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Abstract

We present QueryGym, a lightweight, extensible Python toolkit
that supports large language model (LLM)-based query reformu-
lation. This is an important tool development since recent work
on llm-based query reformulation has shown notable increase in
retrieval effectiveness. However, while different authors have spo-
radically shared the implementation of their methods, there is no
unified toolkit that provides a consistent implementation of such
methods, which hinders fair comparison, rapid experimentation,
consistent benchmarking and reliable deployment. QueryGym ad-
dresses this gap by providing a unified framework for implement-
ing, executing, and comparing llm-based reformulation methods.
The toolkit offers: (1) a Python API for applying diverse LLM-
based methods, (2) a retrieval-agnostic interface supporting in-
tegration with backends such as Pyserini and PyTerrier, (3) a cen-
tralized prompt management system with versioning and metadata
tracking, (4) built-in support for benchmarks like BEIR and MS
MARCO, and (5) a completely open-source extensible implementa-
tion available to all researchers. QueryGym is publicly available at
https://github.com/radinhamidi/QueryGym.

1 Introduction

Query reformulation and expansion play a central role in Infor-
mation Retrieval (IR), particularly in scenarios where the initial
user query is underspecified, ambiguous, or contextually sparse
[1, 4,9, 10]. Building on recent advances in large language models
(LLMs), a growing body of work has introduced techniques that em-
ploy LLMs to generate enriched or contextualized variants of user
queries, with the goal of improving alignment between query intent
and relevant documents [2, 12, 14, 15]. These approaches frequently
demonstrate strong retrieval gains in zero-shot and few-shot set-
tings, largely due to their reliance on prompt-based generation
rather than supervised training [3, 5, 11, 16].

Despite increasing interest in LLM-driven query expansion, progress

in this area is constrained by the absence of a dedicated, reusable
software framework that enables systematic development and re-
producible experimentation. Existing methods [5, 12, 14, 16] present
three recurring limitations. First, many approaches lack publicly
released implementations [3, 12, 14, 15], and the limited codebases
that are available are often tightly bound to specific datasets, prompt
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templates, or retrieval backends, reducing their applicability across
benchmarks and domains [5, 16]. Second, current implementations
typically do not provide standardized interfaces, modular com-
ponents, or extensible system abstractions. As a result, adapting
these methods to new datasets, modifying prompting strategies,
or integrating with alternative retrieval pipelines requires substan-
tial engineering overhead. Third, reproducibility remains difficult
due to undocumented dependencies, hardcoded configurations and
prompts, ad hoc scripts, and inconsistent output formats. These chal-
lenges, among others, necessitate a unified and extensible toolkit
that would facilitate rapid experimentation, systematic assessment
of prompt and model variations, and ensures reproducible work in
LLM-based query reformulation.

To address these challenges, we propose QueryGym!, a well-
structured, extensible, and publicly available toolkit designed to
support research on LLM-based query reformulation. QueryGym is
designed to facilitate the development of LLM-based query expan-
sion strategies within a unified software framework. At its core,
the toolkit is built around four key capabilities: (1) a unified re-
formulation framework for standardizing the implementation of
methods; (2) a retrieval-agnostic interface for seamless integration
with diverse IR retrieval libraries; (3) a centralized prompt bank
for reproducible prompt engineering and template management;
and (4) LLM compatibility and reproducibility support to enable
implementation across diverse LLMs and prompting strategies.

At the center of QueryGym is the unified reformulation frame-
work, which provides a standardized execution flow for implement-
ing reformulation methods, managing prompts, interacting with
LLMs, and formatting outputs. The toolkit supports batch reformu-
lation with flexible concatenation strategies and robust handling
of inputs and outputs. It also offers native support for popular IR
datasets, including MS MARCO and BEIR, while also supporting
custom and local formats through flexible loaders.

QueryGym also leverages a retrieval-agnostic interface that en-
ables seamless integration with diverse IR pipelines, such as Py-
serini [6] and PyTerrier [7]. This design ensures that query reformu-
lation process can be performed through a standardized retrieval
setting without requiring any pipeline reimplementation.

To support prompt experimentation, QueryGym introduces a cen-
tralized Prompt Bank, which manages versioned templates along
with structured metadata. This enables prompt sharing and reuse

!https://querygym.readthedocs.io/
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Figure 1: Inheritance hierarchy for the main classes in the QueryGym Python package.

across models and datasets and ensures reproducibility and trans-

parency in prompt design. Importantly, the toolkit is fully LLM-

compatible and supports both open-source models and API-based
LLMs that can be accessed through OpenAl-compatible endpoints.

These makes QueryGym a suitable toolkit to assess the impact of
various LLMs and prompt variations.

Finally, the toolkit is built to help with reproducibility and scale.

All experiments are driven by structured configuration files that

control prompt version, model parameters, and retrieval settings.
Reformulated queries are saved in both retrieval-ready and struc-
tured formats, while a CLI and high-level Python API provide flexi-
ble entry points for rapid prototyping and large-scale batch runs.
Metadata, including prompt identifiers, LLM generation traces, and
configuration parameters, is automatically logged to ensure that
experimental results can be reliably audited and reproduced.

In our demo presentation, we will present QueryGym as a princi-

pled, flexible, and reproducible toolkit for LLM-based query refor-

mulation. We (1) introduce the reformulation methods supported
by QueryGym and illustrate how different methods can be employed;
(2) demonstrate how new prompting methods and LLMs can be
seamlessly integrated into the framework; (3) show how the unified
interface enables fair, reproducible experimentation across datasets
and retrieval backends; and (4) walk through real-world usage sce-
narios using the provided CLI and API, highlighting QueryGym’s

value for both fast experimentation and scalable pipeline deploy-

ment.

2 Toolkit Overview

QueryGym is a modular and extensible Python toolkit designed
to facilitate systematic research and development in LLM-based
query reformulation. It can be easily installed via "pip install

querygym". The toolkit is organized into four loosely coupled mod-
ules including Data Module and Data Adapters, Reformulation Mod-
ule, Retriever Adapters, and Configuration Utilities. It exposes a con-
sistent object-oriented interface for defining reformulation strate-
gies, loading benchmark datasets, integrating with retrieval en-
gines, and managing input/output workflows. Figure 1 presents an
overview of QueryGym core classes and their relationships.
Data Module and Data Adapters. The data module provides a
lightweight, dependency-free interface for ingesting benchmark
datasets. At its core is the DatalLoader class, which handles the
loading and saving of queries, qrels, and context passages in TSV
or JSONL formats. To streamline experimentation on widely used
benchmarks, QueryGym includes specialized adapters for datasets
like BEIR [13] and MS MARCO [8], with utilities tailored to their
respective file structures. This abstraction simplifies switching be-
tween datasets and ensures compatibility with retrieval pipelines
and experimentation frameworks. The modular design also allows
additional dataset adapters to be added with minimal effort, en-
abling broader applicability across IR benchmarks.
Reformulation Module. At the core of QueryGym is a unified
reformulation framework centered on an abstract base class that
standardizes method execution and encapsulates shared functional-
ity for prompt rendering, context retrieval, and output formatting.
The toolkit includes implementations of recent LLM-based reformu-
lation methods drawn from literature, including Query2Doc [14],
GenQR [15], GenQREnsemble [2], MuGI [16], QA-Expand [11],
LameR [12], Query2E [3], and CSQE [5]. Each method is imple-
mented as a modular subclass, adhering to a common interface,
enabling consistent usage, extensibility, and integration.

To support extensibility, QueryGym adopts a lightweight decorator-
based registration mechanism that allows new methods to be seam-
lessly added without altering the core framework. Once registered,
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these methods are immediately accessible through the toolkit’s
Python API and CLI. This design facilitates rapid experimenta-
tion with novel prompting techniques while ensuring compatibility
with the surrounding infrastructure for dataset management and
retrieval integration.
Retriever Integration and Wrappers. For query reformulation
methods that rely on retrieval context, such as those requiring
passages or pseudo-relevance feedback, QueryGym defines a ded-
icated retriever abstraction through the BaseSearcher interface.
This interface decouples reformulation logic from backend retrieval,
supporting both single-query and batch retrieval workflows. It is
compatible with widely-used IR toolkits such as Pyserini [6] and
PyTerrier [7], which are integrated via dedicated wrappers.
Searchers can be instantiated dynamically through a registry-
based mechanism, allowing flexible configuration at runtime. Pro-
vided wrappers, including support for Pyserini, PyTerrier, and cus-
tom search engines, enable seamless interoperability with existing
IR tools. This retrieval-agnostic architecture ensures that reformu-
lation methods can operate consistently across different retrieval
backends without requiring changes to their core implementation.
Prompt Management and Configuration. Prompting logic is
centralized through a YAML-based Prompt Bank, which stores
template definitions along with metadata, role formatting (sys-
tem/user/assistant), and version identifiers. Prompts are rendered
dynamically with variable and are logged for full traceability. This
enables systematic prompt tuning and sharing across experiments.
Overall, QueryGym has a clear separation between data handling,
reformulation logic, retrieval integration, and prompt configura-
tion, which allows researchers to experiment with new methods,
prompts, and retrieval strategies without entangling components.
By providing a consistent API, structured configuration, and in-
teroperability with widely used IR toolkits, QueryGym lowers the
barrier to reproducible experimentation and scalable deployment.

3 Demonstrating Use Cases

To illustrate the utility of QueryGym, we present several represen-
tative use cases that demonstrate how the toolkit facilitates query
reformulation across different levels of complexity and integration.
These examples highlight QueryGym’s suitability for both rapid
prototyping and scalable experimentation in realistic setting.
Basic Query Reformulation. Figure 2 shows a basic example in
which a set of user queries is reformulated using a single method
and a specified LLM. This simple workflow is representative of
lightweight experimentation, where researchers can iterate over
prompting strategies and inspect reformulation outputs with min-
imal setup. The toolkit automatically handles batch processing,
progress tracking, and result formatting. Results include both re-
formulated queries and method-specific metadata, enabling com-
prehensive downstream analysis and evaluation.

Context-Based Reformulation with Retrieval. Query reformu-
lation methods that rely on external context such as top-ranked
passages can be directly integrated with retrieval engines using
QueryGym’s retriever abstraction. Figure 3 illustrates an end-to-end
pipeline where a context-aware method is applied to a benchmark
dataset using a prebuilt Pyserini index. The retrieval system is
seamlessly wrapped using QueryGym’s utility functions, allowing
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1| import querygym as qg

2| # Load queries

3| queries = qg.load_queries("examples/tiny_queries.tsv")

4| # Create reformulator

5| reformulator = qg.create_reformulator("query2doc", model="gpt
_4")

6| # Reformulate

7| results = reformulator.reformulate_batch(queries)

8| # Show results

9| for r in results:

10 print(f{r.qid}: {r.original} {r.reformulated})

Figure 2: Example usage of QueryGym for query reformula-
tion.

reformulation strategies to incorporate retrieved content without
altering core logic or re-implementing IR components.

This retrieval-agnostic integration allows researchers to run
retrieval-augmented prompting methods in realistic scenarios using
widely adopted toolkits. QueryGym’s interface ensures compatibility
with both batch and single-query workflows and supports configu-
ration of retrieval parameters such as ranking models and passage
cutoffs. By bridging LLM-based reformulation with established
IR infrastructure, QueryGym enables reproducible experimentation
within modular and extensible pipelines.

1| import querygym as qg

2| from pyserini.search.lucene import LuceneSearcher

3| # User configuration

4| DATA_DIR = "data"

5| # Load queries

6| queries = qg.loaders.msmarco.load_queries(f"{DATA_DIR}/queries.
tsv'")

7| # Initialize searcher

3| searcher = LuceneSearcher.from_prebuilt_index('msmarco-v1-
passage')

9| searcher.set_bm25(k1=0.9, b=0.4)

10| # Wrap searcher and create reformulator

11| wrapped_searcher = qg.wrap_pyserini_searcher(searcher,
answer_key="contents")

12| reformulator = qg.create_reformulator(

13 method_name="csqe",

14 model="gpt-4",

15 params={

16 "searcher": wrapped_searcher,

17 "retrieval_k": 10,

18 "gen_passages": 5,
19 1

20 11m_config={

21 "temperature": 1.0,
22 "max_tokens": 128,
23 }

25| # Reformulate
26| results = reformulator.reformulate_batch(queries)

Figure 3: Integrated pipeline for Pyserini retrieval and
QueryGym reformulation.

Leaderboard and Benchmarking. QueryGym facilitates repro-
ducible method comparison across datasets under controlled ex-
perimental conditions. Figure 4 demonstrates a systematic experi-
mentation pipeline that benchmarks six reformulation methods on
three MS MARCO datasets with identical LLM configurations.

The pipeline enforces identical experimental configurations across
all runs through centralized parameter management. Method-specific
requirements are handled programmatically, while outputs are or-
ganized hierarchically for immediate downstream evaluation with
standard IR tools.

This workflow illustrates how QueryGym facilitates systematic
IR research, enabling researchers to scale from single-method to
multi-method, multi-dataset experimentation while preserving re-
producibility and methodological consistency.
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import querygym as qg

from pyserini.search.lucene import LuceneSearcher

# Benchmark configuration

DATASETS = ["dev_small", "trecdl2019", "trecdl2020"]

METHODS = ["genqgr", "gengr_ensemble", "query2doc", "qa_expand"
, "lamer", "csqge"]

6| CONTEXT_METHODS = {"lamer", "csqge"}

7| DATA_DIR = "data"

8| LLM_CONFIG = {

9 "model": "gpt-40",

10 "temperature": 0.8,

11 "max_tokens": 256,

12 "seed": 42

3
14| # Initialize shared index for all MS MARCO datasets
15| searcher = LuceneSearcher.from_prebuilt_index('msmarco-v1-
passage')
16| searcher.set_bm25(k1=0.9, b=0.4)
17| wrapped_searcher = qg.wrap_pyserini_searcher(searcher,
answer_key="contents")
18| for dataset in DATASETS:
19 queries = qgg.loaders.msmarco.load_queries(f"{DATA_DIR}/{
dataset}/queries.tsv")

20 for method in METHODS:

21 method_params = (

22 {"searcher": wrapped_searcher, "retrieval_k": 10}

23 if method in CONTEXT_METHODS else {}

24 )

25 reformulator = qg.create_reformulator(

26 method,

27 model=LLM_CONFIG["model"],

28 params=method_params,

29 11m_config={k: v for k, v in LLM_CONFIG.items()
if k != "model"},

30 seed=LLM_CONFIG["seed"]

31

32 reformulated = reformulator.reformulate_batch(queries)

33 # Export reformulated queries

34 qg.Dataloader.save_queries(

35 [gg.QueryItem(r.qid, r.reformulated) for r in
reformulated],

36 f"benchmark/{dataset}/{method}.tsv"

37 )

Figure 4: Multi-method benchmarking pipeline across
datasets under controlled conditions.

4 Concluding Remarks

QueryGym provides a cohesive and practical environment for in-
vestigating LLM-based query reformulation, designed to facilitate
extensibility, controlled experimentation, and seamless interoper-
ability with modern retrieval pipelines. The demo will guide atten-
dees through the core capabilities of the toolkit and illustrate how
its unified abstractions simplify the development of reformulation
strategies. Our demonstration will showcase the following:

e interactive execution of reformulation methods via both the
Python API and command-line interface, highlighting the ease
of iterating over models, prompts, and reformulation strategies;

o end-to-end workflows that integrate reformulation with retrieval
tools such as Pyserini and PyTerrier, illustrating retrieval-agnostic
design choices and straightforward backend substitution;

e prompt selection, versioning, and metadata inspection enabled
by the centralized prompt bank, demonstrating how prompt man-
agement supports transparent and reproducible experimentation;

e benchmarking pipelines that compare multiple reformulation
methods across datasets under consistent settings, enabling fair
and repeatable experimentation;

e incorporation of a new reformulation method or LLM backend
to demonstrate the lightweight extensibility mechanism and the
clarity of the underlying abstractions;

Amin Bigdeli, Radin Hamidi Rad, Mert Incesu, Negar Arabzadeh, Ebrahim Bagheri, and Charles L. A. Clarke

Through these examples, the demonstration aims to show how
QueryGym enables both rapid prototyping and systematic experi-
mentation of LLM-driven query reformulation, providing a repro-
ducible, modular, and extensible foundation for future research. The
complete open-source implementation of QueryGym is available at
https://github.com/radinhamidi/QueryGym.

5 Ethical Use of Data and Informed Consent

All datasets used in this study are publicly available and intended
for academic research. They contain no personally identifiable in-
formation (PII), and no new human subject data was collected. All
data was used transparently, responsibly, and in compliance with
the terms set by the original providers.
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