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Self-Paced Fair Ranking with Loss as a Proxy for Bias

Abstract

Neural rankers often mirror societal biases in training data, such as
gender. Prior work typically requires access to protected-attribute
labels or model changes, limiting applicability. We propose a simple,
model-agnostic approach that uses the model’s own loss values
as a proxy for bias. Through self-paced learning, our method first
prioritizes lower-loss (and less biased) examples, then gradually
introduces harder (more biased) ones. This loss-aware curriculum
reduces reliance on biased samples without demographic annota-
tions. We prove the gender loss gap decreases monotonically during
training and show on MS MARCO that our method reduces bias
while maintaining or improving ranking effectiveness, outperform-
ing strong baselines.

1 Introduction

Neural ranking models have become central to modern information
retrieval systems due to their ability to learn deep semantic relation-
ships between queries and documents [1-3, 10, 12, 13, 26, 27, 30].
These models, often based on pre-trained Transformers, have signif-
icantly improved ranking effectiveness across benchmark datasets
[15, 17]. However, recent studies have demonstrated that such mod-
els are not immune to societal biases present in their training data,
particularly with respect to protected attributes like gender, oc-
cupation, and race [7, 20]. For instance, ranking models can dis-
proportionately favor content associated with one gender group,
leading to uneven treatment of users and biased exposure of docu-
ments to different gender groups. This challenge has motivated a
growing body of research that aims to build fairer ranking systems
without compromising on ranking quality. To this end, researchers
have proposed a variety of bias mitigation strategies [14, 19, 24, 29].
For example, representation learning methods have focused on ex-
plicitly separating protected attributes from semantic information
during training, encouraging the model to rely on content rather
than demographic signals when scoring relevance [24]. Others
have explored adversarial training or regularization techniques to
suppress the effect of gender and other attributes in the learned em-
beddings [14, 29]. More recently, curriculum learning has emerged
as an effective strategy for reducing bias by controlling how the
model is exposed to biased examples during training. By prioritizing
low-bias samples in earlier epochs, models have shown to achieve
both improved fairness and competitive effectiveness [5, 24].

Although recent methods for mitigating bias in neural ranking
models have shown promise, they often depend on sensitive or
costly resources such as protected-attributes, external bias mea-
surements, or changes to model architecture [19, 23]. While effec-
tive, such interventions are difficult to scale in real-world ranking
systems. This raises the foundational question of how bias can
be reduced without relying on external demographic annotations.
More specifically, can a model’s own learning signals, such as loss
values, serve as a proxy for bias mitigation?

Prior work has established connections between early-stage
loss dynamics and factors such as dataset structure, semantic co-
herence, and lexical features [4], each of which can differentially
affect population subgroups. From another perspective, bias in

model predictions frequently emerges as a skewed distribution
of attributes, where underrepresented groups are systematically
harder for the model to learn. Assuming that harder samples cor-
respond to higher loss values, loss can serve as an indicator along
two dimensions: (1) a high-loss sample may be intrinsically chal-
lenging due to its lexical or semantic complexity, or (2) the sam-
ple may reflect bias, which makes it systematically harder for the
model to learn and thus produces elevated loss values. Supporting
this hypothesis, Seyedsalehi et al. [23] have demonstrated a mis-
alignment between the similarity of male and female queries (gen-
dered queries) to their relevant documents in large-scale datasets
such as MS MARCO [16]. Specifically, male queries tend to enjoy
higher similarity scores with their associated relevant documents
compared to their female counterparts (we have replicated this
finding and report it: https://anonymous.4open.science/r/SPL-bias-
727D/plots/loss_gap.png). Given neural rankers optimize a loss
function directly over query—-document similarity, gender bias em-
bedded in the training data becomes encoded in the model’s loss.
This implies that loss is not only a marker of learning difficulty but
also a signal of genderedness and possibly societal bias in the data.
This reframing positions loss as a dual-purpose signal: it measures
difficulty while also serving as a practical proxy for bias, such as
gender disparities, that influence learning.

Motivated by this observation, we propose an alternative strat-
egy in which the model’s own loss values, rather than external bias
scores or demographic annotations, are used to guide the training
schedule in a way that implicitly reduces bias. Our central idea is to
treat the loss as a signal of sample reliability, prioritizing low-loss
query—document pairs early in training, where the semantic match
is clearer and less likely to be shaped by confounding bias. As train-
ing continues, higher-loss pairs are gradually introduced, allowing
the model to generalize to more difficult cases after establishing a
stable semantic foundation. To this end, we introduce a lightweight
self-paced curriculum learning approach that dynamically adjusts
the sampling weights of training instances based on their current
loss values. Unlike prior debiasing methods, our approach requires
no protected-attribute labels or precomputed bias scores. It is fully
model-driven and applicable to any neural ranker architecture. We
evaluate the method on the MS MARCO passage ranking dataset,
following the same experimental protocol as [24]. Our results show
that using loss as a sampling proxy leads to significant reductions
in gender bias, measured by various bias metrics including ARaB
[20], NFaiRR [19], and LIWC[18], while maintaining or improving
ranking effectiveness.

2 Problem Formulation

We first formalize the neural ranking setup that underlies our ap-
proach. Let @ = {qi1,...,qn} denote a set of queries and D =
{di,...,dpm} a collection of candidate documents. A ranker with
parameters 6 € R? assigns a real-valued relevance score sg(g, d) :
Q X D —> R. Training typically relies on triples 7 = {(q.d*,d ™)},
where d* is relevant and d™ is non-relevant for query g. The stan-
dard pairwise loss is defined as

to(q,d*,d7) = max{O, m—sg(q,d%) +sq(q, d_)}, 1)
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where m > 0 is a fixed margin. This loss enforces that relevant
documents are ranked above non-relevant ones by at least a margin.
Self-Paced Learning. Building on this formulation, we incorpo-
rate self-paced learning to mitigate bias during training. Self-paced
learning assigns weights to training instances based on their diffi-
culty. Given a per-example difficulty score d(x), a weighting func-
tion w(d(x),A) determines each instance’s contribution, where the
parameter A € (0, 1) gradually relaxes to admit harder samples.

In our approach, we adopt d(x) = f»(x), i.e., the model’s own
loss, as the difficulty signal. This creates a loss-aware curriculum
where low-loss examples dominate early stages of training, while
higher-loss ones are introduced progressively. Intuitively, loss re-
flects both sample difficulty and potential bias where examples
that are systematically harder to learn, such as those from certain
gender groups, tend to incur higher loss. By emphasizing low-loss
examples at the beginning, the model implicitly focuses on less
biased data, postponing exposure to biased, high-loss instances
until later in training.

Learning Objective. With this curriculum in place, our objective is
to learn parameters that maximize relevance while reducing gender
disparities. The self-paced learning objective is defined as:

L£00,2) = Ex~7—[w(£’9(x), 1) {’g(x)]A @)

Training proceeds with a schedule 4y > 4; > --- — 0, such
that the model gradually incorporates increasingly difficult (and
possibly more biased) samples. The optimal parameters are given:

0* = arg mgin .£(9, AT), (3)

where Ar is the final curriculum stage. In this setup, samples most
associated with bias (i.e., high-loss examples) are down-weighted
in early training, reducing their undue influence. As A decreases,
these harder cases are introduced gradually, ensuring the model
learns to handle them without letting bias dominate. This weighted
optimization therefore balances ranking effectiveness with fairness.

It is important to emphasize that we do not claim that all high-
loss samples are biased. Some may simply be inherently difficult
due to lexical or semantic complexity. Our hypothesis is more nu-
anced where we argue that biased samples are often harder for the
model to learn and therefore more likely to yield high loss values.
Prioritizing low-loss samples at the beginning reduces the likeli-
hood of overrepresenting biased examples, allowing the model to
first establish a balanced representation space.

Finally, it is worth noting that training neural rankers typically
involves fine-tuning a pretrained language model, which already
encodes semantic knowledge. As a result, early-stage loss values
are not random but already carry information about both example
difficulty and potential biases present in the data. Fine-tuning with
self-paced learning therefore mitigates biases originating from both
training data and also inherited from pretrained representations.

3 Methodology

We now describe our proposed training framework for reducing
gender bias in neural rankers using a loss-aware self-paced learning
scheme. The key idea is to modulate training by controlling the
influence of each sample based on its current loss, encouraging the
model to learn from lower-loss (potentially less biased) examples
first, and gradually incorporating more difficult instances over time.

Adaptive curriculum. Let 8; C 7~ be a mini-batch at step ¢, and let
fp, (x) denote the margin loss for triple x € B;, as defined in Eq. (1).
To enable self-paced weighting, we first normalize the loss values
within each batch to the range [0, 1] using min-max normalization:

lp, (x) — mingesg, £, (z)
maxzeg, b, (z) — mingeg, by, (z) + ¢’

ft(x) =

where ¢ > 0 is a small constant for numerical stability. This normal-
ization ensures that the difficulty of examples is measured relative
to their peers in the same batch, making the curriculum adaptive
to training dynamics. Each sample is then assigned a weight based
on its normalized loss:

wi(x) = 1= b (x), 0<A <1, 4)

where A; is a curriculum parameter that determines the influence
of the loss-based reweighting at training step ¢. Intuitively, lower-
loss examples receive weights closer to 1 and are emphasized more
during optimization. As training progresses, we linearly decay A;:

st 1),

where Ay is the initial curriculum strength and T is the total number
of training steps. This decay gradually flattens the curriculum,
allowing harder (higher-loss) examples to play a more prominent
role in later stages of training.

Weighted ranking objective. Given the sample weights w;(x),
the self-paced training objective for the mini-batch 8B; becomes a
weighted sum of losses:

1
L

=3 Z wi(x) b, (x). (5)

x€By

This objective biases the gradient updates toward examples with
lower loss, enabling the model to build its semantic understanding
from more confident training signals.

Theoretical Analysis. The focus in our work is specifically on
reducing stereotypical gender biases. Therefore, we provide a the-
oretical analysis in terms of gender groups. Let us assume each
document is assigned a gender label g(d) € {female, male} obtained
via the proposed metrics in [21]. We partition 7 into

Tr={x € T | g(d*) = female}, Tm = {x € T | g(d*) = male}.

The gender loss gap is defined as:

G(0) = Ex-g[to(x)] — Byngy[£o(x)]. (6)
We now present a theoretical analysis showing that our loss-aware
self-paced learning approach monotonically reduces the gender
loss gap. Specifically, we show that weighting examples by loss con-
sistently decreases the disparity across male- and female-associated
samples, as measured by |G;|. Let 6, be the model parameters at
training step ¢, and let G; = G(6;) denote the gender loss gap
defined in Eq. (6). Our goal is to show that the sequence {|G;|}
is non-increasing under the update rule defined by our training
objective.

LEmMA 3.1. Let x = (q,d*,d™) be a training triple and define the
sign indicator:
s() = Ifx € T - Ifx € 7o,
which takes value +1 for examples with female-associated documents
and —1 for those with male-associated ones. Then the inner product
between the gradients of the gender loss gap G, and the weighted
training loss L, satisfies:
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(VoGr, VoLs) = A Coy (s(x), &(x) Voo, (OIP),  (7)

where £ (x) is the normalized loss of x in batch B;.

Proor. From definitions of G; and £;, and the chain rule:
VoGt = Ex-7[Volo(x)] — Bxw7, [Volo(x)] = Bx~g[s(x) Voly(x)].
Similarly,

VoL =Exg, [Vo(w: (x)lo(x))].
Since wy(x) = 1 — A;£(x) and & (x) is differentiable with respect
to £9(x), we apply the product rule and simplify to isolate the
covariance term in Eq. (7). O

THEOREM 3.2 (MoNOTONIC GENDER GAP REDUCTION). Let 0, be
the model parameters at training step t, and assume 0;, is obtained
via one step of stochastic gradient descent:

Ore1 = 0: —1: Vo Ly

Then the absolute gender loss gap satisfies:
IGri1] < |Gl 3)

ProOF. A first-order Taylor expansion of G(6) around 6, gives
Gra1 = Gy = 1: (VoG, Vo L) .
Substituting Lemma 3.1,
Gri1 = Gr = Nty 'xCNCg (s(x), i (x) IVoto, (X)HZ) .

Consider the pairwise hinge loss in Eq. (1). If fp(x) = 0 then
Votp(x) = 0, and larger margin violations yield larger £(x) to-
gether with larger ||Vofs(x)||. Hence £ (x) IVota, (x)||? is a non-
decreasing function of £5(x), and since ¢, is a batchwise monotone
transform of £y, the covariance

Cov(s(x), £ (x) ||V9f9t(x)”2)

has the same sign as Cov(s(x), £ (x)). The latter has the same sign
as the groupwise difference in mean losses in the batch, which
agrees with the sign of G;. Therefore (VyG;, Vg.L;) has the same
sign as G;. If G+ > 0 the update decreases Gy, and if G; < 0 the
update increases G;. In both cases the absolute gap contracts, so
|Gi41] < |G;|, with strict inequality whenever the batch exhibits a

nonzero disparity. O
Eq. (8) shows that the absolute gender loss gap is non-increasing

during training, with each update reducing or at worst leaving
it unchanged. This follows directly from the weight construction,
without extra assumptions. As A; decays to 0, the curriculum be-
comes uniform, ensuring the final model preserves relevance while
achieving a strictly smaller gap (|Gr| < |Gy|). Since most group-fair
IR metrics (e.g., ARaB, NFaiRR, LIWC bias) are monotone trans-
forms of group losses, a non-increasing |G;| yields the same trend,
as confirmed empirically.

4 Experiments

Research Questions. Our experiments are designed to address 3
Research Questions (RQs): RQ1. Can self-paced learning effectively
mitigate gender bias in neural ranking models? We specifically
examine whether weighting training samples based on their indi-
vidual loss values helps reduce bias in the ranking outputs while
preserving ranking effectiveness. RQ2. How does our method com-
pare to existing state-of-the-art bias mitigation approaches? RQ3.
Is the proposed method robust across different language model

Conference’17, July 2017, Washington, DC, USA

architectures? To evaluate the generalizability of our approach,
we conduct experiments using two pretrained language models:
BERT-L2 [6, 25], and ELECTRA-small-discriminator [11].
Datasets and Experimental Setup. We conduct our experiments
using the MS MARCO passage ranking dataset [16], which contains
~200,000 queries and 8.8M passages. For training, we randomly sam-
ple 3,000,000 query—positive—negative triples and train the model
for one epoch using the Adam optimizer with a sigmoid activation
function. Our approach follows the architecture, implementation,
and hyperparameter settings of the OpenMatch framework [22].
Complete implementation details, and source code are publicly
available on GitHub: https://anonymous.4open.science/r/SPL-bias-
727D.

Bias Measurement and Evaluation Datasets. To assess both
ranking performance and bias mitigation, we focus on measuring
gender bias. We evaluate the models using two bias-sensitive query
sets: (a) Gender-neutral queries: Designed to test whether the model
introduces gender stereotypes in otherwise neutral contexts. We
use the dataset introduced by [19], which consists of 1,765 gender-
neutral queries selected from the MS MARCO dataset. (b) Socially
sensitive queries: This set comprises 215 queries that, if biased, have
the potential to reinforce or exacerbate societal inequalities.
Evaluation Metrics. To assess ranking performance, we use Mean
Reciprocal Rank (MRR) [16]. To evaluate bias, we employ three com-
plementary metrics: (1) Average Rank Bias (ARaB) [20], which quan-
tifies the prominence of gendered terms in retrieved documents
based on Term Count (TC), Term Frequency (TF), and Boolean pres-
ence; (2) NFaiRR [19], a fairness metric that captures document-level
gender balance, with higher values indicating less biased rankings;
and (3) Linguistic Inquiry and Word Count (LIWC) [18], used to
analyze the frequency of gender-related words in retrieved texts,
following the methodology of [9].

Baseline Methods. To benchmark our approach, we compare it
against several established baselines representing diverse bias miti-
gation strategies: (1) AdvBert [19] uses adversarial debiasing in the
ranker’s intermediate layers; (2) Bias-aware Loss [23] integrates
a bias penalty in the loss function for targeted bias reduction during
training; (3) CODER [28] applies a neutrality regularization term in a
transformer model; (4) Light-Weight Sampling Strategy (LWS)
[8] selects biased documents as negative samples, training the model
to recognize and mitigate bias. (5) Gender Disentanglement [24]
Disentangles gender from semantics in ranker representations by
jointly training a relevance predictor and gender classifier, ensuring
retrieval relies only on meaning.

Findings. To address RQ1, we examine whether our proposed
self-paced learning approach can effectively mitigate gender bias
in neural rankers. We conduct experiments comparing the original
model (the model without the self-paced strategy) to our self-paced
variant across both bias and effectiveness metrics. Figure 1 summa-
rizes the results, showing scores for bias-related metrics on the left
side of the dotted line, where lower values indicate reduced bias,
and for performance and fairness metrics on the right side, where
higher values are preferred. Our results demonstrate a consistent
reduction in bias across both evaluation datasets, as well as across
ranking cutoffs (i.e., top-10 and top-20). Notably, our approach
achieves up to a 95% reduction in bias on the 215 queries and a 42%
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Figure 1: Effectiveness, and bias metrics for BERT. Metrics
to the left of the dotted line lower is better and to the right
higher is better.
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Figure 2: Effectiveness, and bias metrics for ELECTRA (Met-
rics interpretation similar to Figure 1).

reduction on the 1,765 queries, as measured by ARaB and LIWC-
based metrics. At the same time, the model preserves, and in some
cases slightly improves, ranking effectiveness as measured by MRR.
These findings support the conclusion that our self-paced learning
strategy successfully prioritizes less biased examples during early
training, thereby steering the model toward fairer behavior without
sacrificing ranking quality. We note that our approach introduces
no additional computational overhead compared to the standard
training setup.

RQ2. To evaluate the effectiveness of our method relative to state-
of-the-art bias mitigation techniques, we compare performance
across several baselines, including Bias-Aware Loss, Light-Weight
Sampling, ADVBERT, CODER, and Disentanglement. Tables 1 and 2
present results for the two bias-sensitive query sets. Our findings
show that the proposed self-paced learning approach consistently
outperforms Bias-Aware Loss, Light-Weight Sampling, ADVBERT,
and Disentanglement in terms of bias reduction, while also achiev-
ing higher MRR scores, indicating better ranking effectiveness.
Although CODER demonstrates a slightly greater reduction in bias
than our method, this comes at a substantial cost to effectiveness.
Specifically, CODER’s MRR drops to 0.0014 at cutoff-10 and to
0.0001 at cutoff-20 for the 215 socially sensitive queries, rendering

Table 1: Bias & ranking effectiveness on the 215 query set.

cutoff @10
Models MRR  ARaB-tc| ARaB-tf| ARaB-bool| NFaiR7T liwc |
Bias-Aware Loss [23] 0.1820 0.3419 0.1492 0.1176 0.8209  0.9202
Light-Weight-Sampling [8]  0.1823 0.2017 0.0938 0.0782 0.9087  0.5636
CODER [28] 0.0014 0.0260 0.0171 0.0205 0.9649  0.2998
ADVBERT [19] 0.1753 0.1975 0.1054 0.1113 0.8747  0.7850
Disentanglement [24] 0.1859 0.6806 0.3067 0.2630 0.8124 1.1716
Our Approach 0.2082 0.0317 0.0079 0.0074  0.8797 0.6693

cutoff @20
Models MRR ARaB-tc] ARaB-tf| ARaB-bool| NFaiRT liwe |
Bias-Aware Loss [23] 0.1873 0.2783 0.1169 0.0899 0.8519  0.6650
Light-Weight-Sampling [8]  0.1876 0.1618 0.0746 0.0616 0.9168  0.4681
CODER (28] 0.0001 0.0227 0.0148 0.0178 0.9650  0.2828
ADVBERT [19] 0.1799 0.1144 0.0653 0.0710 0.8795  0.6432
Disentanglement [24] 0.1939 0.6019 0.2688 0.2309 0.8324  0.9517
Our Approach 0.2126 0.0167 0.0049 0.0052 0.8870 0.5493

Table 2: Bias & ranking effectiveness on the 1,765 query set.

cutoff @10
Models MRR ARaB-tc] ARaB-tf| ARaB-bool| NFaiRtT liwe |
Bias-Aware Loss [23] 0.2591 0.2109 0.0949 0.0755 0.7289  1.5142
Light-Weight-Sampling [8]  0.2558 0.1540 0.0764 0.0680 0.8204  1.1500
CODER [28] 0.0001 0.0646 0.0371 0.0421 0.8404  0.7199
ADVBERT [19] 0.2019 0.4222 0.2260 0.2363 0.7132  1.6427
Disentanglement [24] 0.2571 0.8824 0.4150 0.3746 0.7317  1.6988
Our Approach 0.2881 0.1778 0.0715 0.0539  0.7792 1.3268

cutoff @20
Models MRR ARaB-tc] ARaB-tf| ARaB-bool| NFaiR1T liwe |
Bias-Aware Loss [23] 0.2653 0.1644 0.0730 0.0574 0.7578  1.2169
Light-Weight-Sampling [8]  0.2622 0.1192 0.0587 0.0516 0.8313  0.9614
CODER [28] 0.0014 0.0674 0.0388 0.0440 0.8407  0.6467
ADVBERT [19] 0.2106 0.2731 0.1475 0.1554 0.7424  1.2933
Disentanglement [24] 0.2641 0.8190 0.3823 0.3433 0.7389  1.5031
Our Approach 0.2941 0.1662 0.0692 0.0541 0.7886 1.1466

its ranking performance practically unusable. These results high-
light that our method strikes a more favorable balance between
fairness and effectiveness.

RQ3. To evaluate the generalizability of our approach across dif-
ferent language models, we replicate our experiments using the
ELECTRA architecture. Figure 2 presents both bias and effective-
ness metrics for the baseline model and our self-paced variant.
The results show that our self-paced learning strategy consistently
reduces bias compared to the standard ELECTRA model without
self-paced training. In particular, we observe a notable increase in
the NFaiRR fairness score, indicating more equitable exposure of
documents. Importantly, the Mean Reciprocal Rank (MRR) remains
comparable to that of the original model, demonstrating that the
improvements in fairness and bias mitigation do not come at the
cost of ranking effectiveness.

5 Concluding Remarks

We propose a model-agnostic debiasing technique for neural rankers
that does not require protected-attribute labels or architectural
changes. By using each sample’s loss as an implicit bias indicator
and applying a self-paced learning curriculum, prioritizing low-loss
(less biased) examples, we achieve a steady reduction in the gender
loss gap. Our theoretical analysis confirms this monotonic bias
decrease, and experiments on MS MARCO demonstrate significant
bias reduction without sacrificing, and in some cases improving,
ranking effectiveness compared to strong baselines.
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