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Abstract
This paper studies how decentralized theDecentralizedAutonomous
Organizations (DAOs) truly are in their everyday labor practices.
We collect task assignment data from Dework and construct a clean
subset of 266 DAOs with sufficient activity to support meaning-
ful decentralization measurement. We measure decentralization
through inequality, diversity, coverage, dominance and combine
them into the Operational DAO Decentralization Index (DDI). We
find that operational work is highly concentrated: a small group of
contributors complete most tasks. A fine-tuned T5 model trained
for contributor recommendation largely reproduces these patterns.
We therefore propose a decentralization-aware reranking method
that penalizes overrepresented contributors. Experiments reveal
a tunable trade-off between relevance and decentralization, with
small but consistent DDI gains at top ranks. DAO labor is far from
decentralized, and lightweight post-hoc adjustments can broaden
contributor exposure.

CCS Concepts
• Human-centered computing → Empirical studies in collab-
orative and social computing.
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1 Introduction
The Web has long supported large-scale collective action, motivat-
ing research on how participation is distributed and how platforms
coordinate collaboration among distributed contributors. Web3
extends this line of work by introducing blockchain-based coor-
dination mechanisms, among which Decentralized Autonomous
Organizations (DAOs) have emerged as online communities that
coordinate resources and decision-making through programmable
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Figure 1: Illustration of data representation. (a) DAO-Task-
Contributor data structure. (b) Weighted DAO-Contributor
bipartite graph used to calculate DAO decentralization met-
rics (edge weight = number of tasks).

and transparent rules [10]. DAOs are framed as a decentralized or-
ganizational form: open, permissionless, and collectively governed
[3]. Their scale reinforces this expectation: as of October 2025, over
50,000 DAOs collectively controlled more than 20 billion USD in
on-chain treasury assets1.

If DAO operations are genuinely distributed, operational work
should be broadly shared rather than concentrated among a small
group of contributors. However, prior research on DAOs focuses
primarily on governance, examining voting mechanisms, proposal
dynamics, token-based power, and participation inequalities [5, 6, 8].
Yet governance captures only formal decision-making. Substantial
managerial and coordinative work occurs outside proposals and
voting mechanisms [4].

In practice, many DAOs coordinate daily work through opera-
tional task platforms such as Dework [1], where tasks are posted
and contributors participate as assignees and reviewers. Some tasks
offer explicit rewards, which are paid upon completion when of-
fered. We refer to this task-based work coordination process as
DAO labor. Unlike governance, DAO labor is not restricted to token
holders. Contributors can participate through task-based workflows
that may be open or selectively permissioned. These operational
tasks do not necessarily correspond to governance decisions and are
largely invisible to vote-based analyzes. Thus, how tasks are allo-
cated and how participation is distributed across contributors may
shape the practical experience of decentralization more directly
than voting outcomes alone.

This gap motivates our focus on operational decentralization: the
distribution of day-to-day task execution across contributors. Study-
ing operational decentralization reveals whether DAOs’ everyday
labor practices align with their stated decentralization principles.
We ask: RQ1) How decentralized are DAOs operationally? and
RQ2) What is the trade-off between relevance and decentral-
ization in contributor recommendation models?

1https://deepdao.io/organizations
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To answer these questions, we collect large-scale task assign-
ment data from Dework and construct a DAO-task-contributor
data structure (Fig. 1(a)). We operationalize decentralization us-
ing inequality, diversity, contributor-centric measures of coverage
and dominance, and aggregate these signals into the Operational
DAO Decentralization Index (DDI). Our analyses show that everyday
DAO labor is highly concentrated despite decentralization ideals.
We further examine whether contributor recommendation mod-
els preserve or amplify these structural patterns, and propose a
decentralization-aware reranking method based on observed par-
ticipation concentration to explore the relevance-decentralization
trade-off.

Our contributions are fourfold: (i) Operational data construc-
tion.We assemble a large-scale dataset of DAO task activity and
construct a task-level operational representation linking DAOs,
tasks, and contributors, enabling systematic analysis of DAO labor
decentralization. (ii) Measurement framework. We quantify op-
erational decentralization using inequality and diversity measures
and contributor coverage and dominance indicators. (iii) Opera-
tional DDI. We aggregate multiple decentralization dimensions
into a single index. (iv) Relevance-decentralization trade-off.
We analyze contributor recommendation models and evaluate a
simple decentralization-aware reranking method.

2 Data Representation of DAO Operations
We collect publicly available DAO task data from Dework by re-
trieving all DAO pages and extracting their Completed tasks to-
gether with associated contributors and participation roles. In total,
the dataset contains 24,323 completed tasks from 509 DAOs. Task
volume varies substantially across DAOs (1–1,390 tasks; mean 48,
median 9). To ensure sufficient activity per DAO, we retain only
organizations with at least 9 completed tasks, resulting in 266 DAOs.
Summary statistics of the resulting dataset are reported in Table 1.

We construct an operational representation of DAO labor using
a task-mediated DAO–Task–Contributor structure (Fig. 1(a)). Each
task may involve multiple contributors appearing as assignees or
reviewers, reflecting execution and validation roles, respectively.

For DAO-level decentralization measurement in this paper, we
aggregate participation roles and treat both assignees and reviewers
as contributors, removing duplicates when the same user appears
in multiple roles for the same task. Usernames are anonymized via
one-way hashing.

To operationalize decentralization at the DAO level, we project
task-level interactions onto a weighted DAO–contributor bipartite
graph (Fig. 1(b)). Let 𝐷 denote the set of DAOs and 𝐶 the set of
contributors appearing in the filtered dataset. The graph is rep-
resented as 𝐺 = (𝐷,𝐶, 𝐸,𝑤), where 𝐸 ⊆ 𝐷 × 𝐶 and 𝑤 : 𝐸 → N
assigns an integer-valued weight to each edge. For any (𝑑, 𝑐) ∈ 𝐸,
the edge weight 𝑤𝑑 (𝑐) counts the number of completed tasks in
DAO𝑑 in which contributor 𝑐 participated. This projection supports
all decentralization metrics used later, including inequality (Gini),
diversity (entropy), coverage, dominance, and the DDI.

3 Method
3.1 Participation Distributions and

Decentralization Metrics.
Let𝑇𝑑 =

∑
𝑐∈𝐶 𝑤𝑑 (𝑐) denote the total participation volume of DAO

𝑑 . We define the normalized participation share 𝑝𝑑 (𝑐) = 𝑤𝑑 (𝑐)/𝑇𝑑 ,

Table 1: Summary statistics of the DAO dataset (filtered to
DAOs with ≥ 9 completed tasks).

Statistic Value

Number of DAOs 266
Total completed tasks 23,541
Total tasks used for modelling (train+val+test) 21,874
Total tasks in test set 4,739
Total unique contributors 4,369
Median tasks per DAO 27.5
Median contributors per DAO 10
Median tasks per contributor 2
Assignee roles (%) 92.7%
Reviewer roles (%) 26.2%

which forms a participation distribution over contributors. Let
𝐶𝑑 = {𝑐 ∈ 𝐶 : 𝑤𝑑 (𝑐) > 0} denote the set of distinct contribu-
tors participating in DAO 𝑑 , and let 𝑁𝑑 = |𝐶𝑑 | denote the number
of those distinct contributors. Based on these participation signals,
we compute four DAO-adapted decentralization metrics:

(i) Inequality (Gini). The Gini coefficient is computed over
participation counts {𝑤𝑑 (𝑐)}𝑐∈𝐶 , including zero-valued entries for
non-participating contributors. Let 𝑁 = |𝐶 | denote the number of
contributors in the global pool, and let 𝑤̄𝑑 = 𝑁 −1 ∑

𝑐∈𝐶 𝑤𝑑 (𝑐) be
the mean participation count. We compute

Gini𝑑 =

∑𝑁
𝑖=1

∑𝑁
𝑗=1

��𝑤𝑑 (𝑐𝑖 ) −𝑤𝑑 (𝑐 𝑗 )
��

2𝑁 2𝑤̄𝑑

and define Gini𝑑 = 0 when 𝑤̄𝑑 = 0.
(ii) Diversity (Shannon entropy). We compute entropy of the

participation distribution as 𝐻𝑑 = −∑
𝑐∈𝐶 𝑝𝑑 (𝑐) log2 𝑝𝑑 (𝑐), where

terms with 𝑝𝑑 (𝑐) = 0 contribute zero. We normalize entropy by the
DAO’s maximum entropy, 𝐻norm

𝑑
=

𝐻𝑑

log2 𝑁𝑑
.

(iii) Coverage (breadth of participation).We define coverage
as Coverage𝑑 =

|𝐶𝑑 |
𝑇𝑑

, capturing how many distinct contributors
participate per unit of total contributor appearances in DAO 𝑑 .

(iv) Dominance (top-share). Let 𝑐 (1) , . . . , 𝑐 (𝑁𝑑 ) denote con-
tributors in 𝐶𝑑 sorted by𝑤𝑑 (𝑐) in descending order. We define the
top-share at cutoff 𝑘 in DAO 𝑑 as

Dom𝑑 (𝑘) =
∑𝑘
𝑖=1𝑤𝑑 (𝑐 (𝑖 ) )

𝑇𝑑

We report Top-5 share Dom𝑑 (5) and Top-10% participation share,
where𝑘𝑑 = ⌈0.1𝑁𝑑 ⌉, and use the latter as the dominance component
in DDI.

3.2 Operational DAO Decentralization Index
(DDI).

To aggregate complementary decentralization signals into a single
score, we construct the DDI. Each DAO 𝑑 provides four normalized
components derived from the adapted metrics above: (i) inverse
inequality, (ii) normalized diversity, (iii) normalized coverage, and
(iv) inverse dominance. Let minmax(·) denote min–max scaling
over all DAOs.
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DDI components are:𝐺 inv
𝑑

= 1 − minmax(Gini𝑑 ), 𝐻norm
𝑑

=

minmax
(
𝐻𝑑/log2 𝑁𝑑

)
, 𝐶norm

𝑑
= minmax(Coverage𝑑 ),

𝐷 inv
𝑑

= 1 − minmax(Dom𝑑 (⌈0.1𝑁𝑑 ⌉)) .
DDI score is the unweighted average:

DDI𝑑 =
𝐺 inv
𝑑

+ 𝐻norm
𝑑

+𝐶norm
𝑑

+ 𝐷 inv
𝑑

4
Higher values of DDI𝑑 indicate more decentralized operational

structures, characterized by broader participation and reduced con-
tributor concentration.

3.3 Decentralization-Aware Reranking
We introduce a simple reranking mechanism that adjusts contrib-
utor exposure based on observed participation concentration. For
each DAO 𝑑 , we penalize contributors with higher normalized
participation share 𝑝𝑑 (𝑐). For a task 𝑡𝑖 in DAO 𝑑𝑖 , we compute a
reranked score for each candidate contributor 𝑐 as

𝑆𝑖 (𝑐) = 𝛼𝑅𝑖 (𝑐) − (1 − 𝛼)𝑝𝑑𝑖 (𝑐)

where 𝛼 ∈ [0, 1] controls the trade-off between relevance and
decentralization. Since the baseline T5model outputs an ordered list
rather than explicit relevance scores, we convert its rankings into
relevance weights using a DCG-style logarithmic discount: 𝑅𝑖 (𝑐) =
1/log2 (rank𝑖 (𝑐) + 1), and set 𝑅𝑖 (𝑐) = 0 for unranked candidates.

4 Experiment Setup
Modeling Dataset. The contributor recommendation dataset is
constructed at the task level. Each sample uses the task title, user-
defined tags, and reward information as input, with the associated
contributor hashes as the target. We use training/validation/test
splits.

Models and evaluation.Wefine-tune a T5-small seq2seqmodel
[7] as the baseline recommender, following a task-to-candidate for-
mulation [12]. For each test task 𝑡𝑖 , we rerank predicted contribu-
tors using 𝑆𝑖 (𝑐), where participation shares 𝑝𝑑𝑖 (𝑐) are computed
from the training and validation data. We evaluate both relevance
(standard ranking metrics) and decentralization (DDI@k).

5 Results
5.1 RQ1: How Decentralized Are DAOs?
Table 2 summarizes aggregate decentralization statistics across
the 266 DAOs in our dataset. The results show extremely high
Gini values (mean 0.9983) and low contributor coverage (median
0.19), suggesting that only a small subset of members perform
most operational work. The top five contributors account for more
than 80% of all completed tasks on average, and overall DDI scores
remain low. These DAO-level patterns provide clear evidence of
substantial operational centralization. Overall, operational activity
within many DAOs is far from decentralized.

5.2 RQ2: How Do Models Affect Centralization?
Baseline Recommendation Behavior. As a consequence of this
highly centralized participation structure, we examine whether
contributor recommendation models reproduce or mitigate these
patterns. The T5 baseline model’s DDI@k results (Table 3) suggest

Table 2: DAO operational decentralization statistics.

Metric Mean Median

Gini 0.9983 0.9990
Entropy 2.6400 2.6160
Number of Contributors 19.43 10
Contributor coverage 0.2154 0.1875
Top-5 participation share 82.33% 82.61%
Top-10% participation share 73.23% 73.74%
DDI 0.3649 0.3463

that top-ranked positions are dominated by observed active contrib-
utors, indicating themodel largely reproduces existing participation
concentration.

Effect of Reranking on Relevance and Decentralization.
Table 3 summarizes model performance before and after applying
reranking with 𝛼 = 0.5. As expected, relevance metrics decrease
substantially: MAP@5 declines by 42.7%, NDCG@5 by 35.2%, and
similar drops appear across other top-𝑘 metrics. Despite the strong
relevance reduction, decentralization increases modestly. DDI@3
rises by 1.8% and DDI@5 by 0.6%, indicating a shift in exposure
away from observed dominant contributors. These results illustrate
how strongly the model relies on observed participation dominance.

Table 3: Baseline vs. reranking performance comparison.

Metric Baseline Reranked 𝛼 = 0.5 Improve

Precision@5 0.1934 0.1418 -0.0516
Precision@10 0.0993 0.0709 -0.0284
Recall@5 0.5381 0.3825 -0.1556
Recall@10 0.547 0.3825 -0.1645
NDCG@5 0.3620 0.2345 -0.1275
NDCG@10 0.3656 0.2341 -0.1315
MAP@5 0.2723 0.1561 -0.1162
MRR@5 0.3238 0.2087 -0.1151
F1@5 0.2569 0.2073 -0.0496

DDI@3 0.5119 0.5210 +0.0091
DDI@5 0.5337 0.5367 +0.0030
DDI@10 0.5353 0.4806 -0.0547

Cutoff Sensitivity. Figure 2 shows DDI@k for 𝑘 = 1–10 across
𝛼 settings. Reranking yields its strongest decentralization effects for
small cutoffs (DDI@2–4), where exposure is most concentrated. As
𝑘 increases, the reranked and baseline curves converge, indicating
that deeper ranks are less sensitive to dominance adjustments.

Trade-off Sweep Over 𝛼 . Figure 3 plots NDCG@5 and DDI@5
as functions of 𝛼 . Higher 𝛼 values preserve model relevance but
reduce decentralization, while lower values increase exposure dis-
persion. This analysis illustrates how strongly the baseline ranking
is tied to existing dominance and how exposure shifts as this pref-
erence is weakened.

Discussions. The experiments highlight a clear tension between
predictive relevance and contributor decentralization. The base-
line model largely reproduces the structural inequalities present
in observed DAO activity. The reranking mechanism provides a
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Figure 2: DDI@k across 𝛼 values, showing strongest gains at
small cutoffs.

Figure 3: Reranking sensitivity to 𝛼 using DDI and NDCG.

controlled way to probe this sensitivity: reducing the influence
of dominance broadens exposure, especially at early positions, by
explicitly penalizing observed dominant contributors [2]. While
relevance decreases substantially, these shifts reveal how strongly
the model is anchored to existing participation patterns and provide
an interpretable diagnostic of its centralization tendencies.

Although the numerical changes in DDI across different values
of 𝛼 appear small, this behaviour is expected given the structure of
top-𝑘 predictions and the design of the reranking method. Because
DDI@k is computed from only the top-𝑘 recommended contrib-
utors, the range of possible changes in its components is inher-
ently limited. In practice, reranking primarily affects the exposure
concentration term (top-10% share), while the other components
change only marginally. Moreover, the scoring function of 𝑆𝑖 (𝑐)
applies a deliberately conservative adjustment that slightly demotes
observed dominant contributors without replacing them, thereby
preserving predictive relevance while inducing modest decentral-
ization gains. Thus, the small but consistent improvements in DDI
are fully aligned with the intended relevance-decentralization trade-
off. The magnitude of this trade-off aligns with prior fairness-aware
ranking studies [9, 11].

6 Limitation
While DDI integrates complementary concentration indicators,
some components are partially correlated (e.g., dominance and

inequality) and are computed over slightly different participation
bases (global vs. DAO contributors), so the index should be inter-
preted as a composite operational measure rather than fully distinct
dimensions. Additionally, contributor concentration may partly
reflect skill specialization and role differentiation (e.g., core devel-
opers taking on repeated tasks), not solely systemic bias. Future
work could integrate task difficulty and contributor skill signals to
disentangle these mechanisms.

7 Conclusion
This work provides the first large-scale measurement of opera-
tional decentralization in DAO task execution and evaluates how
contributor recommendation models reproduce these patterns. We
find that contributor activity is heavily concentrated and that base-
line predictions largely mirror this structure. By applying a sim-
ple decentralization-aware reranking adjustment, we test whether
model outputs deviate from these imbalances and observe that re-
ducing the influence of observed dominant contributors broadens
exposure—especially at top ranks—while predictably lowering rel-
evance. This controllable trade-off highlights the tight coupling
between recommendation behavior and underlying participation
distributions. Overall, our findings underscore the value of explic-
itly assessing decentralization in DAO tooling and offer a diagnostic
framework for understanding when and how ranking systems may
reinforce or mitigate organizational inequalities.
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