
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Self-Paced Fair Ranking with Loss as a Proxy for Bias

Abstract
Neural rankers often mirror societal biases in training data, such as

gender. Prior work typically requires access to protected-attribute

labels or model changes, limiting applicability. We propose a simple,

model-agnostic approach that uses the model’s own loss values

as a proxy for bias. Through self-paced learning, our method first

prioritizes lower-loss (and less biased) examples, then gradually

introduces harder (more biased) ones. This loss-aware curriculum

reduces reliance on biased samples without demographic annota-

tions. We prove the gender loss gap decreases monotonically during

training and show on MS MARCO that our method reduces bias

while maintaining or improving ranking effectiveness, outperform-

ing strong baselines.

1 Introduction
Neural ranking models have become central to modern information

retrieval systems due to their ability to learn deep semantic relation-

ships between queries and documents [1–3, 10, 12, 13, 26, 27, 30].

These models, often based on pre-trained Transformers, have signif-

icantly improved ranking effectiveness across benchmark datasets

[15, 17]. However, recent studies have demonstrated that such mod-

els are not immune to societal biases present in their training data,

particularly with respect to protected attributes like gender, oc-

cupation, and race [7, 20]. For instance, ranking models can dis-

proportionately favor content associated with one gender group,

leading to uneven treatment of users and biased exposure of docu-

ments to different gender groups. This challenge has motivated a

growing body of research that aims to build fairer ranking systems

without compromising on ranking quality. To this end, researchers

have proposed a variety of bias mitigation strategies [14, 19, 24, 29].

For example, representation learning methods have focused on ex-

plicitly separating protected attributes from semantic information

during training, encouraging the model to rely on content rather

than demographic signals when scoring relevance [24]. Others

have explored adversarial training or regularization techniques to

suppress the effect of gender and other attributes in the learned em-

beddings [14, 29]. More recently, curriculum learning has emerged

as an effective strategy for reducing bias by controlling how the

model is exposed to biased examples during training. By prioritizing

low-bias samples in earlier epochs, models have shown to achieve

both improved fairness and competitive effectiveness [5, 24].

Although recent methods for mitigating bias in neural ranking

models have shown promise, they often depend on sensitive or

costly resources such as protected-attributes, external bias mea-

surements, or changes to model architecture [19, 23]. While effec-

tive, such interventions are difficult to scale in real-world ranking

systems. This raises the foundational question of how bias can

be reduced without relying on external demographic annotations.

More specifically, can a model’s own learning signals, such as loss

values, serve as a proxy for bias mitigation?

Prior work has established connections between early-stage

loss dynamics and factors such as dataset structure, semantic co-

herence, and lexical features [4], each of which can differentially

affect population subgroups. From another perspective, bias in

model predictions frequently emerges as a skewed distribution

of attributes, where underrepresented groups are systematically

harder for the model to learn. Assuming that harder samples cor-

respond to higher loss values, loss can serve as an indicator along

two dimensions: (1) a high-loss sample may be intrinsically chal-

lenging due to its lexical or semantic complexity, or (2) the sam-

ple may reflect bias, which makes it systematically harder for the

model to learn and thus produces elevated loss values. Supporting

this hypothesis, Seyedsalehi et al. [23] have demonstrated a mis-

alignment between the similarity of male and female queries (gen-

dered queries) to their relevant documents in large-scale datasets

such as MS MARCO [16]. Specifically, male queries tend to enjoy

higher similarity scores with their associated relevant documents

compared to their female counterparts (we have replicated this

finding and report it: https://anonymous.4open.science/r/SPL-bias-

727D/plots/loss_gap.png). Given neural rankers optimize a loss

function directly over query–document similarity, gender bias em-

bedded in the training data becomes encoded in the model’s loss.

This implies that loss is not only a marker of learning difficulty but

also a signal of genderedness and possibly societal bias in the data.

This reframing positions loss as a dual-purpose signal: it measures

difficulty while also serving as a practical proxy for bias, such as

gender disparities, that influence learning.

Motivated by this observation, we propose an alternative strat-

egy in which the model’s own loss values, rather than external bias

scores or demographic annotations, are used to guide the training

schedule in a way that implicitly reduces bias. Our central idea is to

treat the loss as a signal of sample reliability, prioritizing low-loss

query–document pairs early in training, where the semantic match

is clearer and less likely to be shaped by confounding bias. As train-

ing continues, higher-loss pairs are gradually introduced, allowing

the model to generalize to more difficult cases after establishing a

stable semantic foundation. To this end, we introduce a lightweight
self-paced curriculum learning approach that dynamically adjusts

the sampling weights of training instances based on their current

loss values. Unlike prior debiasing methods, our approach requires

no protected-attribute labels or precomputed bias scores. It is fully

model-driven and applicable to any neural ranker architecture. We

evaluate the method on the MS MARCO passage ranking dataset,

following the same experimental protocol as [24]. Our results show

that using loss as a sampling proxy leads to significant reductions

in gender bias, measured by various bias metrics including ARaB

[20], NFaiRR [19], and LIWC[18], while maintaining or improving

ranking effectiveness.

2 Problem Formulation
We first formalize the neural ranking setup that underlies our ap-

proach. Let Q = {𝑞1, . . . , 𝑞𝑁 } denote a set of queries and D =

{𝑑1, . . . , 𝑑𝑀 } a collection of candidate documents. A ranker with

parameters 𝜃 ∈ R𝑑
assigns a real-valued relevance score 𝑠𝜃 (𝑞, 𝑑) :

Q × D−→R. Training typically relies on triples T = {(𝑞,𝑑+, 𝑑−)},
where 𝑑+ is relevant and 𝑑−

is non-relevant for query 𝑞. The stan-

dard pairwise loss is defined as

ℓ𝜃 (𝑞, 𝑑+, 𝑑−) =max

{
0, 𝑚 − 𝑠𝜃 (𝑞, 𝑑+) + 𝑠𝜃 (𝑞, 𝑑−)

}
, (1)

1

https://anonymous.4open.science/r/SPL-bias-727D/plots/loss_gap.png
https://anonymous.4open.science/r/SPL-bias-727D/plots/loss_gap.png


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

where 𝑚 > 0 is a fixed margin. This loss enforces that relevant

documents are ranked above non-relevant ones by at least a margin.

Self-Paced Learning. Building on this formulation, we incorpo-

rate self-paced learning to mitigate bias during training. Self-paced

learning assigns weights to training instances based on their diffi-

culty. Given a per-example difficulty score 𝑑 (𝑥), a weighting func-

tion𝑤 (𝑑 (𝑥), 𝜆) determines each instance’s contribution, where the

parameter 𝜆 ∈ (0, 1) gradually relaxes to admit harder samples.

In our approach, we adopt 𝑑 (𝑥) = ℓ𝜃 (𝑥), i.e., the model’s own

loss, as the difficulty signal. This creates a loss-aware curriculum

where low-loss examples dominate early stages of training, while

higher-loss ones are introduced progressively. Intuitively, loss re-

flects both sample difficulty and potential bias where examples

that are systematically harder to learn, such as those from certain

gender groups, tend to incur higher loss. By emphasizing low-loss

examples at the beginning, the model implicitly focuses on less

biased data, postponing exposure to biased, high-loss instances

until later in training.

Learning Objective.With this curriculum in place, our objective is

to learn parameters that maximize relevance while reducing gender

disparities. The self-paced learning objective is defined as:

L(𝜃, 𝜆) = E𝑥∼T
[
𝑤
(
ℓ𝜃 (𝑥), 𝜆

)
ℓ𝜃 (𝑥)

]
. (2)

Training proceeds with a schedule 𝜆0 > 𝜆1 > · · · → 0, such

that the model gradually incorporates increasingly difficult (and

possibly more biased) samples. The optimal parameters are given:

𝜃 ∗ = argmin

𝜃
L(𝜃, 𝜆𝑇 ), (3)

where 𝜆𝑇 is the final curriculum stage. In this setup, samples most

associated with bias (i.e., high-loss examples) are down-weighted

in early training, reducing their undue influence. As 𝜆 decreases,

these harder cases are introduced gradually, ensuring the model

learns to handle them without letting bias dominate. This weighted

optimization therefore balances ranking effectiveness with fairness.

It is important to emphasize that we do not claim that all high-

loss samples are biased. Some may simply be inherently difficult

due to lexical or semantic complexity. Our hypothesis is more nu-

anced where we argue that biased samples are often harder for the

model to learn and therefore more likely to yield high loss values.

Prioritizing low-loss samples at the beginning reduces the likeli-

hood of overrepresenting biased examples, allowing the model to

first establish a balanced representation space.

Finally, it is worth noting that training neural rankers typically

involves fine-tuning a pretrained language model, which already

encodes semantic knowledge. As a result, early-stage loss values

are not random but already carry information about both example

difficulty and potential biases present in the data. Fine-tuning with

self-paced learning therefore mitigates biases originating from both

training data and also inherited from pretrained representations.

3 Methodology
We now describe our proposed training framework for reducing

gender bias in neural rankers using a loss-aware self-paced learning

scheme. The key idea is to modulate training by controlling the

influence of each sample based on its current loss, encouraging the

model to learn from lower-loss (potentially less biased) examples

first, and gradually incorporating more difficult instances over time.

Adaptive curriculum. LetB𝑡 ⊂ T be amini-batch at step 𝑡 , and let

ℓ𝜃𝑡 (𝑥) denote the margin loss for triple 𝑥 ∈ B𝑡 , as defined in Eq. (1).

To enable self-paced weighting, we first normalize the loss values

within each batch to the range [0, 1] using min–max normalization:

ℓ̂𝑡 (𝑥) =
ℓ𝜃𝑡 (𝑥) −min𝑧∈B𝑡 ℓ𝜃𝑡 (𝑧)

max𝑧∈B𝑡 ℓ𝜃𝑡 (𝑧) −min𝑧∈B𝑡 ℓ𝜃𝑡 (𝑧) + 𝜀
,

where 𝜀 > 0 is a small constant for numerical stability. This normal-

ization ensures that the difficulty of examples is measured relative

to their peers in the same batch, making the curriculum adaptive

to training dynamics. Each sample is then assigned a weight based

on its normalized loss:

𝑤𝑡 (𝑥) = 1 − 𝜆𝑡 ℓ̂𝑡 (𝑥), 0 < 𝜆𝑡 ≤ 1, (4)

where 𝜆𝑡 is a curriculum parameter that determines the influence

of the loss-based reweighting at training step 𝑡 . Intuitively, lower-

loss examples receive weights closer to 1 and are emphasized more

during optimization. As training progresses, we linearly decay 𝜆𝑡 :

𝜆𝑡 = 𝜆0

(
1 − 𝑡

𝑇

)
,

where 𝜆0 is the initial curriculum strength and𝑇 is the total number

of training steps. This decay gradually flattens the curriculum,

allowing harder (higher-loss) examples to play a more prominent

role in later stages of training.

Weighted ranking objective. Given the sample weights 𝑤𝑡 (𝑥),
the self-paced training objective for the mini-batch B𝑡 becomes a

weighted sum of losses:

L𝑡 =
1

|B𝑡 |
∑︁
𝑥∈B𝑡

𝑤𝑡 (𝑥) ℓ𝜃𝑡 (𝑥) . (5)

This objective biases the gradient updates toward examples with

lower loss, enabling the model to build its semantic understanding

from more confident training signals.

Theoretical Analysis. The focus in our work is specifically on

reducing stereotypical gender biases. Therefore, we provide a the-

oretical analysis in terms of gender groups. Let us assume each

document is assigned a gender label𝑔(𝑑) ∈ {female,male} obtained
via the proposed metrics in [21]. We partition T into

Tf = {𝑥 ∈ T | 𝑔(𝑑+) = female}, Tm = {𝑥 ∈ T | 𝑔(𝑑+) =male}.
The gender loss gap is defined as:

𝐺 (𝜃 ) = E𝑥∼T
f
[ℓ𝜃 (𝑥)] − E𝑥∼Tm [ℓ𝜃 (𝑥)] . (6)

We now present a theoretical analysis showing that our loss-aware

self-paced learning approach monotonically reduces the gender

loss gap. Specifically, we show that weighting examples by loss con-

sistently decreases the disparity across male- and female-associated

samples, as measured by |𝐺𝑡 |. Let 𝜃𝑡 be the model parameters at

training step 𝑡 , and let 𝐺𝑡 = 𝐺 (𝜃𝑡 ) denote the gender loss gap

defined in Eq. (6). Our goal is to show that the sequence {|𝐺𝑡 |}
is non-increasing under the update rule defined by our training

objective.

Lemma 3.1. Let 𝑥 = (𝑞, 𝑑+, 𝑑−) be a training triple and define the
sign indicator:

𝑠 (𝑥) = I{𝑥 ∈ Tf} − I{𝑥 ∈ Tm},
which takes value +1 for examples with female-associated documents
and −1 for those with male-associated ones. Then the inner product
between the gradients of the gender loss gap 𝐺𝑡 and the weighted
training loss L𝑡 satisfies:

2
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〈
∇𝜃𝐺𝑡 , ∇𝜃L𝑡

〉
= 𝜆𝑡 Cov

𝑥∼B𝑡

(
𝑠 (𝑥), ℓ̂𝑡 (𝑥) ∥∇𝜃 ℓ𝜃𝑡 (𝑥)∥2

)
, (7)

where ℓ̂𝑡 (𝑥) is the normalized loss of 𝑥 in batch B𝑡 .

Proof. From definitions of 𝐺𝑡 and L𝑡 , and the chain rule:

∇𝜃𝐺𝑡 = E𝑥∼T
f
[∇𝜃 ℓ𝜃 (𝑥)] − E𝑥∼Tm [∇𝜃 ℓ𝜃 (𝑥)] = E𝑥∼T [𝑠 (𝑥)∇𝜃 ℓ𝜃 (𝑥)] .

Similarly,

∇𝜃L𝑡 = E𝑥∼B𝑡 [∇𝜃 (𝑤𝑡 (𝑥)ℓ𝜃 (𝑥))] .
Since 𝑤𝑡 (𝑥) = 1 − 𝜆𝑡 ℓ̂𝑡 (𝑥) and ℓ̂𝑡 (𝑥) is differentiable with respect

to ℓ𝜃 (𝑥), we apply the product rule and simplify to isolate the

covariance term in Eq. (7). □

Theorem 3.2 (Monotonic Gender Gap Reduction). Let 𝜃𝑡 be
the model parameters at training step 𝑡 , and assume 𝜃𝑡+1 is obtained
via one step of stochastic gradient descent:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡∇𝜃L𝑡 .

Then the absolute gender loss gap satisfies:
|𝐺𝑡+1 | ≤ |𝐺𝑡 |. (8)

Proof. A first-order Taylor expansion of 𝐺 (𝜃 ) around 𝜃𝑡 gives
𝐺𝑡+1 ≈ 𝐺𝑡 − 𝜂𝑡 ⟨∇𝜃𝐺𝑡 ,∇𝜃L𝑡 ⟩ .

Substituting Lemma 3.1,

𝐺𝑡+1 ≈ 𝐺𝑡 − 𝜂𝑡𝜆𝑡 · Cov
𝑥∼B𝑡

(
𝑠 (𝑥), ℓ̂𝑡 (𝑥) ∥∇𝜃 ℓ𝜃𝑡 (𝑥)∥2

)
.

Consider the pairwise hinge loss in Eq. (1). If ℓ𝜃 (𝑥) = 0 then

∇𝜃 ℓ𝜃 (𝑥) = 0, and larger margin violations yield larger ℓ𝜃 (𝑥) to-
gether with larger ∥∇𝜃 ℓ𝜃 (𝑥)∥. Hence ℓ̂𝑡 (𝑥) ∥∇𝜃 ℓ𝜃𝑡 (𝑥)∥2 is a non-

decreasing function of ℓ𝜃 (𝑥), and since ℓ̂𝑡 is a batchwise monotone

transform of ℓ𝜃 , the covariance

Cov

(
𝑠 (𝑥), ℓ̂𝑡 (𝑥) ∥∇𝜃 ℓ𝜃𝑡 (𝑥)∥2

)
has the same sign as Cov(𝑠 (𝑥), ℓ̂𝑡 (𝑥)). The latter has the same sign

as the groupwise difference in mean losses in the batch, which

agrees with the sign of 𝐺𝑡 . Therefore ⟨∇𝜃𝐺𝑡 ,∇𝜃L𝑡 ⟩ has the same

sign as 𝐺𝑡 . If 𝐺𝑡 > 0 the update decreases 𝐺𝑡 , and if 𝐺𝑡 < 0 the

update increases 𝐺𝑡 . In both cases the absolute gap contracts, so

|𝐺𝑡+1 | ≤ |𝐺𝑡 |, with strict inequality whenever the batch exhibits a

nonzero disparity. □
Eq. (8) shows that the absolute gender loss gap is non-increasing

during training, with each update reducing or at worst leaving

it unchanged. This follows directly from the weight construction,

without extra assumptions. As 𝜆𝑡 decays to 0, the curriculum be-

comes uniform, ensuring the final model preserves relevance while

achieving a strictly smaller gap (|𝐺𝑇 | ≤ |𝐺0 |). Since most group-fair

IR metrics (e.g., ARaB, NFaiRR, LIWC bias) are monotone trans-

forms of group losses, a non-increasing |𝐺𝑡 | yields the same trend,

as confirmed empirically.

4 Experiments
Research Questions. Our experiments are designed to address 3

Research Questions (RQs): RQ1. Can self-paced learning effectively

mitigate gender bias in neural ranking models? We specifically

examine whether weighting training samples based on their indi-

vidual loss values helps reduce bias in the ranking outputs while

preserving ranking effectiveness. RQ2. How does our method com-

pare to existing state-of-the-art bias mitigation approaches? RQ3.
Is the proposed method robust across different language model

architectures? To evaluate the generalizability of our approach,

we conduct experiments using two pretrained language models:

BERT-L2 [6, 25], and ELECTRA-small-discriminator [11].

Datasets and Experimental Setup. We conduct our experiments

using the MS MARCO passage ranking dataset [16], which contains

∼200,000 queries and 8.8M passages. For training, we randomly sam-

ple 3,000,000 query–positive–negative triples and train the model

for one epoch using the Adam optimizer with a sigmoid activation

function. Our approach follows the architecture, implementation,

and hyperparameter settings of the OpenMatch framework [22].

Complete implementation details, and source code are publicly

available on GitHub: https://anonymous.4open.science/r/SPL-bias-

727D.

Bias Measurement and Evaluation Datasets. To assess both

ranking performance and bias mitigation, we focus on measuring

gender bias. We evaluate the models using two bias-sensitive query

sets: (a) Gender-neutral queries: Designed to test whether the model

introduces gender stereotypes in otherwise neutral contexts. We

use the dataset introduced by [19], which consists of 1,765 gender-

neutral queries selected from the MS MARCO dataset. (b) Socially
sensitive queries: This set comprises 215 queries that, if biased, have

the potential to reinforce or exacerbate societal inequalities.

Evaluation Metrics. To assess ranking performance, we use Mean

Reciprocal Rank (MRR) [16]. To evaluate bias, we employ three com-

plementary metrics: (1) Average Rank Bias (ARaB) [20], which quan-

tifies the prominence of gendered terms in retrieved documents

based on Term Count (TC), Term Frequency (TF), and Boolean pres-

ence; (2)NFaiRR [19], a fairness metric that captures document-level

gender balance, with higher values indicating less biased rankings;

and (3) Linguistic Inquiry and Word Count (LIWC) [18], used to

analyze the frequency of gender-related words in retrieved texts,

following the methodology of [9].

Baseline Methods. To benchmark our approach, we compare it

against several established baselines representing diverse bias miti-

gation strategies: (1) AdvBert [19] uses adversarial debiasing in the

ranker’s intermediate layers; (2) Bias-aware Loss [23] integrates

a bias penalty in the loss function for targeted bias reduction during

training; (3) CODER [28] applies a neutrality regularization term in a

transformer model; (4) Light-Weight Sampling Strategy (LWS)
[8] selects biased documents as negative samples, training themodel

to recognize and mitigate bias. (5) Gender Disentanglement [24]

Disentangles gender from semantics in ranker representations by

jointly training a relevance predictor and gender classifier, ensuring

retrieval relies only on meaning.

Findings. To address RQ1, we examine whether our proposed

self-paced learning approach can effectively mitigate gender bias

in neural rankers. We conduct experiments comparing the original

model (the model without the self-paced strategy) to our self-paced

variant across both bias and effectiveness metrics. Figure 1 summa-

rizes the results, showing scores for bias-related metrics on the left

side of the dotted line, where lower values indicate reduced bias,

and for performance and fairness metrics on the right side, where

higher values are preferred. Our results demonstrate a consistent

reduction in bias across both evaluation datasets, as well as across

ranking cutoffs (i.e., top-10 and top-20). Notably, our approach

achieves up to a 95% reduction in bias on the 215 queries and a 42%

3
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Figure 1: Effectiveness, and bias metrics for BERT. Metrics
to the left of the dotted line lower is better and to the right
higher is better.

Figure 2: Effectiveness, and bias metrics for ELECTRA (Met-
rics interpretation similar to Figure 1).

reduction on the 1,765 queries, as measured by ARaB and LIWC-

based metrics. At the same time, the model preserves, and in some

cases slightly improves, ranking effectiveness as measured by MRR.

These findings support the conclusion that our self-paced learning

strategy successfully prioritizes less biased examples during early

training, thereby steering the model toward fairer behavior without

sacrificing ranking quality. We note that our approach introduces

no additional computational overhead compared to the standard

training setup.

RQ2. To evaluate the effectiveness of our method relative to state-

of-the-art bias mitigation techniques, we compare performance

across several baselines, including Bias-Aware Loss, Light-Weight

Sampling, ADVBERT, CODER, and Disentanglement. Tables 1 and 2

present results for the two bias-sensitive query sets. Our findings

show that the proposed self-paced learning approach consistently

outperforms Bias-Aware Loss, Light-Weight Sampling, ADVBERT,

and Disentanglement in terms of bias reduction, while also achiev-

ing higher MRR scores, indicating better ranking effectiveness.

Although CODER demonstrates a slightly greater reduction in bias

than our method, this comes at a substantial cost to effectiveness.

Specifically, CODER’s MRR drops to 0.0014 at cutoff-10 and to

0.0001 at cutoff-20 for the 215 socially sensitive queries, rendering

Table 1: Bias & ranking effectiveness on the 215 query set.
cutoff @10

Models MRR ARaB-tc↓ ARaB-tf↓ ARaB-bool↓ NFaiR ↑ liwc ↓
Bias-Aware Loss [23] 0.1820 0.3419 0.1492 0.1176 0.8209 0.9202

Light-Weight-Sampling [8] 0.1823 0.2017 0.0938 0.0782 0.9087 0.5636

CODER [28] 0.0014 0.0260 0.0171 0.0205 0.9649 0.2998

ADVBERT [19] 0.1753 0.1975 0.1054 0.1113 0.8747 0.7850

Disentanglement [24] 0.1859 0.6806 0.3067 0.2630 0.8124 1.1716

Our Approach 0.2082 0.0317 0.0079 0.0074 0.8797 0.6693
cutoff @20

Models MRR ARaB-tc↓ ARaB-tf↓ ARaB-bool↓ NFaiR ↑ liwc ↓
Bias-Aware Loss [23] 0.1873 0.2783 0.1169 0.0899 0.8519 0.6650

Light-Weight-Sampling [8] 0.1876 0.1618 0.0746 0.0616 0.9168 0.4681

CODER [28] 0.0001 0.0227 0.0148 0.0178 0.9650 0.2828

ADVBERT [19] 0.1799 0.1144 0.0653 0.0710 0.8795 0.6432

Disentanglement [24] 0.1939 0.6019 0.2688 0.2309 0.8324 0.9517

Our Approach 0.2126 0.0167 0.0049 0.0052 0.8870 0.5493

Table 2: Bias & ranking effectiveness on the 1,765 query set.
cutoff @10

Models MRR ARaB-tc↓ ARaB-tf↓ ARaB-bool↓ NFaiR ↑ liwc ↓
Bias-Aware Loss [23] 0.2591 0.2109 0.0949 0.0755 0.7289 1.5142

Light-Weight-Sampling [8] 0.2558 0.1540 0.0764 0.0680 0.8204 1.1500

CODER [28] 0.0001 0.0646 0.0371 0.0421 0.8404 0.7199

ADVBERT [19] 0.2019 0.4222 0.2260 0.2363 0.7132 1.6427

Disentanglement [24] 0.2571 0.8824 0.4150 0.3746 0.7317 1.6988

Our Approach 0.2881 0.1778 0.0715 0.0539 0.7792 1.3268
cutoff @20

Models MRR ARaB-tc↓ ARaB-tf↓ ARaB-bool↓ NFaiR ↑ liwc ↓
Bias-Aware Loss [23] 0.2653 0.1644 0.0730 0.0574 0.7578 1.2169

Light-Weight-Sampling [8] 0.2622 0.1192 0.0587 0.0516 0.8313 0.9614

CODER [28] 0.0014 0.0674 0.0388 0.0440 0.8407 0.6467

ADVBERT [19] 0.2106 0.2731 0.1475 0.1554 0.7424 1.2933

Disentanglement [24] 0.2641 0.8190 0.3823 0.3433 0.7389 1.5031

Our Approach 0.2941 0.1662 0.0692 0.0541 0.7886 1.1466

its ranking performance practically unusable. These results high-

light that our method strikes a more favorable balance between

fairness and effectiveness.

RQ3. To evaluate the generalizability of our approach across dif-

ferent language models, we replicate our experiments using the

ELECTRA architecture. Figure 2 presents both bias and effective-

ness metrics for the baseline model and our self-paced variant.

The results show that our self-paced learning strategy consistently

reduces bias compared to the standard ELECTRA model without

self-paced training. In particular, we observe a notable increase in

the NFaiRR fairness score, indicating more equitable exposure of

documents. Importantly, the Mean Reciprocal Rank (MRR) remains

comparable to that of the original model, demonstrating that the

improvements in fairness and bias mitigation do not come at the

cost of ranking effectiveness.

5 Concluding Remarks
Wepropose amodel-agnostic debiasing technique for neural rankers

that does not require protected-attribute labels or architectural

changes. By using each sample’s loss as an implicit bias indicator

and applying a self-paced learning curriculum, prioritizing low-loss

(less biased) examples, we achieve a steady reduction in the gender

loss gap. Our theoretical analysis confirms this monotonic bias

decrease, and experiments on MS MARCO demonstrate significant

bias reduction without sacrificing, and in some cases improving,

ranking effectiveness compared to strong baselines.
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