23
24
25
26
27
28
29

39
40
41
42
43
44

QueryGym: A Toolkit for Reproducible LLM-Based Query
Reformulation

Amin Bigdeli*
University of Waterloo
Waterloo, Ontario, Canada
abigdeli@uwaterloo.ca

Negar Arabzadeh
University of California, Berkeley

Berkeley, California, USA
negara@berkeley.edu

Abstract

We present QueryGym, a lightweight, extensible Python toolkit
that supports large language model (LLM)-based query reformu-
lation. This is an important tool development since recent work
on llm-based query reformulation has shown notable increase in
retrieval effectiveness. However, while different authors have spo-
radically shared the implementation of their methods, there is no
unified toolkit that provides a consistent implementation of such
methods, which hinders fair comparison, rapid experimentation,
consistent benchmarking and reliable deployment. QueryGym ad-
dresses this gap by providing a unified framework for implement-
ing, executing, and comparing llm-based reformulation methods.
The toolkit offers: (1) a Python API for applying diverse LLM-
based methods, (2) a retrieval-agnostic interface supporting in-
tegration with backends such as Pyserini and PyTerrier, (3) a cen-
tralized prompt management system with versioning and metadata
tracking, (4) built-in support for benchmarks like BEIR and MS
MARCO, and (5) a completely open-source extensible implementa-
tion available to all researchers. QueryGym is publicly available at
https://github.com/radinhamidi/QueryGym.

1 Introduction

Query reformulation and expansion play a central role in Infor-
mation Retrieval (IR), particularly in scenarios where the initial
user query is underspecified, ambiguous, or contextually sparse
[1, 4,9, 10]. Building on recent advances in large language models
(LLMs), a growing body of work has introduced techniques that em-
ploy LLMs to generate enriched or contextualized variants of user
queries, with the goal of improving alignment between query intent
and relevant documents [2, 12, 14, 15]. These approaches frequently
demonstrate strong retrieval gains in zero-shot and few-shot set-
tings, largely due to their reliance on prompt-based generation
rather than supervised training [3, 5, 11, 16].

Despite increasing interest in LLM-driven query expansion, progress

in this area is constrained by the absence of a dedicated, reusable
software framework that enables systematic development and re-
producible experimentation. Existing methods [5, 12, 14, 16] present
three recurring limitations. First, many approaches lack publicly
released implementations [3, 12, 14, 15], and the limited codebases
that are available are often tightly bound to specific datasets, prompt

“Both authors contributed equally to this research.

Radin Hamidi Rad*
Mila - Quebec Al Institute
Montreal, Quebec, Canada

radin.hamidi-rad@mila.quebec

Ebrahim Bagheri
University of Toronto
Toronto, Ontario, Canada
ebrahim.bagheri@utoronto.ca

Mert Incesu
University of Toronto
Toronto, Ontario, Canada
mert.incesu03@gmail.com

Charles L. A. Clarke
University of Waterloo
Waterloo, Ontario, Canada
claclark@gmail.com

templates, or retrieval backends, reducing their applicability across
benchmarks and domains [5, 16]. Second, current implementations
typically do not provide standardized interfaces, modular com-
ponents, or extensible system abstractions. As a result, adapting
these methods to new datasets, modifying prompting strategies,
or integrating with alternative retrieval pipelines requires substan-
tial engineering overhead. Third, reproducibility remains difficult
due to undocumented dependencies, hardcoded configurations and
prompts, ad hoc scripts, and inconsistent output formats. These chal-
lenges, among others, necessitate a unified and extensible toolkit
that would facilitate rapid experimentation, systematic assessment
of prompt and model variations, and ensures reproducible work in
LLM-based query reformulation.

To address these challenges, we propose QueryGym!, a well-
structured, extensible, and publicly available toolkit designed to
support research on LLM-based query reformulation. QueryGym is
designed to facilitate the development of LLM-based query expan-
sion strategies within a unified software framework. At its core,
the toolkit is built around four key capabilities: (1) a unified re-
formulation framework for standardizing the implementation of
methods; (2) a retrieval-agnostic interface for seamless integration
with diverse IR retrieval libraries; (3) a centralized prompt bank
for reproducible prompt engineering and template management;
and (4) LLM compatibility and reproducibility support to enable
implementation across diverse LLMs and prompting strategies.

At the center of QueryGym is the unified reformulation frame-
work, which provides a standardized execution flow for implement-
ing reformulation methods, managing prompts, interacting with
LLMs, and formatting outputs. The toolkit supports batch reformu-
lation with flexible concatenation strategies and robust handling
of inputs and outputs. It also offers native support for popular IR
datasets, including MS MARCO and BEIR, while also supporting
custom and local formats through flexible loaders.

QueryGym also leverages a retrieval-agnostic interface that en-
ables seamless integration with diverse IR pipelines, such as Py-
serini [6] and PyTerrier [7]. This design ensures that query reformu-
lation process can be performed through a standardized retrieval
setting without requiring any pipeline reimplementation.

To support prompt experimentation, QueryGym introduces a cen-
tralized Prompt Bank, which manages versioned templates along
with structured metadata. This enables prompt sharing and reuse

!https://querygym.readthedocs.io/

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://orcid.org/0000-0002-9044-3723
https://orcid.org/0000-0002-4411-7089
https://orcid.org/0000-0002-5148-6237
https://orcid.org/0000-0001-8178-9194
https://github.com/radinhamidi/QueryGym
https://querygym.readthedocs.io/

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Submitted to WWW 2026, April 13-17, 2026, Dubai, UAE

Amin Bigdeli, Radin Hamidi Rad, Mert Incesu, Negar Arabzadeh, Ebrahim Bagheri, and Charles L. A. Clarke

Dataloader BEIR Utils Reformulator Registry

BaseReformulator (ABC)

Searcher Registry

BaseSearcher (ABC)

load_queries(): List[Queryltem] load_queries(): List[Queryltem]

reformulate(): str

load_grels(): Dict(str, Dict[str, int]] load_grels(): Dict[str, Dict[str, int]] reglater
load_contexts(): Dics[str, List(str]] load_corpus(): Dict[str, Dictfstr, str]]

save_queries(): None

_result(): str
reformulate_batch(): List[str]
retrieve_context_batch(): Dict[str, List[str]]
retrieve_contexts_if_needed(): List[str]

register(: None
get_searcher(): BaseSearcher
list_searchers(: Lististr]

search(: List[SearchHit]
batch_search(): List[List[SearchHit]]
get_searcher_info(): Dict[str, Any]
configure(): None

MSMARCO Utils

CSQE

load_queries(): List{Queryltem]
load_qrels(): Dict[str, Dictstr, int]]
load_collection(): Dict[sir, str]

reformulate(): ReformulationResut

GenQREnsemble

reformulate(): ReformulationResult

GenQR

PyseriniSearcher

search(: List[SearchHil]

batch_search(): List[List{SearchHif]] |——|

MuG! get_searcher_info(): Dict[str, Any]
configure(): None

[reformulate(): ReformulationResult

PyTerrierSearcher

search(: List[SearchHit]
batch_searchi): List[List{SearchHif] | |
get_searcher_info(): Dict[str, Any]
configure(: None

QA-Expand

| reformulate(): ReformulationResult

PyseriniWrapper

): ionResult

Query2Doc search(): List[SearchHit]

batch_search(: List[List{SearchHit]]

—) i ult get_searcher_info(): Dict[str, Any]

LameR

PyTerrierWrapper

Query2E

search(): List{SearchHit]
batch_search(: List[List[SearchHit] | |
get_searcher_info(: Dictlstr, Any]

' reformulate(): ReformulationResult

CustomWrapper

search(: List[SearchHit]
batch_search(): List[List[SearchHit]] |—!
get_searcher_info{: Dictlstr, Any]

|- Data Module | Data Adapters |- Reformulation Module + Retriever Adapters -I

Figure 1: Inheritance hierarchy for the main classes in the QueryGym Python package.

across models and datasets and ensures reproducibility and trans-

parency in prompt design. Importantly, the toolkit is fully LLM-

compatible and supports both open-source models and API-based
LLMs that can be accessed through OpenAl-compatible endpoints.

These makes QueryGym a suitable toolkit to assess the impact of
various LLMs and prompt variations.

Finally, the toolkit is built to help with reproducibility and scale.

All experiments are driven by structured configuration files that

control prompt version, model parameters, and retrieval settings.
Reformulated queries are saved in both retrieval-ready and struc-
tured formats, while a CLI and high-level Python API provide flexi-
ble entry points for rapid prototyping and large-scale batch runs.
Metadata, including prompt identifiers, LLM generation traces, and
configuration parameters, is automatically logged to ensure that
experimental results can be reliably audited and reproduced.

In our demo presentation, we will present QueryGym as a princi-

pled, flexible, and reproducible toolkit for LLM-based query refor-

mulation. We (1) introduce the reformulation methods supported
by QueryGym and illustrate how different methods can be employed;
(2) demonstrate how new prompting methods and LLMs can be
seamlessly integrated into the framework; (3) show how the unified
interface enables fair, reproducible experimentation across datasets
and retrieval backends; and (4) walk through real-world usage sce-
narios using the provided CLI and API, highlighting QueryGym’s

value for both fast experimentation and scalable pipeline deploy-

ment.

2 Toolkit Overview

QueryGym is a modular and extensible Python toolkit designed
to facilitate systematic research and development in LLM-based
query reformulation. It can be easily installed via "pip install

querygym". The toolkit is organized into four loosely coupled mod-
ules including Data Module and Data Adapters, Reformulation Mod-
ule, Retriever Adapters, and Configuration Utilities. It exposes a con-
sistent object-oriented interface for defining reformulation strate-
gies, loading benchmark datasets, integrating with retrieval en-
gines, and managing input/output workflows. Figure 1 presents an
overview of QueryGym core classes and their relationships.
Data Module and Data Adapters. The data module provides a
lightweight, dependency-free interface for ingesting benchmark
datasets. At its core is the DatalLoader class, which handles the
loading and saving of queries, qrels, and context passages in TSV
or JSONL formats. To streamline experimentation on widely used
benchmarks, QueryGym includes specialized adapters for datasets
like BEIR [13] and MS MARCO [8], with utilities tailored to their
respective file structures. This abstraction simplifies switching be-
tween datasets and ensures compatibility with retrieval pipelines
and experimentation frameworks. The modular design also allows
additional dataset adapters to be added with minimal effort, en-
abling broader applicability across IR benchmarks.
Reformulation Module. At the core of QueryGym is a unified
reformulation framework centered on an abstract base class that
standardizes method execution and encapsulates shared functional-
ity for prompt rendering, context retrieval, and output formatting.
The toolkit includes implementations of recent LLM-based reformu-
lation methods drawn from literature, including Query2Doc [14],
GenQR [15], GenQREnsemble [2], MuGI [16], QA-Expand [11],
LameR [12], Query2E [3], and CSQE [5]. Each method is imple-
mented as a modular subclass, adhering to a common interface,
enabling consistent usage, extensibility, and integration.

To support extensibility, QueryGym adopts a lightweight decorator-
based registration mechanism that allows new methods to be seam-
lessly added without altering the core framework. Once registered,

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199

206

207

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

QueryGym: A Toolkit for Reproducible LLM-Based Query Reformulation

these methods are immediately accessible through the toolkit’s
Python API and CLI. This design facilitates rapid experimenta-
tion with novel prompting techniques while ensuring compatibility
with the surrounding infrastructure for dataset management and
retrieval integration.
Retriever Integration and Wrappers. For query reformulation
methods that rely on retrieval context, such as those requiring
passages or pseudo-relevance feedback, QueryGym defines a ded-
icated retriever abstraction through the BaseSearcher interface.
This interface decouples reformulation logic from backend retrieval,
supporting both single-query and batch retrieval workflows. It is
compatible with widely-used IR toolkits such as Pyserini [6] and
PyTerrier [7], which are integrated via dedicated wrappers.
Searchers can be instantiated dynamically through a registry-
based mechanism, allowing flexible configuration at runtime. Pro-
vided wrappers, including support for Pyserini, PyTerrier, and cus-
tom search engines, enable seamless interoperability with existing
IR tools. This retrieval-agnostic architecture ensures that reformu-
lation methods can operate consistently across different retrieval
backends without requiring changes to their core implementation.
Prompt Management and Configuration. Prompting logic is
centralized through a YAML-based Prompt Bank, which stores
template definitions along with metadata, role formatting (sys-
tem/user/assistant), and version identifiers. Prompts are rendered
dynamically with variable and are logged for full traceability. This
enables systematic prompt tuning and sharing across experiments.
Overall, QueryGym has a clear separation between data handling,
reformulation logic, retrieval integration, and prompt configura-
tion, which allows researchers to experiment with new methods,
prompts, and retrieval strategies without entangling components.
By providing a consistent API, structured configuration, and in-
teroperability with widely used IR toolkits, QueryGym lowers the
barrier to reproducible experimentation and scalable deployment.

3 Demonstrating Use Cases

To illustrate the utility of QueryGym, we present several represen-
tative use cases that demonstrate how the toolkit facilitates query
reformulation across different levels of complexity and integration.
These examples highlight QueryGym’s suitability for both rapid
prototyping and scalable experimentation in realistic setting.
Basic Query Reformulation. Figure 2 shows a basic example in
which a set of user queries is reformulated using a single method
and a specified LLM. This simple workflow is representative of
lightweight experimentation, where researchers can iterate over
prompting strategies and inspect reformulation outputs with min-
imal setup. The toolkit automatically handles batch processing,
progress tracking, and result formatting. Results include both re-
formulated queries and method-specific metadata, enabling com-
prehensive downstream analysis and evaluation.

Context-Based Reformulation with Retrieval. Query reformu-
lation methods that rely on external context such as top-ranked
passages can be directly integrated with retrieval engines using
QueryGym’s retriever abstraction. Figure 3 illustrates an end-to-end
pipeline where a context-aware method is applied to a benchmark
dataset using a prebuilt Pyserini index. The retrieval system is
seamlessly wrapped using QueryGym’s utility functions, allowing

Submitted to WWW 2026, April 13-17, 2026, Dubai, UAE

1| import querygym as qg

2| # Load queries

3| queries = qg.load_queries("examples/tiny_queries.tsv")

4| # Create reformulator

5| reformulator = qg.create_reformulator("query2doc", model="gpt
_4")

6| # Reformulate

7| results = reformulator.reformulate_batch(queries)

8| # Show results

9| for r in results:

10 print(f{r.qid}: {r.original} {r.reformulated})

Figure 2: Example usage of QueryGym for query reformula-
tion.

reformulation strategies to incorporate retrieved content without
altering core logic or re-implementing IR components.

This retrieval-agnostic integration allows researchers to run
retrieval-augmented prompting methods in realistic scenarios using
widely adopted toolkits. QueryGym’s interface ensures compatibility
with both batch and single-query workflows and supports configu-
ration of retrieval parameters such as ranking models and passage
cutoffs. By bridging LLM-based reformulation with established
IR infrastructure, QueryGym enables reproducible experimentation
within modular and extensible pipelines.

1| import querygym as qg

2| from pyserini.search.lucene import LuceneSearcher

3| # User configuration

4| DATA_DIR = "data"

5| # Load queries

6| queries = qg.loaders.msmarco.load_queries(f"{DATA_DIR}/queries.
tsv'")

7| # Initialize searcher

3| searcher = LuceneSearcher.from_prebuilt_index('msmarco-v1-
passage')

9| searcher.set_bm25(k1=0.9, b=0.4)

10| # Wrap searcher and create reformulator

11| wrapped_searcher = qg.wrap_pyserini_searcher(searcher,
answer_key="contents")

12| reformulator = qg.create_reformulator(

13 method_name="csqe",

14 model="gpt-4",

15 params={

16 "searcher": wrapped_searcher,

17 "retrieval_k": 10,

18 "gen_passages": 5,
19 1

20 11m_config={

21 "temperature": 1.0,
22 "max_tokens": 128,
23 }

25| # Reformulate
26| results = reformulator.reformulate_batch(queries)

Figure 3: Integrated pipeline for Pyserini retrieval and
QueryGym reformulation.

Leaderboard and Benchmarking. QueryGym facilitates repro-
ducible method comparison across datasets under controlled ex-
perimental conditions. Figure 4 demonstrates a systematic experi-
mentation pipeline that benchmarks six reformulation methods on
three MS MARCO datasets with identical LLM configurations.

The pipeline enforces identical experimental configurations across
all runs through centralized parameter management. Method-specific
requirements are handled programmatically, while outputs are or-
ganized hierarchically for immediate downstream evaluation with
standard IR tools.

This workflow illustrates how QueryGym facilitates systematic
IR research, enabling researchers to scale from single-method to
multi-method, multi-dataset experimentation while preserving re-
producibility and methodological consistency.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Submitted to WWW 2026, April 13-17, 2026, Dubai, UAE

import querygym as qg

from pyserini.search.lucene import LuceneSearcher

Benchmark configuration

DATASETS = ["dev_small", "trecdl2019", "trecdl2020"]

METHODS = ["genqgr", "gengr_ensemble", "query2doc", "qa_expand"
, "lamer", "csqge"]

6| CONTEXT_METHODS = {"lamer", "csqge"}

7| DATA_DIR = "data"

8| LLM_CONFIG = {

9 "model": "gpt-40",

10 "temperature": 0.8,

11 "max_tokens": 256,

12 "seed": 42

3
14| # Initialize shared index for all MS MARCO datasets
15| searcher = LuceneSearcher.from_prebuilt_index('msmarco-v1-
passage')
16| searcher.set_bm25(k1=0.9, b=0.4)
17| wrapped_searcher = qg.wrap_pyserini_searcher(searcher,
answer_key="contents")
18| for dataset in DATASETS:
19 queries = qgg.loaders.msmarco.load_queries(f"{DATA_DIR}/{
dataset}/queries.tsv")

20 for method in METHODS:

21 method_params = (

22 {"searcher": wrapped_searcher, "retrieval_k": 10}

23 if method in CONTEXT_METHODS else {}

24)

25 reformulator = qg.create_reformulator(

26 method,

27 model=LLM_CONFIG["model"],

28 params=method_params,

29 11m_config={k: v for k, v in LLM_CONFIG.items()
if k != "model"},

30 seed=LLM_CONFIG["seed"]

31

32 reformulated = reformulator.reformulate_batch(queries)

33 # Export reformulated queries

34 qg.Dataloader.save_queries(

35 [gg.QueryItem(r.qid, r.reformulated) for r in
reformulated],

36 f"benchmark/{dataset}/{method}.tsv"

37)

Figure 4: Multi-method benchmarking pipeline across
datasets under controlled conditions.

4 Concluding Remarks

QueryGym provides a cohesive and practical environment for in-
vestigating LLM-based query reformulation, designed to facilitate
extensibility, controlled experimentation, and seamless interoper-
ability with modern retrieval pipelines. The demo will guide atten-
dees through the core capabilities of the toolkit and illustrate how
its unified abstractions simplify the development of reformulation
strategies. Our demonstration will showcase the following:

e interactive execution of reformulation methods via both the
Python API and command-line interface, highlighting the ease
of iterating over models, prompts, and reformulation strategies;

o end-to-end workflows that integrate reformulation with retrieval
tools such as Pyserini and PyTerrier, illustrating retrieval-agnostic
design choices and straightforward backend substitution;

e prompt selection, versioning, and metadata inspection enabled
by the centralized prompt bank, demonstrating how prompt man-
agement supports transparent and reproducible experimentation;

e benchmarking pipelines that compare multiple reformulation
methods across datasets under consistent settings, enabling fair
and repeatable experimentation;

e incorporation of a new reformulation method or LLM backend
to demonstrate the lightweight extensibility mechanism and the
clarity of the underlying abstractions;

Amin Bigdeli, Radin Hamidi Rad, Mert Incesu, Negar Arabzadeh, Ebrahim Bagheri, and Charles L. A. Clarke

Through these examples, the demonstration aims to show how
QueryGym enables both rapid prototyping and systematic experi-
mentation of LLM-driven query reformulation, providing a repro-
ducible, modular, and extensible foundation for future research. The
complete open-source implementation of QueryGym is available at
https://github.com/radinhamidi/QueryGym.

5 Ethical Use of Data and Informed Consent

All datasets used in this study are publicly available and intended
for academic research. They contain no personally identifiable in-
formation (PII), and no new human subject data was collected. All
data was used transparently, responsibly, and in compliance with
the terms set by the original providers.

References

[1] Nasreen Abdul-Jaleel, James Allan, W Bruce Croft, Fernando Diaz, Leah Larkey,
Xiaoyan Li, Mark D Smucker, and Courtney Wade. 2004. UMass at TREC 2004:
Novelty and HARD. (2004).

Kaustubh D Dhole and Eugene Agichtein. 2024. Genqrensemble: Zero-shot llm

ensemble prompting for generative query reformulation. In European Conference

on Information Retrieval. Springer, 326-335.

[3] Rolf Jagerman, Honglei Zhuang, Zhen Qin, Xuanhui Wang, and Michael Bender-
sky. 2023. Query expansion by prompting large language models. arXiv preprint
arXiv:2305.03653 (2023).

[4] Victor Lavrenko and W Bruce Croft. 2017. Relevance-based language models. In
ACM SIGIR Forum, Vol. 51. ACM New York, NY, USA, 260-267.

[5] Yibin Lei, Yu Cao, Tianyi Zhou, Tao Shen, and Andrew Yates. 2024. Corpus-
Steered Query Expansion with Large Language Models. In Proceedings of the
18th Conference of the European Chapter of the Association for Computational
Linguistics (Volume 2: Short Papers), Yvette Graham and Matthew Purver (Eds.).
Association for Computational Linguistics, St. Julian’s, Malta, 393-401. doi:10.
18653/v1/2024.eacl-short.34

[6] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Infor-
mation Retrieval Research with Sparse and Dense Representations. In Proceedings
of the 44th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2021). 2356-2362.

[7] Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation
inInformation Retrieval using PyTerrier. In Proceedings of ICTIR 2020.

[8] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. Ms marco: A human-generated machine reading
comprehension dataset. (2016).

[9] Gustavo Penha, Arthur Camara, and Claudia Hauff. 2022. Evaluating the ro-
bustness of retrieval pipelines with query variation generators. In European
conference on information retrieval. Springer, 397-412.

[10] Joseph John Rocchio Jr. 1971. Relevance feedback in information retrieval. The
SMART retrieval system: experiments in automatic document processing (1971).

[11] Wonduk Seo and Seunghyun Lee. 2025. QA-Expand: Multi-Question Answer
Generation for Enhanced Query Expansion in Information Retrieval. arXiv
preprint arXiv:2502.08557 (2025).

[12] Tao Shen, Guodong Long, Xiubo Geng, Chongyang Tao, Yibin Lei, Tianyi Zhou,

Michael Blumenstein, and Daxin Jiang. 2024. Retrieval-Augmented Retrieval:

Large Language Models are Strong Zero-Shot Retriever. In Findings of the As-

sociation for Computational Linguistics: ACL 2024, Lun-Wei Ku, Andre Martins,

and Vivek Srikumar (Eds.). Association for Computational Linguistics, Bangkok,

Thailand, 15933-15946. doi:10.18653/v1/2024.findings-acl.943

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, and Iryna

Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of

Information Retrieval Models. In Thirty-fifth Conference on Neural Information

Processing Systems Datasets and Benchmarks Track (Round 2). https://openreview.

net/forum?id=wCu6T5xFje]

Liang Wang, Nan Yang, and Furu Wei. 2023. Query2doc: Query expansion with

large language models. arXiv preprint arXiv:2303.07678 (2023).

Xiao Wang, Sean MacAvaney, Craig Macdonald, and Iadh Ounis. 2023. Generative

query reformulation for effective adhoc search. arXiv preprint arXiv:2308.00415

(2023).

[16] Le Zhang, Yihong Wu, Qian Yang, and Jian-Yun Nie. 2024. Exploring the Best
Practices of Query Expansion with Large Language Models. In Findings of the
Association for Computational Linguistics: EMINLP 2024, Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (Eds.). Association for Computational Linguistics,
Miami, Florida, USA, 1872-1883. doi:10.18653/v1/2024.findings-emnlp.103

[2

(13

(14

[15

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464

https://github.com/radinhamidi/QueryGym
https://doi.org/10.18653/v1/2024.eacl-short.34
https://doi.org/10.18653/v1/2024.eacl-short.34
https://doi.org/10.18653/v1/2024.findings-acl.943
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.18653/v1/2024.findings-emnlp.103

	Abstract
	1 Introduction
	2 Toolkit Overview
	3 Demonstrating Use Cases
	4 Concluding Remarks
	5 Ethical Use of Data and Informed Consent
	References

