-domain retrieval without requiring
model fine-tuning. On the other hand, 𝑃3 Ranker [13] bridges the
gap between pre-trained language models (PLMs) and ranking tasks
by using prompt-based learning to align ranking with PLM training
and pre-finetuning to inject ranking-specific knowledge. Unlike
the two aforementioned methods, the 𝑃3 Ranker focuses on struc-
tured PLM adaptation, making it suitable for few-shot ranking with
minimal labeled data. While 𝑃3 Ranker demonstrates strong per-
formance in few-shot settings, its effectiveness still depends on

pre-finetuning, which may not always be feasible when intermedi-
ate tasks are unavailable or when labeled data is highly limited.

On the other hand, Reinforcement Learning (RL) [14] provides a
suitable framework by enabling models to learn optimal ranking
behaviors through interactions and rewards rather than extensive
labeled data. Contrary to common belief, RL can be effective in cer-
tain few-shot scenarios [15–17]. By framing ranking as a sequential
decision-making task [18], RL allows models to iteratively refine
rankings based on feedback signals, making it particularly adapt-
able in few-shot scenarios. Additionally, RL’s ability to optimize
actions based on accumulated rewards aligns with the objective of
ranking in information retrieval—maximizing document relevance
over time. This capability enables RL-based ranking methods to
achieve strong performance even with limited annotated data.

Reinforcement learning (RL) [19] has gained traction in sev-
eral information retrieval (IR) tasks, particularly in modeling doc-
ument ranking as a sequential decision-making process through
Markov Decision Processes (MDPs). In this framework, at each time
step, an agent selects a document based on the current observa-
tion (e.g., ranking position and remaining unranked documents),
with rewards often defined in terms of ranking metrics like NDCG
(Normalized Discounted Cumulative Gain). Various IR tasks, such
as session search, have been formulated as MDPs to model user
interactions over multiple queries, optimizing document ranking
across sessions [20, 21]. Similarly, RL-based ranking has been ap-
plied to search result diversification [20, 22] and multi-page search
[23], where the RL agent learns to balance relevance and diver-
sity across search results. Specific approaches such as MDPRank
[23–25] and REINFORCE-based document ranking [18] optimize
ranking policies using policy gradient methods. For instance, in
[22], search result diversification is modeled as an MDP, where each
ranking position represents a decision point, and the agent selects
documents sequentially. However, while policy gradient methods
provide flexibility in handling high-dimensional action spaces, they
tend to be sample-inefficient, requiring extensive interactions with
the environment due to noisy gradient estimates and high variance
in training [26]. This inefficiency poses challenges for few-shot
settings, where only limited labeled examples are available.

The CUOLR model [27] extends the MDP-based ranking frame-
work by making the ranking task click model-agnostic, enabling
generalization across different user feedback models. To achieve
this, CUOLR incorporates the Soft Actor-Critic (SAC) algorithm, a
reinforcement learning approach originally designed for continuous
action spaces. However, SAC’s performance and sample efficiency
degrade in discrete action spaces due to its design for continuous
domains. Additionally, actor-critic algorithms like SAC rely on an
on-policy critic, whereas value-based methods like DQN typically
achieve better performance in discrete-action environments [28].
Rationale and Proposed Approach. To address sample ineffi-
ciency, which limits methods like MDPRank in few-shot settings,
we propose a ranking strategy based on Deep Q-learning Networks
(DQN), a sample-efficient value-based RL approach [29, 30]. In this
framework, we approximate the Q-function with a neural network
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to learn the expected reward of ranking decisions. The key fea-
tures of our approach that make it well-suited for few-shot settings
include: (1) Experience replay, which stores and reuses past interac-
tions, such as previous rankings and document selections, breaking
correlations between consecutive ranking decisions and enhancing
learning diversity—critical when training data is limited. (2) Tem-
poral credit assignment [31], which evaluates long-term rewards,
allowing the model to learn cumulative effects over time rather than
focusing solely on immediate rewards. This is particularly valuable
in ranking, where a document’s position may have delayed effects
on overall ranking quality.
Key Contributions. We address the challenge of sample inef-
ficiency in RL-based ranking for few shot settings, proposing a
re-ranking model specifically designed to perform effectively with
limited training data. Our approach leverages DQN to maximize
data efficiency and improve generalization in few-shot settings.
Our approach enables the model to learn robust ranking policies
from a minimal training dataset, achieving competitive ranking
effectiveness even in data-constrained scenarios. We provide em-
pirical evidence that our model can achieve ranking performance
surpassing lexical ranking methods that do not require training
data and far superior performance to neural rankers that by their
nature require significantly larger training datasets. We further
show that our approach surpasses earlier RL-based rankers, such as
MDPRank, in learning from limited training data. This advantage
stems from our explicit focus on managing and improving sample
efficiency, making our model more effective in few-shot settings.

2 PROPOSED APPROACH
Let us assume that for a few-shot settings (FSS), there exists a
query pool 𝑄𝐹𝑆𝑆 consisting of a limited set of queries 𝑄𝐹𝑆𝑆 =

{𝑞1, 𝑞2, . . . , 𝑞𝑛}. Further let each query 𝑞𝑖 ∈ 𝑄𝐹𝑆𝑆 be associated
with a set of relevant documents 𝐷𝑞𝑖 with 𝑘 documents 𝐷𝑞𝑖 =

{𝑑1, 𝑑2, . . . , 𝑑𝑘 }. The objective of our task is to train a re-ranking
model 𝐹𝑆𝑅𝑎𝑛𝑘 with this small-size training dataset.
Description of the RLModel.We formulate document re-ranking
as a Markov Decision Process (MDP) and optimize it using rein-
forcement learning, where the re-ranking objective is modeled
as a sequence of decisions by an RL agent. Markov Decision Pro-
cesses (MDPs) [32] are stochastic models well-suited for sequential
decision-making. We frame ranking as an MDP, where each step
involves selecting a document for the next position in the list. This
formulation enables the integration of contextual information, such
as the current time step and remaining documents, into the state
representation, leading to more informed ranking decisions. The
MDP in our work is defined as a quadruple ⟨𝑆,𝐴,𝑇 , 𝑅⟩, representing
states, actions, a transition function, and rewards as follows:

States. The states 𝑆 represent the environment. For ranking, the
agent must be aware of the current ranking position and the set
of candidate documents 𝐶 . At time step 𝑡 , the state 𝑠𝑡 is defined
as the pair [𝑡,𝐶𝑡 ], where 𝐶𝑡 denotes the unsorted set of candidate
documents that remain to be ranked.

Actions. The actions 𝐴 refer to the set of discrete actions avail-
able to the agent. The feasible actions are determined by the cur-
rent state 𝑠𝑡 and are represented as 𝐴(𝑠𝑡 ). At each time step 𝑡 , the
agent takes action 𝑎𝑡 ∈ 𝐴(𝑠𝑡 ), which involves selecting a document
𝑐𝑖 ∈ 𝐶𝑡 for the next ranking position 𝑡 + 1.

Transition function. The transition function 𝑇 (𝑠, 𝑎) returns
the next state 𝑠𝑡+1 ∈ 𝑆 resulting from taking action 𝑎𝑡 in state 𝑠𝑡 .
In a deterministic environment, the outcome of this function is
unique, meaning that for each state-action pair, there is a specific
next state. In a given state, 𝑠𝑡 , after taking action 𝑎𝑡 , the next state is
constructed by updating the candidate set and also incrementing the
time step. the candidate set 𝐶𝑡 is updated by removing the chosen
document 𝑐𝑖 from the candidate set and the time step is incremented
by one, forming the next state 𝑠𝑡+1 according to Equation 1:

𝑠𝑡+1 = 𝑇 (𝑠𝑡 , 𝑎𝑡 ) = [𝑡 + 1,𝐶𝑡+1] where 𝐶𝑡+1 = 𝐶𝑡 \ {𝑐𝑖 } (1)

Reward. The reward R(𝑆,𝐴) provides immediate feedback, also
known as reinforcement. It represents the reward the agent receives
for executing action 𝑎𝑡 ∈ 𝐴(𝑠𝑡 ). In the context of ranking, the action
𝑎𝑡 corresponds to the selection of a document 𝑐

𝑖
and R(𝑠𝑡 , 𝑎𝑡 ) is

correlated to the quality of 𝑐𝑖 . The function 𝑅(𝑠, 𝑎) is designed to
prioritize positioning the most relevant documents at the top. Thus,
it can depend on the relevancy of the document 𝑐𝑖 selected by action
𝑎𝑡 , denoted asΨ(𝑐𝑖 ), and its position. To promote the early selection
of highly relevant documents, we apply a time-based penalty. The
reward function is formulated according to Equation 2:

R(𝑠𝑡 , 𝑎𝑡 ) =
Ψ(𝑐𝑖 )

log2 (𝑡 + 1) 𝑤ℎ𝑒𝑟𝑒 𝑎𝑡 : 𝑠𝑒𝑙𝑒𝑐𝑡 𝑐𝑖 ∈ 𝐶𝑡 (2)

As shown in Equation 2, the logarithmic denominator of the current
time step 𝑡 ensures that selecting relevant documents earlier yields
a higher reward, encouraging the agent to place the most relevant
documents at the top of the ranked list.

In this context, the model consists of two components: (1) a
language model which serves as the feature extractor and whose
weights are not updated during the training. This language model
takes a concatenated query and document pair as input and gener-
ates a vector representation. The current time-step 𝑡 is then con-
catenated to this vector representation to build a feature vector, 𝑥 ,
which acts as the feature for the RL agent: 𝑥 = 𝐿𝑀 (𝑞 ⊕ 𝑑) + 𝑡 .
(2) The agent consists of two components: a) an experience replay
buffer, 𝐵, which stores and randomizes past experiences to enhance
stability, and b) a neural network N . The agent interacts with the
environment to determine the optimal action for each state. Optimal
parameter estimation for MDPs can be achieved using dynamic
programming methods like value iteration [33] or RL approaches
like Q-learning [34]. Given the limited data in few-shot settings,
we require a sample-efficient RL algorithm. DQN is one of the
most data-efficient RL methods as it leverages experience replay
[35], allowing the agent to reuse past experiences, break sample
correlations, and enhance training stability. Traditional RL methods
like Q-learning struggle with high-dimensional state spaces due to
their inflexibility in scaling state-action pairs. To address this, we
use Deep Q-Network (DQN), which employs a neural network as
a non-linear function approximator to estimate the action-value
function in RL. Unlike standard Q-learning, DQN learns an action-
value function rather than the optimal policy [36]. At each time
step 𝑡 , corresponding to a ranking position, the RL agent selects
the next document to fill that position.

Through the action-value function, the agent determines the
optimal action in each state by interacting with the environment.
Optimal parameter estimation for MDPs can be achieved using
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dynamic programming methods like value iteration [33] or RL ap-
proaches like Q-learning [34]. Given the limited data in few-shot
settings, we require a sample-efficient RL algorithm. DQN is among
the most data-efficient RL methods, leveraging experience replay
[35] to enable multiple reuses of past experiences, break correla-
tions between consecutive samples, and improve training stability.
Additionally, traditional RL methods like Q-learning become in-
flexible as the number of state-action pairs increases, especially
in high-dimensional state representations. To address this, we use
Deep Q-Network (DQN), which employs a neural network as a non-
linear approximator to estimate the action-value function. Unlike
standard Q-learning, DQN learns an action-value function rather
than directly optimizing the MDP policy [36]. At each time step 𝑡 ,
corresponding to a specific ranking position, the RL agent selects
the next document to fill that position.

Action Value Function. The action value function, i.e., 𝑄 (𝑠, 𝑎),
estimates the expected future rewards of taking action 𝑎𝑡 in state 𝑠𝑡 .
It combines immediate rewards and discounted future rewards to
provide a measure of the value of actions. In an MDP, the future re-
ward is worth less than the current reward and therefore a discount
factor 𝛾 ∈ (0, 1) is applied to future rewards. This discount factor
along with the time step-related penalty in the reward function en-
courages the RL agent to try to select the most relevant documents
sooner in order to maximize its total reward. The neural network in
our RL agent, N , attempts to estimate the value of 𝑄 . We propose
to train this network using Deep Q-Networks (DQN) [30]. DQN is
a popular reinforcement learning algorithm that utilizes a neural
network parameterized by 𝜙 to estimate the 𝑄-value. The input to
this network, 𝑥𝑎𝑡 , is the feature vector of action 𝑎𝑡 . At a given time
step 𝑡 , we calculate the value of action 𝑎𝑡 according to Equation 3:

𝑄 (𝑠, 𝑎𝑡 ;𝜙𝑡 ) = E

[ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 | 𝑠0 = 𝑠𝑡 , 𝑎0 = 𝑎𝑡

]
(3)

where 𝛾 ∈ [0, 1) is the discount factor, which determines the im-
portance of future rewards, and 𝑟𝑡 is the reward received at time
step 𝑡 . For each action, the expected value is defined as the sum of
the immediate reward and the expected future reward.
The Learning Process. Our proposed learning process consists of
two phases, explained below and formally described in Algorithm 1:

The Experience Collection Phase: The first phase of our RL
process accumulates experiences in the experience replay buffer 𝐵
to stabilize training and improve efficiency in low-resource settings.
Experience replay enhances data efficiency by allowing each expe-
rience tuple to contribute to multiple weight updates [29, 37]. We
ensure sufficient sampling so each experience is revisited multiple
times. Additionally, randomizing samples mitigates correlations
between consecutive experiences, reducing variance and improving
stability [29]. Finally, experience replay helps prevent catastrophic
forgetting, where new experiences overwrite prior knowledge, a
critical issue in data-scarce domains (few shot scenario) where for-
getting learned interactions can degrade performance [38, 39].

The Training Phase: Once the replay buffer is filled, our RL
process randomly samples from the replay buffer and updates the
network based on these samples as shown on Line 14 of Algo-
rithm 1. Randomly sampling experiences to update the network
breaks the correlation between consecutive experiences, leading
to better learning performance [37, 40]. Additionally, to compen-
sate for limited data availability, our approach ensures that each
experience has multiple opportunities to be seen by the network
by sampling from our replay buffer sufficiently. For each experi-
ence tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), the feature vector of action 𝑎𝑡 , 𝑥𝑎𝑡 , is
constructed using the language model 𝐿𝑀 . Then 𝑥𝑎𝑡 is processed
through the networkN to output the current Q-value, �̂� (𝑎𝑡 ), which
needs to approximate the target value, Ω𝑎𝑡 . The current Q-value is
defined in Equation 4 as follows:

�̂� (𝑠𝑡 , 𝑎𝑡 ;𝜙) = N(𝑥𝑎𝑡 ;𝜙𝑡 ) (4)

On this basis, 𝑄 ′ is calculated for all the possible actions in 𝑠𝑡+1.
The maximum value of 𝑄 ′ is denoted as 𝑈𝑖 and represents the
maximum reward that can be expected by taking action 𝑎𝑡 and
transitioning to state 𝑠𝑡+1. The target Q-value, Ω𝑎𝑡 , is calculated
as the sum of immediate reward, 𝑟𝑡 and the discounted𝑈𝑖 . This is
shown in Lines 15-19 of Algorithm 1 and Equation 5, as follows:

Ω𝑎𝑡 = 𝑟𝑡 + 𝛾 max
𝑎′

𝑄 (𝑠𝑡+1, 𝑎′;𝜙𝑡 ) (5)

As the RL model is trained, it is expected �̂� to move towards Ω
to indicate how much reward can be expected if an action 𝑎𝑡 is
taken in time step 𝑡 . In order to find the optimal values of 𝜙∗ for
the networks, we adopt the mean squared error (MSE) between
�̂� and Ω, shown in Equation 6, as the training loss function. This
corresponds to Line 20 in Algorithm 1.

𝐿(𝜙) = E
[(
Ω𝑎𝑡 − �̂� (𝑠𝑡 , 𝑎𝑡 ;𝜙𝑡 )

)2]
(6)

Finally, the weights of the network are updated using gradient
descent and learning rate 𝜂, as shown on Line 21 of Algorithm 1.
3 EXPERIMENTS
Research Questions (RQs). We explore three research questions
as follows: (RQ1) we assess whether our proposed model is gener-
alizabile on different language models and whether it shows stable
performance when the number of training samples change; (RQ2)
we investigate whether the performance of our proposed model is
competitive with existing state of the art neural ranking models, a
state-of-the art few shot ranker, and the unsupervised lexical BM25
approach; and, (RQ3) we further explore whether our RL-based
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Figure 1: Generalizability on different LLMs & train set sizes.

Figure 2: Comparison w. neural, few-shot & lexical baselines.

approach is able to show better performance compared to strong
RL-based rankers.
Dataset.We conduct experiments on the MS MARCO v1 dataset
[41], which contains 8.8 million passages. For training, we randomly
sample 2,000 queries (a small set to replicate a few shot scenario)
from the 501k queries with relevance judgments. For evaluation,
we use the TREC Deep Learning Track (DL-2019, DL-2020), which
features more challenging queries and richer relevance labels.
Implementation Details.1. We trained our model, on a 9-layer
FFN, with the learning rate of 0.001, a discount factor of 0.99, a
batch size of 1, a replay buffer size of 10, 000, and 100,000 episodes.
Findings. In (RQ1), we investigate the generalizability and stabil-
ity of our proposed approach. For the sake of generalizability, we
report the performance of our proposed approach when applied
on different language models, namely RoBERTa [42], ELECTRA
[43], DeBERTa [44], and ALBERT [45]. These models are used in
their original pre-trained format without any further fine-tunining
for the ranking task. As shown in Figure 1, our proposed approach
shows similar performance on both TREC DL 2019 and TREC 2020
regardless of the language model that is used for its training. Fur-
thermore, in order to assess the stability, we train our proposed
model on all four language models using four different train set
sizes including 100, 200, 1000, and 2000 training samples. The re-
sults can again be seen in Figure 1. As seen in the figure, model
performances are enhanced as the size of the training set increases
from 100 samples to 2,000 samples by approximately 10%. The in-
crease in performance is smooth for all models on both datasets. We
also note that regardless of the test set and the language model, all
models perform quite strongly even when trained on 100 samples
and exhibit stable performance as train set size increases.

In the second research question (RQ2), we compare our approach
against a state-of-the-art SBERT neural ranking baseline using a
cross-encoder architecture [46], as well as the state-of-the-art few-
shot neural ranker [13], and the lexical-based BM25 baseline, which
requires no training. In few-shot settings, lexical models like BM25
are often preferred for their strong out-of-the-box performance.
1Our code and data is available on GitHub: https://shorturl.at/w4OEv

Figure 3: Benchmarking with state-of-the-art RL baselines.

Based on findings from RQ1, we report results only for the DeBERTa
model due to space constraints. Figure 2 compares our model with
SBERT, 𝑃3𝑅𝑎𝑛𝑘 , and BM25. BM25 remains unaffected by training
size, achieving nDCG@10 scores of 0.505 and 0.479 on TREC DL
2019 and DL 2020, respectively. The key finding in RQ2 is that
SBERT fails to learn effectively from limited samples, maintain-
ing nDCG@10 below 0.1 across all training sizes, even with 2,000
training samples. Our model consistently outperforms 𝑃3𝑅𝑎𝑛𝑘 (the
state of the art few-shot ranker) and scales effectively with increas-
ing training samples, unlike SBERT and 𝑃3𝑅𝑎𝑛𝑘 . It also achieves
consistently higher performance than the lexical BM25 baseline.

In RQ3, we compare our approach against two state-of-the-art
RL-based ranking models: MDPRank [18] and CUOLR [27]. This
research question examines (1) whether the efficiency of our RL-
based method in learning from limited samples extends to other RL
baselines, and (2) whether our approach is more sample-efficient
due to its architectural design. Figure 3 compares our approach
with MDPRank and CUOLR on both test sets, leading to three key
observations. (i) Both MDPRank and CUOLR outperform neural
rankers like SBERT in low-resource settings, consistently achieving
nDCG@10 above 0.2, whereas SBERT remains below 0.05 under
similar conditions. This highlights the effectiveness of RL-based
methods for few-shot learning. (ii)While more effective than neural
rankers, MDPRank employs a policy gradient algorithm, which is
sample inefficient due to noisy gradient estimates and high variance
during training [26]. As a result, it performs worse than our ap-
proach, which is more sample-efficient. (iii) MDPRank plateaus in
performance as training data increases, whereas our model contin-
ues improving with more training samples. (iv) Although CUOLR
outperforms neural rankers, it relies on a soft actor-critic algo-
rithm originally designed for continuous action spaces, making it
inefficient for discrete action spaces [28]. Additionally, actor-critic
methods depend on an on-policy critic, limiting their effectiveness
compared to DQN-based models in discrete settings [28]. Conse-
quently, CUOLR exhibits lower performance than our approach,
which is significantly more efficient in practice.
4 CONCLUDING REMARKS
We propose a reinforcement learning (RL)-based re-ranking model
to address data inefficiency in neural rankers for few shot scenarios.
Built on a Deep Q-learning Network (DQN), our approach enhances
sample efficiency through experience replay and optimized action
selection via Q-value estimation. Extensive experiments show our
model significantly outperforms both data-intensive, RL-based and
strong few-shot ranking baselines achieving high effectiveness in
NDCG while learning meaningful ranking policies from limited
data.
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